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Abstract: This review revisits previous concepts on biological phenomenon contributing to the success
of the Salmonella enterica subspecies I as a pathogen and expands upon them to include progress in
epidemiology based on whole genome sequencing (WGS). Discussion goes beyond epidemiological
uses of WGS to consider how phenotype, which is the biological character of an organism, can
be correlated with its genotype to develop a knowledge of the interactome. Deciphering genome
interactions with proteins, the impact of metabolic flux, epigenetic modifications, and other complex
biochemical processes will lead to new therapeutics, control measures, environmental remediations,
and improved design of vaccines.
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1. Introduction

The genus Salmonella has two distinct species, namely S. bongori and S. enterica. How-
ever, foodborne pathogens are, for the most part, found in only one of six subspecies of
S. enterica, namely S. enterica subspecies I. The other S. enterica subspecies are II (salamae),
IIIa (arizonae), IIIb (diarizonae), IV (houtenae), and VI (indica). There are some instances
where subspecies II–VI cause illness, but overall, they are infrequently encountered as
public health issues and are associated with wildlife-centered occupations, reptiles, and
animals that are less often used for food [1–3]. There is concern that evolution of the genus
Salmonella is not yet sufficiently investigated to account for several complexities occurring
within and between subspecies, thus the potential for evolution towards causing foodborne
illness or more serious invasive disease remains [4].

S. enterica subspecies I (S.), however, is exceptionally scrutinized because of its link to
foods commonly consumed by most populations. There are two lineages within subspecies
I. Typhoidal and paratyphoidal serotypes are mostly restricted to persistent colonization
and infection of people. Approximately 10% of the 20 million infections occurring world-
wide on an annual basis cause a life-threatening bacteremia and unusual rash, rather than
typical gastrointestinal symptoms, and this set of symptoms is recognized as Typhoid
Fever (https://www.who.int/news-room/fact-sheets/detail/typhoid, accessed on 10 May
2022). Typhoidal serotypes most often involve S. typhi and S. paratyphi, and they are infre-
quently encountered in the United States, where they occur in association with international
travel [5]. In the United States, vaccination against Typhoidal serotypes is recommended
and/or required for some international travel.

Non-typhoidal serotypes, exemplified by S. enteritidis and S. typhimurium, are those
frequent and persistent serotypes that are associated with foodborne illness. They are of
great epidemiological significance, in part because they persist in food production settings
and have the potential to propagate widely and rapidly throughout populations. A few
examples include the contamination of nationally distributed ice cream, smoked salmon,
chocolate cake, and multistate outbreaks involving cucumbers [6–9]. Outbreaks with non-
typhoidal serotypes of S. enterica subspecies 1 can involve thousands of people spread out
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over a wide geographic area, in part because foods are rapidly disseminated throughout
entire countries and even overseas. Attack rates, which is the incidence of clinical illness
observed among those exposed, can range widely around 25%, which means hundreds of
hospitalizations may result, and clusters can overwhelm hospitals. Another impact from
detecting clinical cases is that potentially contaminated products are recalled, which affects
the price and availability of food domestically and internationally [10]. Controlling the
presence of S. enterica subspecies I in products and markets is thus both a food safety and a
food security issue.

Approximately 30 of the over 1500 serotypes of S. enterica subspecies I are of epidemi-
ological significance, although some variation occurs annually. Other rare serotypes can
be encountered as the source of outbreaks but there are often extenuating circumstances
involving frank mishandling of food, susceptibility of the affected population, or uncooked
products [11–13]. Thus, within a single bacterial subspecies, it is evident that selection for
only the most fit Salmonella enterica subspecies I serotypes capable of causing foodborne
illness is stringent. It is also evident that many S. enterica serotypes have the potential to
cause illness given favorable circumstances; thus, quality control assessments of all foods
and food ingredients for people and pets are important.

