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Abstract. Traumatic brain injury (TBI) is currently one of 
the leading causes of mortality and disability worldwide. At 
present, no reliable inflammatory or specific molecular neuro‑
biomarker exists in any of the standard models proposed for 
TBI classification or prognostication. Therefore, the present 
study was designed to assess the value of a group of inflamma‑
tory mediators for evaluating acute TBI, in combination with 
clinical, laboratory and radiological indices and prognostic 
clinical scales. In the present single‑centre, prospective obser‑
vational study, 109 adult patients with TBI, 20 adult healthy 
controls and a pilot group of 17 paediatric patients with TBI 
from a Neurosurgical Department and two intensive care units 
of University General Hospital of Heraklion, Greece were 
recruited. Blood measurements using the ELISA method, 
of cytokines IL‑6, IL‑8 and IL‑10, ubiquitin C‑terminal 

hydrolase L1 (UCH‑L1) and glial fibrillary acidic protein, 
were performed. Compared with those in healthy control 
individuals, elevated IL‑6 and IL‑10 but reduced levels of IL‑8 
were found on day 1 in adult patients with TBI. In terms of 
TBI severity classifications, higher levels of IL‑6 (P=0.001) 
and IL‑10 (P=0.009) on day 1 in the adult group were found to 
be associated with more severe TBI according to widely used 
clinical and functional scales. Moreover, elevated IL‑6 and 
IL‑10 in adults were found to be associated with more serious 
brain imaging findings (rs<0.442; P<0.007). Subsequent 
multivariate logistic regression analysis in adults revealed that 
early‑measured (day 1) IL‑6 [odds ratio (OR)=0.987; P=0.025] 
and UCH‑L1 (OR=0.993; P=0.032) are significant independent 
predictors of an unfavourable outcome. In conclusion, results 
from the present study suggest that inflammatory molecular 
biomarkers may prove to be valuable diagnostic and prognostic 
tools for TBI.

Introduction

Traumatic brain injury (TBI) is becoming a major public 
health concern, due to a steadily rising annual incidence of 
~50 million individuals (1‑4). TBI involves a heterogeneous 
set of functional, anatomical and histological alterations 
that are induced by external physical forces exerting exces‑
sive forces to the brain (5‑9). This in turn ultimately leads to 
neuronal or glial cell apoptotic and necrotic damage, blood 
vessel rupture, thrombosis, disruption of the blood‑brain 
barrier, skull fractures and/or meningeal tears (3,5‑9). This 
type of sudden primary injury in TBI can present as a number 
of pathophysiological characteristics, including macroscopic 
focal or diffuse lesions, hematomas, haemorrhages, cerebral 
contusions and/or diffuse axonal injuries, which may not be 
treatable (3,9,10). In addition, delayed neuronal damage may 
be inflicted by secondary insults involving several molecular, 
biochemical and neuroinflammatory disturbances, which 
can last from several minutes to even months after the first 
mechanical insult (9,11). The profile of primary or secondary 
pathology is dependent on the injury mechanism, existence 
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of concurrent injuries and comorbidities and treatment effec‑
tiveness (12,13). These aforementioned events are generally 
accompanied with robust local and/or systemic immune 
activation (14). Therefore, targeting certain immunological 
pathways may prove beneficial for developing future TBI treat‑
ment strategies (14).

The primary brain injury may involve damage to the 
intracranial contents, volume‑occupying effects, in addition 
to neuronal, glial and/or cerebral vascular dysregulation (3,8). 
By contrast, secondary brain injury depends on the activa‑
tion status of several interconnected pathophysiological 
pathways (10). The cell populations that will either undergo 
apoptotic cell death or sustain the significant functional 
impairments are determined by the degree of activation of 
these complex pathways and processes (8,10). 

A variety of metabolic and/or molecular cascades can 
be activated in TBI, ultimately leading to elevated intracel‑
lular concentrations of calcium and sodium, mitochondrial 
dysfunction, free radical production, oxidative phosphoryla‑
tion impairment, apoptosis activation, cumulative release of 
neurotransmitters, and in energy expenditure (11,15,16).

Pro‑inflammatory, anti‑inflammatory cytokines and 
chemokines can be secreted by neurons, glial cells and 
systemic immune cells, which can also serve a significant role 
in intracellular pathological signalling (8,11). 

Mechanical processes such as volume‑occupying trau‑
matic lesions can cause cerebral oedema, ischaemia, recurrent 
haemorrhage, impaired cerebral autoregulation, decreased 
cerebral perfusion pressure, increased intracranial pressure 
and herniation syndromes (17).

Systemic processes can result in a variety of conditions, 
including reduced cerebral blood flow, electrolyte disorders, 
hyperglycaemia, hypoglycaemia, hypoxia, anaemia, hypo‑ or 
hypercapnia, acid‑base disorders and seizures (2).

On a molecular level, mechanical energy transfer can 
disrupt neurotransmitter circuits and homeostasis, even if 
there is no anatomical damage on cellular or macroscopic 
levels (16). 

