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Abstract: Severe Acute Respiratory Syndrome Corona Virus 2 has altered life on a global scale.
A concerted effort from research labs around the world resulted in the identification of potential
pharmaceutical treatments for CoVID-19 using existing drugs, as well as the discovery of multiple
vaccines. During an urgent crisis, rapidly identifying potential new treatments requires global and
cross-discipline cooperation, together with an enhanced open-access research model to distribute
new ideas and leads. Herein, we introduce an application of a deep neural network based drug
screening method, validating it using a docking algorithm on approved drugs for drug repurposing
efforts, and extending the screen to a large library of 750,000 compounds for de novo drug discovery
effort. The results of large library screens are incorporated into an open-access web interface to allow
researchers from diverse fields to target molecules of interest. Our combined approach allows for
both the identification of existing drugs that may be able to be repurposed and de novo design of
ACE2-regulatory compounds. Through these efforts we demonstrate the utility of a new machine
learning algorithm for drug discovery, SSnet, that can function as a tool to triage large molecular
libraries to identify classes of molecules with possible efficacy.

Keywords: drugs for SARS-COV-2; coronavirus; deep neural network; SSnet; docking

1. Introduction

Pathogens have wreaked havoc on human society for as long as human society has
existed. Various forms of pathogenic microbes have marked pivotal points in human history
among which the notable examples are plague, smallpox, tuberculosis, and cholera [1].
While most of these pathogens have been either eradicated or have a cure developed, as
globalization increases, new emergent diseases remain an increasing global threat. Ebola
virus, hantavirus, zika virus, human immunodeficiency virus, and coronaviruses are some
of the viral families that have been identified and have continuously posed a threat in
the past decades [2,3]. Currently, we are amidst a pandemic caused by a member of
the coronavirus family, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)
which has claimed 1.7 million lives and significantly impacted the global economy. The
pharmaceutical research in response has been relentless and fruitful, however as seen
during the ongoing pandemic, despite recent technology breakthroughs, development and
widescale production of vaccines take well over a year. As a result, it is imperative that we
develop rapid methods to identify putative therapeutics to combat future rounds of new
emergent diseases.

Disease prevention and treatment can proceed via three avenues with varying utility
and timelines. Long-term, a viable vaccine is the best option for an intervention strategy to
mitigate the spread and effect of a virus. Short-term, drug re-purposing from approved
drug data-sets is most effective, since they can be deployed as soon as they show efficacy
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against the disease. de novo development of a targeted treatment would require years of
testing and regulatory approval, thus, although such a development route may be higher
in terms of efficacy, the timeline precludes rapid usage of such an approach. Vaccine devel-
opment is a difficult process and thus can potentially take much longer to be developed
where highly specific de novo drugs could bridge the timeline. For these reasons, the
research and pharmaceutical community must focus on a three-tiered platform for disease
prevention, treatment, and eventually eradication of emergent diseases.

Against SARS-CoV-2, scientists throughout the world have pushed research on iden-
tifying epidemiology, drug re-purposing, de novo drug design, and development of vac-
cines. With over two thousand clinical studies registered in www.clinicaltrials.gov, many
researchers have identified various means of prevention and treatments. Towards eradica-
tion, vaccines have been developed with 56 currently in clinical trial and 146 in pre-clinical
development worldwide [4]. Multiple vaccines have been authorized for use by the Food
and Drugs Administration (FDA) in the USA which has projected over 100 million doses
delivered worldwide by March of 2021 [5]. Furthermore, drug re-purposing has allowed
the use of many drugs, particularly antivirals for relief against severe disease progression.
The rapid developmental success of vaccine has lessened the urgency for de novo drugs
that target SARS-CoV-2 with high affinity. Through this diversified focus on dealing with
SARS-CoV-2, researchers have managed to find effective means of reducing the sever-
ity of cases and most importantly development of several versions of vaccine against
SARS-CoV-2.

SARS-CoV-2, like all members of coronavirus family, has a crown-like spike protein
(S protein) and a viral core containing a positive sense RNA strand. The S protein is
responsible for host specificity and host binding, an essential step for the injection of the
viral core into the host cell. The N-terminal S1 domain of SARS-CoV-2 has a high affinity to
the membrane bound human Angiotensin-II Converting Enzyme (ACE2) protein allowing
the virus to adhere to the cell surface exposing the S protein to host proteases to initiate
infection. This mechanism is shared by several known human pathogenic coronavirus [6–9].
Furthermore, the S1 sub-unit has high genetic variability among coronaviruses, allowing
these viruses to cross-species and thereby highlighting the threat of coronavirus in the
future [7,10]. The binding affinity of viral S protein to ACE2 implicates ACE2 as a drug
target against SARS-CoV-2. Thus, interrupting the interactions between S1 and ACE2,
either through competitive or allosteric inhibition, is of interest as a preventive treatment.