A few serotypes, primarily S. enteritidis, S. typhimurium, S. newport, S. infantis, and
S. javiana, cause approximately 80% of all of the confirmed cases of salmonellosis each year
in the United States [14,15]. S. enteritidis became the world’s leading cause of salmonellosis
after emerging to prominence in the 1980s, in part because of its abilities to contaminate the
contents of eggs produced by otherwise healthy hens, the poultry production environment,
and to also maintain the ability to colonize a wide range of food sources, environments,
and hosts [16,17]. Finding the genomic determinants of biological capabilities and the envi-
ronmental persistence of S. enterica subspecies I by comparing the genome of the pinnacle
pathogen S. enteritidis to those from other serotypes is an opportunity for characterizing
the “interactome”, which is defined in this review as the correlation between the genotype
and phenotype. Determining how Salmonella interacts with the environment, people, food
animals, plants, and other contributors to foodborne disease will help find new control
measures for a pathogen that persistently impacts the safety and security of the food supply.

2. Speciation as an Inherent Contributor to Salmonella Persistence and Pathobiology

One view of S. enterica for bioinformatics purposes is that it is a single genus and
species with the taxonomic ID 28901 (TAXID:28901); however, this grouping does not
take into account epidemiological considerations related to public health described in the
introduction (Search: salmonella enterica-NLM (nih.gov, accessed on 10 May 2022). The
degree to which S. enterica subspecies I (TAXID:59201) can maintain a consistent genome
organization is demonstrated by homopolymer k-mer content of adenine and thymine
maintained across serotypes, which occurs even in the presence of inversions, transpo-
sitions, lysogenic elements, and generation of single nucleotide polymorphisms (SNPs)
between serotypes and variants within serotypes [18]. Whereas S. enteritidis can appear to
be more homogeneous than other prevalent serotypes causing illness by some measures of
genomic content, k-mer analysis confirmed that its genome was not different from that of
other subspecies I serotypes [18]; in addition, a mix of less frequently isolated S. enterica
serotypes had similar k-mer content while other bacterial genera differed substantially.
Other studies found confounding information about speciation, which supports that the
genome of S. enterica has exceptional plasticity [4]. These characteristics of the genome of
S. enterica suggest that selection pressure to maintain a core genome exists across a mul-
titude of genomic events and time [19,20]. Salmonella strains sharing 99% of the genome
content appear to vary in readiness to undergo acquisition of new DNA, which could be
influenced by the environment, genome structure, and gene expression differences [21–23].

When gene conservation rather than placement within the genome of S. enterica is
the focus, strains that share evolutionary heritage can be identified even when major
rearrangements have taken place or different bacteriophage and insertion elements have
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been acquired [24]. When isolates are obtained within a relatively short time frame, such
as often occurs during outbreak investigations, single nucleotide polymorphisms (SNPs)
differentiate strains and refine outbreak investigations [25,26]. However, epidemiological
evidence is required to connect causation of an outbreak with SNP content. Genes and
classes of genes differ in accumulation of SNPs; thus, some housekeeping genes, often
required for core metabolic or structural functions, have little room for further evolution.
This would mean that SNPs in genes or genomic elements considered core to the biological
impact of species carry more weight for differentiation of clades [27–29]. Selection pressure
placed on pathogens by the host, and the site of colonization within a host, can also
limit the amount of genetic variability observed over time. Examples of host selection
pressure narrowing genomic variability for S. enterica include the relative clonality of
egg-contaminating S. enteritidis in comparison to other prevalent foodborne serotypes and
clonality of the typhoidal S. enterica subspecies I of humans, namely S. typhi and S. paratyphi.
In these instances, WGS, or approaches based on knowledge of WGS, is required to detect
and characterize SNPs associated with evolutionary trends [30–34].

3. Coordinating Schemes for Communicating S. enterica Subspecies I Variation

Differentiation of S. enterica by the Kaufman–White–LeMinor (KWL) serotyping
scheme is perhaps one of the most successful subtyping schemes ever developed, and
details are maintained by the Pasteur Institute [35]. Serotyping remains an important
classification scheme because epidemiological patterns of disease are often associated with
specific serotypes and virulence determinants [36,37]. The scheme predates routine use of
whole genome sequencing for analysis of foodborne pathogen by at least 70 years and it
is widely accepted as the science-based language for discussing Salmonella epidemiology.
Serotype designations based on antigenic formulae are useful for epidemiological inves-
tigation and ease of language. However, recent molecular studies have confirmed that
they are not always necessarily genetically related due to limitation of surface epitopes to
convey information about other genomic changes in gene content. In addition, serotypes
can accumulate mutations that impair expression of surface antigens thus limiting the
use of serological serotyping. In addition, horizontal gene transfer commonly contributes
to genetic variation, thus there is a need for methods that recognize genetically related
populations. Thus, despite its success, the KWL scheme is not capable of nuanced analysis
of evolutionary trends as is whole genome sequencing or other methods based on analysis
of DNA. Additional challenges are that reagents are becoming increasingly expensive, and
for some antisera, increasingly difficult to acquire. Another problem is that interpreting
agglutination reactions have a degree of subjectivity; however, rigorous training and use of
high-quality reagents minimizes mistakes in interpretation.