Neuroinflammation is normally orchestrated through a 
coordinated web of neuronal and microglial signalling (18‑20). 
It possesses a diverse array of both beneficial and neurotoxic 
components (18‑20). There is also emerging evidence that an 
isolated incidence of brain injury can lead to complex immu‑
nological alterations in the levels of circulating leukocytes, 
complement proteins, pro‑ or anti‑inflammatory cytokines and 
coagulation factors (18‑20). Subsequently, pro‑inflammatory 
cytokines activate M1 macrophages to repair damage, whereas 
anti‑inflammatory cytokines can stimulate M2 macrophages, 
which serves to regenerate the neural tissue (11,12).

TBI severity is commonly classified as severe, moderate or 
mild (Table SI). In addition, certain biomarkers, CT imaging 
prognostic scales and multidimensional computer prognostic 
models are also currently used to determine the severity of 
TBI (13,15,21). In particular, because of its simplicity, low 
cost, speed, ability to reveal osseous structures and surgical 
lesions, head CT scan remains to be the gold standard for the 
initial evaluation of an injured patient with a TBI (15). In terms 
of molecular biomarkers, ubiquitin C‑terminal hydrolase L1 
(UCH‑L1) is considered to be a protein biomarker for neuronal 
cell body injury, whereas glial fibrillary acidic protein 

(GFAP) is generally considered as a biomarker for astro‑glial 
injury (10,22). UCH‑L1 is a deubiquitinating neuronal enzyme, 
whilst GFAP is a monomer of intermediate filaments forming 
the astrocytic cytoskeleton (23‑25). The i‑STAT TBI Plasma 
test, which measures both UCH‑L1 and GFAP, has been 
approved by the U.S. Food and Drug Administration for the 
detection of possible candidates for CT scan, between patients 
with mild TBI discrimination in adults (26). Apart from 
GFAP, astroglial calcium‑binding protein B (S100B) is also 
one of the most extensively studied TBI biomarkers (27‑33). 
Scandinavian Guidelines for Initial Management of Minimal, 
Mild and Moderate Head Injuries in Adults have already 
incorporated S100B, to triage patients with mild TBI for 
brain imaging (34). Furthermore, two large clinical trials 
(INTREPID used GFAP and UCH‑L1 and Bio‑ProTECT used 
GFAP, S100B and UCH‑L1) have incorporated these three 
biomarkers for evaluating treatment efficacy (10).

IL‑6 is a member of the IL‑6 cytokine family (35). 
Although it is generally considered to be a pro‑inflammatory 
cytokine, a recent study has revealed that it can also possess 
anti‑inflammatory properties (36). A large group of different 
immune, epithelial, neuronal or astroglial cells can release 
IL‑6, which in turn triggers a multitude of biological 
cascades (35,37,38). Amongst the list of reported metabolic 
and neurotrophic functions, an essential role in neuronal 
survival during TBI‑induced neuroinflammation has also been 
ascribed to this important family of cytokines (36,39,40). By 
contrast, IL‑8 is a chemoattractant cytokine that is produced 
by various cell types, including monocytes, neutrophils, 
fibroblasts, endothelium, epithelial cells and cancer cells (41). 
Unlike other cytokines, IL‑8 has a distinct specificity for 
attracting neutrophils towards inflammatory regions, in addi‑
tion to recruiting epithelial cells for angiogenesis and tissue 
healing (41‑44). It has been extensively studied in a variety of 
inflammatory responses, including fever, sepsis and carcino‑
genesis (41,45). However, its role in the pathophysiology of the 
neuroinflammation following TBI remains unclear. IL‑10 is 
considered to be an anti‑inflammatory cytokine that can inhibit 
the expression of pro‑inflammatory factors, such as IL‑1β, 
TNF‑α, IL‑1α, IL‑6 and IL‑8 (46‑50). In terms of its neuro‑
logical role, IL‑10 can appear to mediate the recovery process 
following TBI‑induced neuroinflammation (48). Additionally, 
IL‑10 has been reported to facilitate cytokine storm resolution, 
to prevent prolonged secondary brain damage (51). Monocytes 
and lymphocytes can both secrete IL‑10, which stimulates 
the IL‑10/janus kinase 1/STAT3 pathway to suppress these 
damaging inflammatory processes (47,49,50).

A number of studies have previously examined the poten‑
tial changes in the serum levels of pro‑ or anti‑inflammatory 
cytokines during the acute phase following TBI in animal 
models and humans (Tables SII‑SVI). Although results remain 
inconclusive, they generally suggest the upregulation of IL‑6, 
IL‑8 and IL‑10 following TBI compared with that in healthy 
controls. However, studies examining the association of cyto‑
kine levels, measured at the time of injury and/or soon after, 
with injury severity in human patients remain elusive. This is 
compounded by the potential value of applying cytokine levels 
for disease prognosis receiving next to no attention. To the best 
of our knowledge, there is insufficient information on the asso‑
ciation of IL‑6, IL‑8 and IL‑10 with the extant set of clinical, 
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imaging, laboratory indices of injury severity and clinical 
prognosis in TBI. Instead, the vast majority of previous studies 
tended to focus on the association of each interleukin with a 
limited set of clinical parameters. 