ACE2 is a metallopeptidase that cleaves hormonal peptide angiotensin II at the car-
boxylic terminal phenylalanine and hydrolyses it to a vasodilator, angiotensin (1–7) [11].
Furthermore, it also shows peptidase activity against bradykinin, apelin, neurotensin,
dynorphin A, and ghrelin, playing a crucial role in the regulation of several hormonal path-
ways [12]. Specifically, ACE2 belongs to Renin-Angiotensin-Aldosterone System (RAAS)
where Angiotensin I Converting Enzyme (ACE or ACE1) converts angiotensin I to an-
giotensin II, a potent vasoconstrictor which in turn is converted into angiotensin (1–7) by
ACE2. This system is tightly regulated through orchestration from liver, lungs, kidneys,
and renal gland [13]. Thus, it is of the outmost importance to be able to avoid the viral
infection while preserving the biological function of this enzyme. To achieve this task, the
ACE2:S1 binding interface or the S1 fragment would represent suitable targets. However,
protein-protein interaction surfaces are largely featureless, with no direct clefts or pockets
amendable to small-molecule recognition. Furthermore, examination of the S1 surface in-
volved in ACE2 binding demonstrates this problem for Spike. The S1 surface is featureless,
relatively structurally smooth with no obvious pockets or clefts for small molecules to
bind to with high affinity. Small molecules that modulate ACE2 conformational dynamics
related to its enzymatic function can be useful tools to modulate CoVID-19 pathology as
well as potentially regulating the RAAS system, expanding this study beyond the scope of
CoVID-19 treatment.

Recently, Yan et al. [14] has published the structure of ACE2 in three conformations:
an open conformation, a closed conformation, and a closed conformation in complex
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with a fragment of the viral S protein (Figure 1). The ACE2 open and closed confor-
mations differ from each other by the degree of opening of the catalytic site cleft of the
peptidase domain (Figure 1b) [14,15]. This causes a distortion of the ACE2:S1 binding
interface [15]. Moreover, ligand binding studies have identified a closing motion associated
with ligand binding, suggesting that the closed conformation represents the catalytically
active state of the enzyme [16]. These structural insights imply ACE2 as a viable target
to block S1 recognition through allosteric control of open-closed transitions necessary
for S1 recognition. Indeed, several groups have performed computational drug screens
on libraries of approved molecules for potential therapeutic targets and rapid deploy-
ment by targeting ACE2 as well as proteases that initiates membrane fusion [17,18]. We
note that the previous computational drug screens of the ACE2-Spike complex focused
on limited size data-sets, considered only a single ACE2 structure, and were limited to
the ACE2-Spike interface [19,20]. Such an approach is not able to identify potential al-
losteric inhibitors of ACE2-Spike complex formation, leverage potential structure-based
mechanisms of drug action, and may miss higher affinity sites within the ACE2 protein.
Nevertheless, under the guidance of computational studies taken from both pre-print as
well as peer-reviewed papers, in vitro assays and in some cases clinical trials have been
performed on various pre-approved drugs [21–28]. As such, computational studies have
been of tremendous assistance, however, most of these screens can only be performed
on limited-size libraries of FDA approved compounds for swift drug deployment, which
precludes gathering information on mechanistic models as well as de novo drugs with
potential high binding affinities for a long term development.

S1ACE2 Catalytic site

ACE2:S1 Interface

Zn+2

(a) ACE2:S1

ACE2 (closed) ACE2 (open)

(b) ACE2
Figure 1. Crystal structures showing interaction between human ACE2 and S1 domain of viral S-protein. (a) Viral S1
fragment of the S-protein co-crystallized with ACE2. Only closed conformation can be co-crystallized suggesting ACE2
conformational dependency for S1 interaction [14]. (b) Closed and Open conformation of ACE2. Zn cation is not detected in
the open conformation. ACE2 freely explores both open and closed conformations [14].