Designated reference laboratories should be supported for maintaining institutional
knowledge, training, reagents, and protocols for conducting KWL serotyping. The same
reference laboratories could serve as a source of isolates for the purpose of further epidemi-
ological analysis by DNA-based methods with high resolution. This may be an increasingly
important function since some agencies are leaning towards Culture Independent Diag-
nostic Tests (CIDTs). Failure to maintain relevant strain banks could limit access to living
organisms in the future for conducting applied research, developing vaccines, and assess-
ing control measures [38]. It is also important that the international language developed
through the KWL scheme to discuss S. enterica incidence, prevalence, and epidemiology
be referenced even as it is refined. Coordinated nomenclature around the world will keep
the lines of communication clear because S. enterica could again undergo rapid clonal
expansion and spread around the world as did serotype S. enteritidis. Failure of global
cooperation is a threat to public health and the security of the food supply.

3.1. Serotype as a Legacy Subtyping Scheme

Of all the subtyping schemes for Salmonella, the KWL scheme provides information
about the molecules that are physically present on the outer membrane of isolates as they
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are analyzed in real time. The Salmonella serotyping scheme is based on outer membrane
epitopes present on the terminal repeating units of lipopolysaccharide and on the flag-
ellar structural proteins, fliC and fljB. The epitopes are referred to as O- and H-antigens.
Some serotypes express two flagellar subunits from genes fliC and fljB; therefore, the H-
antigens are divided into H1 and H2 subsets. Monospecific antisera can be combined
to determine unique O:H1:H2 epitope profiles, and examples of immunotype formulas
are 1,9,12:g,m: –for most monoflagellated strains of S. enteritidis and 1,4,[5],12:i:1,2 for
diflagellated S. typhimurium.

In the United States and abroad, many small laboratories have access to antisera sets
for performing slide agglutination reactions, even if they cannot perform DNA-based
analysis. Some DNA-based methods cannot distinguish between closely related variants
that differ in their ability to express O- and H-antigens, whereas the KWL scheme can [39].
Variation within a single serotype can also be recognized by the KWL scheme with a range
of antisera. For example, S. enteritidis is recognized by The Pasteur Institute as having rare
variants with factors H1:p, 1H:f, and H1:t; in addition, there is a rare H2:1,7 variant [35].
Thus, it is important that reference laboratories maintain antisera stock and serotyping
capabilities because WGS and other DNA-based methods require correlation to historical
serotypes. Laboratories performing KWL serotyping should be familiar with a range of
DNA-based methods so that difficult strains can be classified by more than one method. It
is becoming apparent that naming serotypes should be assessed in a coordinated fashion
between countries, because the system of naming each serotype after geographical locations
has become unwieldy, misses important details about how S. enterica is evolving, and might
not be a viable scheme in coming years.

3.2. DNA-Based Methods for Coordination with Serotyping Schemes

The legacy multi-locus sequence typing (MLST) hybridization scheme assayed seven
loci by PCR amplification, and accessible protocols list primers and gene targets (protocols
used for MLST of Salmonella enterica—EnteroBase documentation) [40]. The hybridization
platform used to evaluate PCR products was automated into commercial platforms be-
cause there was no need to obtain sequence; thus, it is still being used for the detection of
prevalent Salmonella serotypes. Classification is by sequence type (ST), which feeds into evo-
lutionary burst groups (eBG) as data accumulate and is expanded to include WGS and large
databases [41]. It is suggested that merging current EnteroBase nomenclature with the KWL
scheme is a scaffold for a new system that maintains historical reference, even as it transi-
tions to include greatly expanded databases from WGS. Serotype “S. typhimurium” would
become “S. typhimurium (STXX)” if a rare sequence type, or “S. typhimurium (eBGXXX)” if
more commonly encountered. Other WGS-based schemes that could impact nomenclature
are in progress and international cooperation is suggested to coordinate efforts [36].