Therefore, present study attempted a more holistic 
evaluation of the possible relationship among some of the 
inflammatory serum biomarkers and TBI severity and prog‑
nosis. Numerous variables, including epidemiological, clinical, 
laboratory, imaging, specific neurobiomarkers, complications 
and functional outcomes were recorded and analysed. The 
present study had the following two primary objectives: i) To 
assess the value of IL‑6, IL‑8 and IL‑10 and cell injury markers 
(such as UCH‑L1 and GFAP) as potential complementary TBI 
severity classification indices upon admission, in combination 
with standardised existing clinical, imaging variables and 
scoring systems; and ii) To assess the possible prognostic value 
of ILs, as assessed using validated functional outcome scoring 
scales.

Patients and methods

Patient recruitment. In the present single‑centre, prospec‑
tive observational study, adult and paediatric patients from 
a Neurosurgical Department and two Intensive Care Units 
(ICU) of University General Hospital of Heraklion, in eastern 
Crete, Greece were recruited between 2019 and 2022. Adult 
(>16 years old) patients who were consecutively admitted with 
mild, moderate or severe TBI, as described in the introduction 
section, were eligible for enrolment. A smaller pilot group 
of paediatric patients (aged 1‑16 years) was also enrolled for 
comparison, to clarify whether paediatric patients with TBI 
show similar neuroinflammatory responses to adults. A group 
of healthy adult individuals served as the control group for 
comparisons. Inclusion criteria: i) Patients with mild, moderate 
or severe TBI, with any type of haemorrhagic traumatic brain 
imaging findings; ii) Patients or patients' legal representatives 
were able or willing to provide written informed consent; and 
iii) Blood sampling feasible within the first 12 h after TBI; 
iv) Blood sampling feasible before any surgical intervention. 
Exclusion criteria: i) Previous history of neurological disease, 
or CNS malignancy, ii) Concurrent acute infectious, neoplastic, 
inflammatory or immunological disease; iii) Previous TBI or 
CNS surgery; and iv) Patients with blast or penetrative injuries.

Data acquisition. Demographic and clinical data, co‑occurring 
injuries and comorbidities, imaging findings, injury severity 
scoring systems, surgical interventions and clinical outcomes 
were recorded. Additionally, the occurrence of possible related 
complications was recorded throughout the first 7 days and at 
6 months following the injury.

Variables collected
Clinical diagnostic variables. Signs and symptoms, types of 
injury, co‑occurrence of multiple traumatic injuries, Glasgow 
Coma Scale (GCS; Table SI) score, motor component of the 
GCS (mGCS) score (Table SVII), Karnofsky Performance 
Scale (KPS) score (Table SVIII), Modified Rankin Scale score 
(Table SIX), Eastern Cooperative Oncology Group/WHO 
(ECOG/WHO) score (Table SX), pupil size and reactivity 
and vital signs (hypotension and hypoxia) were obtained upon 

admission. The Injury Severity Score (ISS) was also calculated 
(Table SXI). GCS was used as the primary clinical parameter 
for TBI severity definition, whilst the systematic traumatic 
injuries of patients were assessed through ISS.

Brain imaging diagnostic variables. The different types of 
traumatic lesions found on brain CT scanning (General Electric 
Revolution CT‑GSI) upon admission, the presence and types 
of skull fractures, the patency of basal cisterns (Table SXII), 
the presence of midline shift (Table SXIII) and the volume of 
space‑occupying haemorrhagic lesions (Table SXIV) were all 
recorded. The scores for the following TBI imaging scales were 
calculated: i) Rotterdam CT; ii) Marshall CT Classification; 
iii) Stockholm CT; and iv) Helsinki CT (Table SXV).

Outcome scales. The KPS and Glasgow Outcome Scale 
(GOS) (Table SXVI) scores on day 7 post‑injury and Glasgow 
Outcome Scale‑Extended (GOS‑E; Table SXVII) and mortality 
at 6 months post‑injury were used as outcome variables.

Prognostic models. The Corticosteroid Randomisation After 
Head Injury (CRASH) predictive model was also calculated 
(Table SXV).

Assays. Blood samples were obtained within 12 h from 
patients with TBI and on day 7 after the TBI, before the serum 
was stored at ‑80˚C until further quantification analysis. IL‑6 
(Cat. no. 430504; BioLegend, Inc.), IL‑8 (Cat. no. 431504; 
BioLegend, Inc.) and IL‑10 (Cat. no. 430604; BioLegend, Inc.), 
GFAP (cat. no. E‑EL‑H6093; Elabscience Biotechnology, 
Inc.) and UCH‑L1 (cat. no. E‑EL‑H2377; Elabscience 
Biotechnology Inc.) were measured through ELISA according 
to manufacturer's protocols. All specimens were assayed 
in duplicate. The sensitivities of the assays were 4 pg/ml 
for IL‑6, 8 pg/ml for IL‑8, 2 pg/ml for IL‑10, 9.38 pg/ml for 
GFAP and 46.88 pg/ml for UCH‑L1. The detection range 
was 7.8‑500 pg/ml for IL‑6, 15.6‑1,000 pg/ml for IL‑8, 
3.9‑250 pg/ml for IL‑10, 15.63‑1,000 pg/ml for GFAP and 
78.13‑5,000 pg/ml for UCH‑L1.