With this study, we provide a computational strategy that leverages the ability of our
machine learning algorithm, SSnet, to rapidly screen a vast amount of compounds. On top
of aiding the protocol for immediate drug repurposing, using our model we developed a
platform that can be used intuitively and quickly to aid de novo drug design. Specifically,
with this study, we demonstrate the efficacy of such protocol, both in terms of accuracy and
speed, by identifying existing FDA approved drugs that may treat CoVID-19 and possible
mechanisms of action, including allosteric inhibition. These strategies can be leveraged
to expand to databases on the scale of millions of compounds, lending the approach
amendable to the development of de novo treatments. To demonstrate the efficacy of the
approach, we first screen a library of approved drugs from DrugBank and ZINC using a fast
and accurate machine learning approach termed SSnet to identify compounds predicted
to have high-binding affinities [29]. These hits are cross-validated against traditional
drug docking algorithm smina using the Autodock Vina scoring function [30]. The SSnet
approach is then extended to a library of 750,000 in BindingDB, to discard compounds
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that are predicted to have a poor capacity for binding. The truncated library can then
be assayed using alternative drug docking approaches and subsequent analysis using
molecular dynamics, as well as in vitro assays, to identify possible targeted therapeutics
(Figure 2). The analysis and interpretation of the results of the screening large datasets
represent a challenge. For this purpose, we built a web interface for easy and intuitive
access of our results to provide a platform for the identification of molecular scaffolds and
functional groups that might influence target binding, thereby making the results accessible
to a broader audience.

Protein Target Drug Database

Filtered Drug List

SSnet

Curated Drug List

Molecular Dynamics
Binding Free Energy

In vitro Drug Assays

Hypothesize Model of
Drug Action

Binding Likelihood 
Score

Drug leads

Update Model to
Generate New

Curated Drug List

Incorporating SSnet
Into Drug Discovery

Workflow

Docking

Figure 2. Proposed drug discovery workflow using SSnet. The orange boxes represent the steps that are performed in
the present study. The blue boxes represent further steps required to complete the drug discovery workflow to obtain
drug leads.

2. Materials and Methods
2.1. Dataset

We choose three datasets for screening: (i) Approved: Clinically approved list of
drugs or natural products (FDA or world) compiled from DrugBank and ZINC databases,
(ii) Natural: South African based herbal medicines SANC [31] and Brazil based herbal
medicines NuBBE, [32] (iii) BDB: the BindingDB [33] dataset that has a large number of
compounds already been tested to have activity with protein target.

2.2. SSnet

SSnet is an end-to-end based deep neural network framework that takes a protein
structure and ligand information to predict protein ligand interaction (PLI) probability. The
protein structure is taken from PDB formatted file which is used to extract curvatures κ
and torsion τ of the protein backbone. The ligand is taken as Simplified Molecular-Input
Line-Entry System (SMILES) string, which is utilized to extract the Morgan Fingerprint [34]
of the ligand. The curvatures and torsion of the protein provide unique patterns due to
multiple atomic interactions including side chain interactions, which play a major role in
PLI. This information is used by SSnet to score the likelihood of ligand binding to target
protein at IC50 less than 10 nM. SSnet model outperforms state-of-the-art machine learning
models like Atomnet, [35] 3D-CNN, [36] and GNN-CNN [37] and classical force field and
knowledge based methods employed by Autodock Vina [38] and Smina [30] in identifying
positive protein-ligand pairs (protein ligand complex with high binding affinity). Since
SSnet is a pre-trained algorithm [29], it can rapidly screen drugs from a large database of
drugs to find positive hits on the target protein. SSnet is made available for public use on
https://github.com/ekraka/SSnet with instructions for both training the neural network
as well as calculating scores using the BDB trained model. The resources utilized and the
speed of execution for SSnet are provided in the supporting information.

https://github.com/ekraka/SSnet
https://github.com/ekraka/SSnet
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2.3. Ligand Preparation for Docking

Ligands were obtained from respective datasets in SMILES format which was then
converted to 3D structures using openbabel’s generate 3D option. The quality of the
structures was checked via a python script using atomic distances as a criterion. 3D
structures for the faulty structures were regenerated using rdkit [39]. A known limitation
of docking methods is dealing with ligands containing a large number of atoms (high
degree of freedom) [40]. Approximately 300 structures were excluded from the list of
approved and natural compounds since neither rdkit nor openbabel were able to generate
3D structures of the compounds with a high degree of freedom (n > 50) which are provided
in the supporting information). Explicit polar hydrogen atoms were added using openbabel.
Lastly, the generated 3D structures were converted to pdbqt format.