3.3. Serotyping Is Important for Quality Control as Well as Epidemiological Analysis

Not all uses of serotyping are for epidemiological research or to establish the source of
a foodborne outbreak. Many companies, agricultural commodity producers, exporters and
importers, and service laboratories want to test feeds for animals, food for consumption, and
production environments for purposes of in-house quality control and to assure the safety
of their product prior to entering the market [42–44]. Enhanced screening regimens that
are not regulated are used to provide early warning of emerging problems [45]. Methods
for these purposes must have low overhead, minimal need for bioinformatics analysis, and
streamlined data management. A commercialized and AOAC certified method used in
the EU avoids the need for sequencing by using primers to hybridize target DNA within a
microarray. Patterns of spots are read by proprietary imaging equipment and the software
assigns the serotype [46,47]. Another method to meet industry needs was developed that
uses PCR in a primer-specific two-step process to first locate and then to amplify a single
region of the S. enterica genome that is linked to over 200 serotypes by generation of a
short sequence of about 500 base pairs. The genomic target is the dkgB-linked intergenic
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sequence ribotype (ISR) region, and the database, protocols, and primers for its use are
available through GitHub. Its development was coordinated with DNA hybridization
protocols [48]. ISR is a screening method, does not seek certifications, and by design is
meant to detect emerging issues without a requirement for reporting. The topic of liability
inhibits some companies from performing routine screening for Salmonella serotypes more
than is required by regulatory agencies such as The Food and Drug Administration and
The Food Safety Inspection Service. Finding consensus between government, industry,
and consumer groups regarding information that can remain in house versus requiring
reporting could encourage more testing in production settings [49].

3.4. Surprising Outer Membrane Variation Detected by Serotyping Reagents Is a First Glimpse
into Genome and Phenome Interactions

The KWL serotype scheme has some ability to discern unusual phenotypes. When
performed as quantitative dilution assays, serotype reagents can be used as a first method
to detect strains of S. enterica producing a high molecular mass structural variant of the
O-antigen region of lipopolysaccharide (HMM LPS) [50,51]. In experimental infections of
the egg-laying hen, serotype S. enteritidis strains that could produce HMM LPS were better
able to contaminate eggs [52]. S. typhimurium did not form the structure although it had
an otherwise complete O-antigen structure that provided complementary resistance [53].
Other research confirmed the HMM LPS structure and determined some regulatory deter-
minants; thus, HMM LPS that forms a capsule-like structure appears to be a major virulence
determinant that contributes to the epidemiology of serotype S. enteritidis [54,55]. Serotype
S. enteritidis produces a surprising variety of O-antigen structures, ranging from no produc-
tion to producing copious encapsulation [51,56]. Thus, egg-contaminating S. enterica likely
requires a method for the sensitive regulation of the O-antigen so that the path to the egg
completes, while also allowing some embryos within a fertilized egg to survive exposure.
We hypothesize, without evidence, that the association between S. enterica serotype and
poultry is part of a biological cycle where migrating birds adapt to new environments and
the demand for reproductive success by acquiring a new serotype impacting the micro-
biome. LPS is a powerful immuno-modulating molecule and biological toxin, and there is
evidence that Aves has evolved different responses than those observed in mammals [57].
The process of molting hens to obtain another cycle of egg production can be a contributor
to shedding and spread within flocks [58]. As with O-antigen, the flagellar determinants of
serotype also undergo tremendous variation that impacts virulence, environmental spread
by swarming and swimming, and microbial communication through some branches of
quorum sensing [59,60]. Taken together, these lines of research indicate that the evolution
of S. enterica to colonize the reproductive tracts of birds and to transmit intergenerationally
is a special virulence phenotype that likely requires immense selection pressure to maintain
an optimized genome capable of such adaptability. These evolutionary trajectories can
be targeted for inhibition and to design strategies for the best use of antibiotics to avoid
resistance [61,62].