Statistical analysis
Univariate analyses. Descriptive statistics of serum 
biomarkers are presented for the three study groups (adult 
or paediatric TBI patients, and healthy adults). Categorical 
variables are described as absolute values and frequencies. 
The Kolmogorov‑Smirnov and Shapiro‑Wilk analyses were 
used to determine whether a normal distribution model 
fitted the observations as appropriate. Based on this test of 
normality, quantitative clinical variables are expressed as 
the mean ± standard deviation (parametric analyses), or as 
median and interquartile range (non‑parametric analyses). 
Non‑parametric tests were used to handle serum biomolecule 
data, given significant deviations from normality. Spearman's 
correlation coefficient was used for correlations between two 
continuous variables and χ2 test for categorical variables, 
respectively. Non‑parametric group differences were exam‑
ined using the Mann‑Whitney U‑test, or the Kruskal‑Wallis 
independent samples test with post hoc Dunn's pairwise tests, 
in the event that an independent variable consisted of > two 
groups. Receiver Operating Characteristic Curves (ROC) 
were used to examine the response function of potential 
biomolecule predictors toward specific outcome variables. 
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The ‘optimal’ cut off point for the best sensitivity‑specificity 
combination of the selected discriminators was calculated by 
the Youden index (J), and confirmed by the Closest to (0,1) 
Criteria (52).

Multivariate analyses. Selected variables that displayed 
statistically significant associations with specific outcomes 
were entered into a multivariate logistic regression model to 
identify parameters that were independently associated with 
an adverse outcome. Nagelkerke R2 goodness of fit value was 
used to evaluate the best‑fitting model.

Statistical analyses were performed using the SPSS soft‑
ware for Windows (version 25; IBM Corp.). A P‑value <0.05 
was considered as an indicator of statistically significant 
differences.

Results

The subsequent analyses refer to the adult population, unless 
differently specified. 

Patient characteristics. In total, 109 adult cases were eligible 
for inclusion into the present study (66.1% males and 33.9% 
females; mean age, 62.37±22 years). Mechanisms of brain 
injury included falls from <1 m (44%) or >1 m (16.8%), road 
vehicle accidents (22.4%), pedestrian involved accidents 
(6.4%), bicycle or skating accidents (4%), assaults (4%) or 
object percussion injuries (2.4%). The control group consisted 
of 20 healthy adult volunteers (55% males and 45% females; 
mean age, 39.0±9.6 years). A smaller paediatric pilot group of 
17 patients was also enrolled (age range, 1‑16 years; mean age, 
10.2±4.5 years). Demographic, imaging and clinical character‑
istics of the patients are summarized in Table I. 

The majority of adult patients exhibited clinical presen‑
tations consistent with mild TBI (66.9%) upon admission, 
whereas 16.5% patients suffered from moderate TBI and 
16.6% from severe TBI. The 6‑month mortality rate in the 
adult TBI patient sample was 23.5%. By contrast, the majority 
of children exhibited clinical presentation consistent with mild 
TBI (66.7%) upon admission, whereas 14.3% patients suffered 
from moderate TBI and 19% with severe TBI. The 6‑month 
mortality rate was 5.6% for the paediatric TBI patient sample.

Group differences. Group differences of the studied protein 
levels are presented in Table II. Serum levels of IL‑6 and 
IL‑10 on day 1 were found to be significantly elevated in adult 
patients with TBI compared with those in healthy individuals 
(P=0.001 and 0.015 respectively) (Fig. 1). No significant 
differences were recorded among the adult and paediatric 
patient groups regarding the day 1 serum levels of IL‑6, 
IL‑8 and IL‑10. On day 1, adult patients with TBI displayed 
significantly lower IL‑8 (P=0.004) and significantly higher 
UCH‑L1 levels (P=0.001) compared with those in the control 
group. Consecutive measurements of inflammatory markers 
revealed significant reduction for IL‑6 and IL‑10, or elevation 
for UCH‑L1 serum levels for adult TBI cases (P<0.021 for all) 
(Fig. 2). It should be noted that the IL data were not included 
in subsequent longitudinal analyses in cases of missing values 
(which explains the differences in medians among Table II and 
Fig. 2) or if a given patient underwent any surgical procedures 
during the first 7 days following the TBI. These measures were 
taken to avoid confounding measurements of IL on day 7.

Associations of inflammatory indices with TBI severity in 
adults. On day 1, adult patients who suffered from severe TBI 
(as indicated by GCS<9) displayed significantly higher levels 

Table I. Patient demographic and clinical characteristics.

Variable Adults (n=109) Children (n=17) P‑value

Sex, n (%)   0.289
  Males 72 (66.1) 13 (76.5) 
  Females 37 (33.9) 4 (23.5) 
Age, mean (SD) 62.37 (22) 10.2 (4.5) ‑
GCS score, median (IQR) 14 (6‑15) 14 (10‑15) 0.642
ISS, median (IQR) 14.5 (9‑25) 9 (6‑21) 0.312
LOS (days), median (IQR) 15 (8‑30) 7 (4‑14) 0.191
WBC x103 (cells/µl), median (IQR) 12 (8.6‑15.6) 13 (10‑19.2) 0.078
CRP (mg/dl), median (IQR) 1.2 (0.3‑2.6) 0.19 (0.06‑0.76) 0.002
Marshall CT Classification score, n (%)   0.918
  I + II 60 (55) 11 (64.7) 
  III + IV 4 (3.7) 6 (35.3) 
  V + VI 45 (41.3) 0 (0) 
Rotterdam CT score, median (IQR) 3 (2‑3) 2 (2‑3) 0.013
Stockholm CT score, median (IQR) 1.7 (1‑2.5) 1 (0.7‑1.5) 0.034
Helsinki CT score, median (IQR) 2.5 (2‑6) 1 (0‑2) 0.039

IQR, interquartile range; GCS, Glasgow Coma Scale; LOS, length of stay; WBC, white blood cells; CRP, C‑reactive protein; ISS, injury 
severity score.
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of IL‑6 (P=0.001), IL‑10 (P=0.009), and GFAP (P=0.001) 
compared with those in patients with mild or moderate TBI. 
Similarly, patients who had lower mGCS on day 1(as indicated 

by mGCS≤3) showed significantly higher levels of IL‑6 
(P=0.001), IL‑10 (P=0.035) and GFAP (P=0.028). In addi‑
tion, patients who suffered from severe injuries throughout 

Table II. Serum levels of the biomolecules measured in patients with TBI compared with healthy controls.

Biomolecules Adult TBI patients Paediatric TBI patients Healthy adults

IL‑6 Day1 63 (34‑179)a 52.6 (19.2‑272) 21.1 (18.2‑23)
IL‑6 Day7 37.2 (18.7‑78) 17.7 (13‑40.7) ‑
IL‑8 Day1 9.5 (6.6‑16.9)a 7.35 (6‑13.2) 17.6 (15.6‑19)
IL‑8 Day7 10.6 (7‑16.2) 8.9 (7.3‑15)  ‑
IL‑10 Day1 25.2 (15‑44.5)a 29.8 (12.1‑45) 17.4 (15.8‑20)
IL‑10 Day7 15.3 (11‑24.4) 14.5 (10.3‑16.7)  ‑
UCH‑L1 Day1 207.2 (110‑472)a 190 (140‑540) 54 (46‑105)
UCH‑L1 Day7 323 (136‑556.3) 279 (210‑393.4) ‑
GFAP Day1 55.7 (27.3‑94) 46.2 (15.5‑81) 43.7 (24.5‑71)
GFAP Day7 64 (35‑88.5) 29.4 (14.6‑58.6) ‑

aP<0.05 between adult TBI patients and healthy controls (Kruskal‑Wallis test). IQR, Interquartile Range; IL, interleukins; UCH‑L1, ubiquitin 
C‑terminal hydrolase L1; GFAP, glial fibrillary acidic protein. Values are median (IQR) in pg/ml.

Figure 1. Significantly elevated early (day 1) serum levels of (A) IL‑6 and (B) IL‑10, but (C) lower IL‑8 for adult patients with TBI, compared with healthy 
adults (controls). No significant differences between adult and paediatric TBI patients were found. IL, interleukin; TBI, traumatic brain injury. 
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the body as indexed by scores of ISS >24 displayed signifi‑
cantly elevated IL‑6 (P=0.006), IL‑10 (P=0.047) and GFAP 
(P=0.006) levels on day 1, compared with those in the 
remaining patients (ISS≤24). Patients who scored <50 points 
according to KPS also had significantly higher levels of IL‑6 
and IL‑10 (P=0.004 for both) on day 1, compared with those 
who scored >40. Similarly, patients who scored >3 according 
to MRS classification displayed significantly elevated IL‑6 
(P=0.005), IL‑10 (P<0.001) and UCH‑L1 (P=0.037) levels 
on day 1, compared with those who scored <4. However, 
patients who scored >2 according to ECOG/WHO classifica‑
tion displayed significantly elevated IL‑6 (P=0.017) and IL‑10 
(P<0.001) levels, but significantly lower UCH‑L1 (P=0.022) 
levels on day 1, compared with those who scored <3. 

Inflammation biomarkers and imaging findings upon admis‑
sion (day 1) in adult TBI patients. Higher levels of IL‑6 and 
IL‑10 on day 1 were found to be connected with increased risk 
according to the imaging indices of TBI severity, such as basal 
cistern compression (P<0.007), midline shift >5 mm (P<0.003) 
and larger total lesion volume (P<0.006). The association 
between inflammatory markers and the finding of traumatic 

intraventricular haemorrhage or traumatic subarachnoid 
haemorrhage was found to be negligible. Severe cases, found 
according to higher scores on the Stockholm and Rotterdam 
CT scales, were correlated with elevated IL‑6 (rs=0.4 
and 0.274, respectively; P<0.009 for all), IL‑10 (rs=0.323 and 
0.305, respectively; P<0.003 for all) and GFAP (rs=0.203 and 
0.213, respectively; P<0.045 for all) on day 1. In addition, 
severe cases according to higher scores on the Marshall CT 
Classification and Helsinki CT scales were correlated with 
elevated IL‑6 (rs=0.386 and 0.446, respectively; P<0.001 for 
all) and IL‑10 (rs=0.272 and 0.335, respectively; P<0.009 for 
all) on day 1. However, the association between UCH‑L1 and 
none of the severity CT scores used reached significance. The 
CRASH head injury prognostic score (14‑day mortality risk or 
6‑month mortality and severe disability risk) was found to be 
positively correlated with IL‑6, GFAP and UCH‑L1 (rs=0.372, 
0.357 and 0.369 respectively; P<0.031 for all) on day 1.