4. The Infection Pathway of Salmonella enterica Has Many Evolutionary Detours

The result of the evolutionary path of S. enteritidis is contamination of the internal
contents of intact shell eggs and a recognized association with consumption of contaminated
poultry products and many other food products [63]. However, egg contamination can
lose its association with causing foodborne illness, as exemplified by the closely related
serotypes S. gallinarum and S. pullorum. These two serotypes are host-restricted to the bird
and are not a cause of human foodborne illness [64]. They are threats to food security
because of high transmittance and mortality in chicks and mature birds [65]. In contrast,
serotype S. enteritidis causes little illness in colonized flocks and also maintains the ability
to contaminate other animal products, as well as vegetables and fruits [63,66].

S. typhimurium can rival S. enteritidis in prevalence at different times and places, and it
used to be the most prevalent foodborne serotype. Many molecular biology experiments,
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analyses of gene function, characterizations of virulence elements, and genomic tooling
for the Salmonellae are based on serotype S. typhimurium [67–71]. The reference genome
defining Salmonella enterica subspecies I is from serotype Typhimurium [72]. Currently, the
evolution of a monoflagellated variant is of concern, in large part because of its association
with multiple antibiotic resistances [73–75]. It is of note that S. enteritidis is also monoflagel-
lated with rare exceptions. Thus, monoflagellation is a phenotypic trait of concern within
the Salmonellae that is perhaps an indicator of evolution towards an infection pathway
with potential to impact the safety of food and also animal or human health [76–78].

Host restriction is a phenotypic characteristic that occurs within S. enterica subspecies I
and, as described in the introduction, it is part of the basis for dividing S. enterica subspecies
I into typhoidal and nontyphoidal groupings, based on how they impact human health.
S. gallinarum and S. pullorum, which cause Fowl Typhoid and White Bacillary Disease,
respectively, are restricted to birds. For both human and avian-restricted serotypes, genome
degradation occurs and thus the ability to infect a broad range of hosts and grow in a
plethora of environments is lost. S. abortusovis is host-restricted to sheep and S. dublin is
host-restricted to being a pathogen of cattle that can cause serious illness in humans. Host
restriction is, in general, associated with genome degradation and loss of gene function [5].

In contrast to serotypes that are often associated with foodborne illness, S. Ken-
tucky has a very different evolutionary pathway impacting human health. There are two
prominent genomic lineages, namely ST198 and ST152, which are, respectively, linked
to life-threatening antibiotic resistance and to widespread environmental prevalence in
poultry and cattle, but rarely to foodborne illness [79–81]. In the United States, ST152 is
prevalent, especially in poultry products, and ST198 is primarily associated with travel to
Asia, Africa, and other countries where it is endemic [82] (Serotypes Profile of Salmonella
Isolates from Meat and Poultry Products 1998–2014 (usda.gov, accessed on 10 May 2022).
There is genetic evidence that it may have accumulated some mutations shared with other
subspecies of Salmonella and Escherichia coli (E. coli) that differentiate it from serotypes
commonly associated with foodborne illness [83]. Domestic strains of S. kentucky were less
invasive than serotype S. enteritidis in hens [84]. In summary, S. kentucky is an example of
a highly successful environmental colonizer within the Salmonellae, even though it is an
infrequent cause of foodborne illness.

5. Brave New World of Whole Genome Sequencing

Approximately 80 years after the KWL serotyping scheme was first applied and
40 years after serotype S. enteritidis emerged as a pathogen of global concern, whole
genome sequencing (WGS) has become the gold standard for assessing epidemiological
trends of pathogenic organisms [85]. During the decades WGS took to develop, analysis
of fragments of DNA produced by restriction enzymes and analyzed by pulsed field gel
electrophoresis (PFGE) was used for epidemiological analyses and traceback investigations.
The use of PFGE laid the invaluable groundwork of networks across states and countries
for tracing the origins of foodborne outbreaks; however, the method could not achieve
the resolution required to replace serotyping, to develop different DNA-based approaches
to meet different needs, or to analyze genomic polymorphisms occurring at the level
of the single nucleotide (PulseNet International: On the Path to Implementing Whole
Genome Sequencing for Foodborne Disease Surveillance | International | Participants
| PulseNet | CDC). DNA-based methods such as MLST, other platforms using multi-
locus gene targeting, ISR, and DNA hybridization, required sequence technology and
initial bioinformatics capabilities for their development even as the time and complexity of
analysis, database management, and barriers to entry for conducting WGS were reduced.
WGS could have perhaps been a major tool for limiting the spread of S. enteritidis, and it
is imperative that S. enterica strains from clinically ill people be sequenced and then the
information disseminated rapidly to regulatory and public health agencies. The power of
WGS is evidenced by its ability to find previously unrecognized small clusters of human
salmonellosis, including geographically dispersed outbreaks [2,9,86–89].