Inflammation biomarker‑independent associations with 
functional outcomes and 6‑month mortality. Adult patients 
who did not survive during the first 6 months following TBI 
(n=32) had significantly elevated IL‑6, IL‑10 (on day 1) and 

Figure 2. Significant changes of IL‑6 and IL‑10 serum levels on days 1 and 7 for adult and paediatric patients with TBI. IL, interleukin; TBI, traumatic brain 
injury. 
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UCH‑L1 levels (on days 1 and 7; P<0.018) compared with 
those in survivors. In particular, adult patients who exhibited 
an unfavourable outcome on day 7 (n=22 as indicated by a 
score <4 according to GOS) displayed significantly elevated 
IL‑6 (P=0.003) and IL‑10 (P=0.007) levels on day 1. Similarly, 
patients who had an unfavourable outcome at 6 months (n=45 
as indicated by a score <5 according to GOS‑E) exhibited 
significantly elevated IL‑6 (P=0.045), IL‑10 (P=0.048) and 
UCHL‑1 (P=0.042) on day 1. Significantly elevated IL‑6 and 
IL‑10 levels on day 1 were also recorded for patients with 
more severe functional state according to KPS (as indicated 
by a score <50) of day 7 compared with those who scored >40 
(P<0.004 for all). 

A multivariate predictive logistic regression analysis was 
conducted to distinguish adult patients with TBI at risk of an 
unfavourable outcome based on GOS‑E. The following vari‑
ables were included into the model: IL‑6, IL‑10 and UCH‑L1 
levels on days 1 and 7; age; serum glucose levels; GCS; MRS; 
and KPS upon admission. The final model was associated 
with acceptable fit to the data (χ2=11.28, P=0.004, Nagelkerke 
R2=0.458) with the following significant predictors: IL‑6 on 
day 1 [Exp (B)=0.987; P=0.025] and UCH‑L1 of day 1 [Exp 
(B)=0.993; P=0.032], along with age (P=0.014) and GCS 
(P=0.045; Table III).

ROC analysis in adults revealed that without considering 
other potential predictors, age, IL‑6 and UCH‑L1 on day 1 were 
marginally acceptable, independent predictors of 6‑month 
severe disability based on GOS‑E (Fig. 3; Table IV). The 
optimal cut‑off values according to the youden index (j) were 
55.51 pg/ml (sensitivity 73% and specificity 55%) for IL‑6 and 
204 pg/ml for UCH‑L1 (sensitivity 65% and specificity 59%).

Other associations in adult patients with TBI. GFAP levels on 
day 1 were positively correlated with IL‑6 and IL‑10 (rs=0.335 
and 0.357, respectively; P=0.001 for both; Figs. 4 and 5), whilst 
a significant negative correlation was found between UCH‑L1 
and IL‑8 levels on day 1 (rs=‑0.302; P=0.001). Additionally, 
elevated IL‑6 and IL‑10 on days 1 and 7 were correlated 
with increased risk for ICU admission (rs=0.329 and 0.510 
respectively; P<0.005 for all). Among the common laboratory 
markers, IL‑6 and IL‑10 levels on day 1 were positively corre‑
lated with white blood cell and neutrophil counts (rs=0.271 
and 0.282 respectively; P<0.05 for both), glucose (rs=0.265 
and 0.313 respectively; P<0.025 for both), troponin (rs=0.285; 
P=0.001 only for IL‑6) and creatine phosphokinase (rs <0.218; 
P<0.041 for both). GFAP levels on day 1 were positively corre‑
lated with glucose (rs=0.199; P=0.044) and troponin (rs=0.3; 
P=0.002). No significant correlations among these common 
laboratory markers and IL‑8 or UCH‑L1 could be found.

In terms of paediatric patients with TBI, a significant 
positive correlation between GFAP and IL‑10 levels (rs=0.555; 
P=0.029) on day 1 was found, whilst a significant negative 
correlation between UCH‑L1 and IL‑8 (rs=‑0.554; P=0.04) 
was recorded. 

Discussion

In the present study, it was found that the levels of IL‑6, IL‑10 
and UCH‑L1 are significantly elevated on admission in adult 
patients with TBI compared with healthy individuals, whilst 

the levels of IL‑6 and IL‑10 tended to decrease over the first 
week post‑injury. In addition, relatively higher serum levels of 
IL‑6 and UCH‑L1 were found to be predictive of increased 
mortality and poorer functional outcome at 6 months 
post‑injury, even after controlling for other demographic 
parameters (such as age), common laboratory parameters 
(such as glucose) and clinical indices of injury severity (such 
as KPS and MRS scores). By contrast, the vast majority of 
previous studies focused on associations of separate IL with a 
limited set of parameters. 