usda.gov
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6. Accessing Whole Genome Sequencing and Bioinformatics for Salmonella

The resolution of whole genome sequencing (WGS) to the single base pair enables
regulatory agencies, researchers, and public health agencies to conduct unprecedented epi-
demiological evaluation of the safety of the food supply. For S. enterica, large databases have
become increasingly available to researchers and submission pathways for sequencing and
processing new strains have been streamlined. Within the United States, WGS datasets are
routinely deposited by government agencies, domestic and international researchers, and
others into the National Center for Biotechnology Information (NCBI) (Salmonella enterica
(nih.gov, accessed on 10 May 2022). NCBI reviews, curates, and sets standards for accepting
the data, which are then made available for public access with some exceptions, and its
databases can be accessed by other countries. It has approximately 14,000 draft whole
genomes of S. enterica in its database, and about 10% are completed (Access date: accessed
on 28 April 2022). NCBI also provides some bioinformatics tools, which can be supple-
mented by other software according to the user’s objectives for bioinformatics analysis.

The coordination of NCBI with EnteroBase has effectively removed many of the bar-
riers to entry for qualified researchers, industry, and public health institutions for access
to genomes of S. enterica. EnteroBase is a leading international organization for the geno-
typing of S. enterica and other enteric bacteria using multi-locus sequence typing (MLST),
and it has a large database of approximately 340,000 S. enterica genomes (EnteroBase
(warwick.ac.uk, accessed on 10 May 2022). The Food and Drug Administration maintains
the GenomeTrkr Network, which is primarily a network of public health and research insti-
tutions (GenomeTrakr Network | FDA). Data generated are generally curated and available
through the NCBI. One objective is to contribute to the Global Microbial Identifier Net-
work (Forside—Global Microbial Identifier, https://www.globalmicrobialidentifier.org/,
accessed on 10 May 2022), which is a consortium envisioning coordination across genome
databases, software platforms, data access, and applications to improve food safety. The
National Microbiology Laboratory of Canada provides WGS expertise to Canadian re-
searchers and collaborators (National Microbiology Laboratory-Canada.ca). The Wellcome
Sanger Institute in the United Kingdom was the first to sequence the human genome, and
in regard to S. enterica, was the first to sequence the genome of serotype S. enteritidis. As its
mission expanded towards biomedical research, it produced reference genomes of several
pathogens and is especially focused on typhoidal Salmonella causing life threatening illness
and contributing to antibiotic resistance (Salmonella-Wellcome Sanger Institute). It is part-
nered with the European Molecular Biology Laboratory–European Bioinformatics Institute
for the purpose of data mining (EMBL-EBI: European Molecular Biology Laboratory’s
European Bioinformatics Institute). EMBL-EBI has services in bioinformatics that are freely
available, and resources include portable data and software sharing. The impact of these
organizations is the removal of barriers to entry for conducting epidemiological research
associated with protecting the health of people and animals.

7. Emergent Challenge: Define the Interactome by Correlating Genotype to Phenotype

Identifying that an organism has a gene, or even finding that variants of a gene
exist, tells nothing about the function, regulation, or interactions with other genes in the
absence of biological assay within in vivo and in vitro systems. There have been advances
in approaches for assaying the impact of genomic variability on phenotypic behavior. This
type of analysis helps to identify characteristics of the “interactome” of a cell, which is
defined by all of the molecular interactions occurring that ultimately produce a discernable
phenotype [90–92]. Future research could investigate how the interactome of bacteria
can be manipulated to improve the immune response of the host to combat colonization.
Another application of interactome research for S. enterica is the development of novel
cancer immunomodulatory therapeutics [93]. The problem of antibiotic resistance will
always require experimental approaches to identify alternative methods of eliminating
infection and modifying environments to make them safer [94]. In addition, database
weighting is needed to accommodate emergent issues that might at first be represented as a
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rare variant [95]. Researchers suggest that some cells that share a genome with the majority
within biofilms can enter different developmental pathways due to epigenetic influences
and DNA modifications of either the pathogen or the host [96–98].