UCH‑L1 has been previously proposed to be an important 
index of TBI classification and prognostication (23,53), whilst 
other studies also support their significant associations with 
outcome (54). However, they did not highlight their potential 
predictive power in TBI prognostic models (54). IL‑6 and 
IL‑10 are important inflammatory cytokines with primary 
protective roles against pathogenic, traumatic or stressful 
insults that are regularly present in relatively low levels, even 
in healthy individuals (36,37,39,49). Results from the present 
study support the notion that post‑traumatic inflammatory and 
anti‑inflammatory mechanisms start concurrently during the 
early stages of TBI to maintain the ideal inflammatory equi‑
librium (55).

Previously reported findings are in accordance with 
multiple human studies, which showed the statistically signifi‑
cant upregulation of IL‑6 concentrations in patients with TBI 
compared with those in controls (56‑73). However, it should be 
noted that two large‑scale studies (Ntotal=245) failed to detect 
significant differences (71). In particular, three studies have 
reported a significant negative correlation between IL‑6 and 
admission GCS (72,74,75), but other studies failed to find such 
a relationship (67,76,77). In addition, four studies have discov‑
ered a statistically significant positive correlation between 
IL‑6 and severe imaging findings (such as size of lesions 
and traumatic subarachnoid haemorrhage) (78‑81). However, 
other previous studies have reported that IL‑6 concentration 
is significantly associated with the concentration of various 
TBI‑specific neurological biomarkers (such as nerve growth 
factor, S100 calcium‑binding protein B and neuron‑specific 
enolase) (58,80). Furthermore, several studies consistently 

Table III. Multivariate logistic regression of potential predic‑
tors of an unfavourable outcome based on GOS‑E.

Variable Odds ratio 95% CI P‑value

IL‑6 Day 1 0.987 0.975‑0.998 0.025a

IL‑10 Day 1 1.009 0.925‑1.100 0.843
UCH‑L1 Day 1 0.993 0.987‑0.999 0.032a

Age 0.907 0.840‑0.980 0.014a

Glucose 1.029 0.997‑1.062 0.077
GCS 1.768 1.013‑3.084 0.045a

MRS 0.542 0.263‑1.119 0.098
KPS 0.978 0.911‑1.044 0.468

aP<0.05. CI, 95% confidence intervals; MRS, Modified Rankin Scale; 
KPS, Karnofsky Performance Scale; UCH‑L1, ubiquitin C‑terminal 
hydrolase L1. 
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highlighted the predictive value of IL‑6 for mortality or func‑
tional outcome (47,67,76,77,81‑93). Clinical prognosis in TBI 
may depend on both local and systemic components, since 

nerve tissue damage stimulates neuroinflammation through 
both local and systemic inflammatory cells (12). In the present 
report, a significant association of IL‑6 with several indices of 

Figure 3. ROC curve showing the independent discriminators of an unfavourable outcome for patients with TBI based on Glasgow Outcome Scale‑extended. 
ROC, receiver operating characteristic.

Table IV. Data for ROC curve showing the independent discriminators of an unfavourable outcome for patients with TBI based 
on GOS‑E.

 Asymptotic 95% confidence 
 interval
 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Prognostic discriminators Area Std. error Asymptotic sig. Lower bound Upper bound

IL‑6 day 1 (pg/ml) 0.632 0.057 0.045 0.515 0.740
UCH‑L1 day 1 (pg/ml) 0.640 0.062 0.033 0.519 0.761
Age (years) 0.758 0.048 0.001 0.716 0.904
GCS day 1 0.366 0.063 0.041 0.243 0.489
MRS 0.673 0.058 0.008 0.560 0.787
KPS 0.337 0.058 0.013 0.223 0.451
ECOG/WHO 0.644 0.058 0.028 0.526 0.762

IL, interleukin; UCH‑L1, ubiquitin C‑terminal hydrolase L1; GCS, Glasgow Coma Scale; MRS, Modified Rankin Scale; KPS, Karnofsky 
Performance Scale; ECOG/WHO score, Eastern Cooperative Oncology Group/WHO score.
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diagnostic or prognostic classification of ΤΒΙ was documented, 
highlighting the potential value of IL‑6 as a complementary 
index of both localised neural tissue damage and multisystem 
pathology. This is complementary to other TBI‑specific neuro‑
biomarkers, such as GFAP and UCH‑L1.