Under a broader biological umbrella, knowing what differentiates a queen bee from a
worker, or a prevalent Salmonella serotype from a rare one, cannot be solved by knowledge
of DNA sequence alone [99]. Confirmatory experimentation will be the next challenge
to link the genotype to phenotype. Here we will discuss three platforms that help to
characterize the interactome of S. enterica. In addition to these, algorithms that are available
as freeware or embedded within some software suites have predictive capabilities with
regards to assigning putative gene function, immunogenicity, and regulatory actions.
However, all predictive programs require laboratory confirmation within in vitro and
in vivo experiments prior to committing resources into product development. An example
of the limitation of predictions is that an epitope identified as putatively immunogenic for
vaccine development might have deleterious reactions within a host that initiate an allergic
or auto-immune reaction [100–102].

BioCyc is a database collection and software platform for modeling biochemical
pathway utilization by eukaryotes and microbes (BioCyc Pathway/Genome Database
Collection) [103,104]. When a gene name is entered into EcoCyc, which is a subset of
BioCyc limited to enteric microbe pathways, tables of information are generated about the
function, regulation, structure, references, and genomic characteristics including promotor
sites. Thus, BioCyc is an efficient way to tap into decades of genetic and biochemical studies
that have focused on gene function and interactions.

The PathoSystems Resource Integration Center (PATRIC) is a genomics-centric re-
lational database and bioinformatics resource designed to assist scientists in infectious
disease research [105]. The PATRIC platform can also be used in the characterization of
Salmonella enterica, among other infectious pathogens [106]. It is a good example of a free
platform that could be requested as a plugin within subscription software packages.

A third platform is a proprietary phenotype microarray that assesses the ability of
bacteria, yeast, and eukaryote cells to metabolize a wide range of compounds and to survive
within defined environments (Phenotype MicroArrays for Microbial Cells–Biology) [107].
It differs from EcoCyc and PATRIC in that it is laboratory analysis of function designed
in microarray format. To study the metabolome of gram-negative bacteria, the metabolic
pathways of E. coli were substantively divided into well format so that the presence of
a single metabolite would determine if respiration occurred, and thus confirm that a
biochemical pathway was functioning. Absence of function has been used to confirm
naturally occurring mutations and changes in global phenotype within S. enteritidis [108].
It was expanded to include gradients that would test a range of conditions under which
bacteria would respire; thus, it can also be used to study antibiotic and antimicrobial
resistances [109,110]. In coordination with WGS it has been used to catalog and describe
sets of single nucleotide polymorphisms that contribute to biofilm, fimbria, and ubiquitous
utilization of a wide range of metabolites [83].

8. Conclusions

Progress in controlling and reducing foodborne illnesses from pathogens such as
S. enterica subspecies I is critical for protecting public health and assuring the security
of the food supply as the world encounters threats from climate change, supply issues,
and an increasing population. Whole genome sequencing (WGS) of bacterial pathogens
is now a commonly applied epidemiological tool used in outbreaks to identify sources,
investigate trends in antibiotic resistances, remove contaminated product, and to limit
sickness in people. However, WGS has not yet been fully integrated with molecular
biology. Applied research intended to improve vaccines, avoid emergence of antibiotic
resistance, and to eliminate pathogens within production systems requires biological
confirmation prior to implementation [111]. Therefore, subject areas such as biochemistry,
molecular biology, environmental remediation, and pharmaceutical development will
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remain important, perhaps even more so, as promising information is gleaned from large
WGS databases. Thus, biologists grounded in the ability to transfer bioinformatics system
data to real world applications will be needed. Algorithms designed to include controls
for biological considerations rather than pure mathematical prowess will be a challenge
to develop because experts in several specialties will need to input the parameters. The
potential for alternative modes of gene expression from one genome poses a limit to how
WGS can be applied for solving biological issues.
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