The present analysis demonstrated consistent associations 
among IL‑10 and multiple variables associated with the diag‑
nostic and prognostic classification of ΤΒΙ. Increased values of 
IL‑6 and IL‑10 have both been connected with an increased risk 
for ICU admission, lower scores in GCS, lower scores in mGCS 
and lower scores in KPS, higher scores in ECOG/WHO and ISS 
upon admission, higher blood levels of multiple common labo‑
ratory markers (such as white blood cells, polymorphonuclear 

leukocytes, glucose, creatine phosphokinase) , higher blood 
levels of GFAP and with positive imaging findings (midline 
shift >5 mm, obliteration of basal cisterns, larger volume of 
lesions, higher values in Stockholm, Rotterdam, Marshall and 
Helsinki CT scales). The role of IL‑10 as an index of injury 
severity and prognosis of TBI has previously been highlighted 
in the literature (47,49,57,94‑96), although a negative finding 
has also been found (97). Therefore, existing evidence appears 
to be stronger regarding the association of elevated IL‑10 with 
mortality or with unfavourable functional outcomes as indexed 
by GOS or GOS‑E (47,57,89,94,98‑101). The relationship of 
IL‑10 with admission GCS, complications or other biomarker 
levels has not been sufficiently examined to date. 

Figure 4. Significant associations of biomarkers with the clinical, diagnostic and prognostic parameters for the adult population of the study. Arrows indicate 
significant positive (↑) or negative (#) associations of interleukins. CRASH, corticosteroid randomisation after significant head injury; CPK, creatine phospho‑
kinase; ECOG/WHO score, Eastern Cooperative Oncology Group score/WHO score; GCS, Glasgow Coma Scale; GFAP, glial fibrillary acidic protein; GOS, 
Glasgow Outcome Score; GOS‑E, Glasgow Outcome Scale‑Extended; ICU, Intensive Care Unit; ISS, Injury Severity Score; KPS, Karnofsky Performance 
Scale; LOS, length of stay; mGCS, Motor Component of Glasgow Coma Scale; MRS, Modified Rankin Scale; PMNs, neutrophils, tIVH, traumatic intraven‑
tricular haemorrhage; tSAH, traumatic subarachnoid haemorrhage; UCH‑L1, ubiquitin C‑terminal hydrolase L1; WBC, white blood cells.
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Serum levels of IL‑8 were found to be significantly lower 
in patients with TBI compared with those in healthy adult 
controls with relatively stable levels throughout the week 1 
post‑injury. Due to the neutrophil chemoattractant properties 
that have been attributed to IL‑8 (102), this finding may not be 
surprising. Systemic serum IL‑8 levels could be suppressed 
during TBI, due to its valuable role locally as a neuroinflam‑
mation danger signal. In addition, it has been reported that 
IL‑8 is involved in angiogenesis, which is hypothesised to 
promote neurodegeneration (42,103). However, early and 
sustained downregulation of IL‑8 may confer a protective 
response against neurodegeneration. This possibility warrants 
further investigation (104). Therefore, the present results do 
not support the diagnostic (67,74,103,105‑108) or prognostic 
significance of IL‑8 in TBI (67,87,89,93,108‑111). 

A potential novelty of the present study is that a pilot group 
of paediatric patients was also included, given the scarcity of 
paediatric TBI data. However, the present study has certain 
limitations. A sample of consecutive patients with TBI was 
enrolled, whose age varied widely. By contrast, the control 
group consisted of significantly younger healthy volunteers. 
Moreover, the largest part of the present study was conducted 
during the COVID‑19 pandemic, which could have influenced 
the demographic and TBI mechanism and severity character‑
istics of the patients. Further studies will be needed to clarify 
the preliminary results of the present study with regards to 
inflammatory biomarkers. Another limitation concerns the 
pilot paediatric population, which consisted of only a small 
number of children, offering little information in drawing 
remarkable conclusions. This was compounded by the lack of 
control paediatric individuals in the present study.

In conclusion, patients with TBI may have multiple inju‑
ries and/or complications. The prognosis of a patient with 
TBI is dependent on the presence of both local and systemic 
responses, in addition to that of damage to other tissues. 
Therefore, an adequate TBI prognostic model should take 
into consideration all aspects of systematic inflammation and 

local neuroinflammation, which is generated by both localised 
neural tissue damage and systemic immune responses. At 
present, a significant number of CNS‑specific or non‑specific 
inflammation biomarkers are being studied for clinical use. 
However, to the best of our knowledge, no reliable biomarker 
or group of biomarkers with adequate sensitivity or specificity 
for TBI severity classification or prognostication have been 
found to date. In the present study, three systemic biomarkers 
associated with inflammatory processes, IL‑6, IL‑8 and IL‑10, 
in addition to two specific biomarkers associated with nerve 
tissue injury, UCH‑L1 and GFAP, were examined. The present 
study indicated that IL‑6 and IL‑10, but not IL‑8, may serve 
to be independent TBI severity discriminators in neurocritical 
patients with TBI, based on a holistic comparison with already 
authorised TBI neurological biomarkers (UCH‑L1 and GFAP), 
clinical and imaging tools. Furthermore, IL‑6 and UCH‑L1 
seemed to act as viable prognostic TBI biomarkers. Therefore, 
the incorporation of inflammation biomarkers IL‑6 and IL‑10, 
alongside TBI‑specific neurological biomarkers (such as 
UCH‑L1) into diagnostic and prognostic models may optimise 
the guidance of and enhance current existing clinical decisions 
and practices, to facilitate outcome prognostication.
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