2.4. Virtual Screening and Docking

To perform virtual screening and docking, smina was used on a subset of clinically
approved drug lists obtained from dataset 1. ACE2 structures from PDB ID 6M1D, 6M17,
and 6M18 were taken as well as viral S protein fragment in 6M17. As such, chain B
corresponding to ACE2 and chain E for viral S protein fragments were extracted from the
structures using pymol with Zn in the catalytic site [41]. The smina runs were performed
on the prepared ligands by centering the box of size 32Å × 32Å × 32Å around Lys353
(Figure S1), identified as a key interaction residue between ACE2 and S protein, [19] with
exhaustiveness of 36 on the default scoring function. The screens were replicated three
times to consider the variability of scores from smina. We also re-evaluated the top 100
scoring ligands using exhaustiveness of 504 in triplicate. The results did not significantly
impact the affinity scores and had only a weak effect on the standard deviation across the
three replicates. As such, we did not increase the exhaustiveness for the entire compound
library.

2.5. Chemical Sorting

H2O was considered as the first entry for the list of compounds. The list was then
sorted recursively such that each molecule is most similar to the previous molecule in the
indexed list. The molecular similarity was considered using Tanimoto Coefficient (TC) of
extended circular fingerprint (ECF, specifically Morgan Fingerprint). Approved and natural
datasets were sorted in this manner, however the size of BDB dataset limits the generation
of such a list. Thus, the BDB dataset was sorted by using k-nearest neighbor algorithm to
consider 10,000 nearest neighbors computed by TC. The most similar compound in the
10,000 nearest neighbors was selected as the next molecule in the indexed list. Starting from
H2O, this process was performed until every molecule was sorted. In case of no neighbor
within 10,000 presorted compounds is found, the most similar compound is computed
back from all compounds of the BDB dataset excluding the sorted entries. The benefit of
using such an algorithm is to compute all nearest neighbor for each compound via parallel
computation, significantly reducing the computation time, however, does not guarantee
that the two consecutive compounds are most similar to each other from the remaining list.
For use in the grouping, to display the data, this approach works despite the pitfall.

2.6. Data Visualization

The sorted list was used as an index for a line which was then mapped to a pseudo-
Hilbert space filling curve. The order of the pseudo-Hilbert curve was taken such that
the compounds would be represented by at least one line segment in the curve. A de-
tailed description of Hilbert space filling curve is discussed in the supporting information.
The pseudo-Hilbert curve was used to represent the compound list for three reasons:
(a) high density of data can be displayed in high resolution, (b) the pseudo-Hilbert curve
preserves the spatial proximity of the line onto the map, and (c) similarity sorting of
compounds allows easy identification of clusters of molecular scaffolds directly from the
map. The preservation of spatial proximity ensures that the sorted list of SMILES based
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on the Tanimoto Coefficient (TC) is represented in the 2D space by spatial proximity. This
representation allows immediate identification of clusters of molecules. The curve was
then colored based on the SSnet binding prediction or smina affinity scores. A website was
created to allow interactive exploration of the map to identify scaffolds of compounds that
are scored highly either by smina or SSnet. The website is made available for public use at
https://CoVID19screen.smu.edu/.

3. Results

Computational approaches to screening large molecular databases can be limited due
to the computational time required to exhaustively search the conformational space of
small molecules that determines diverse binding modes to protein targets. To improve
computational efficiency, we have employed a tiered approach to identify potential ligands
that bind to the ACE2 receptor and possibly function as CoVID-19 treatments. We target
two conformations of ACE2 receptor, open and closed, as well as ACE2 in complex with S1
(closed) Figure 1. S1 from the S protein of SARS-CoV-2 did not co-crystallized with ACE2
(open) as observed by Yan et al. [14], thus we posit that S1 cannot bind ACE2 in its open
conformation [14].

To that effect, we first test the validity of SSnet prediction scores in two ways: (1) We
compare the prediction score for ACE2 against ACE1, two members of the same protein
family. (2) We compare SSnet scores to binding affinities computed by smina for a small
library of FDA and World approved drugs for which docking method is feasible. For the
first, we observe a difference in scores for ligands between ACE2 and ACE1 as seen by the
deviation for y = x line on Figure S2. These results indicate that SSnet can differentiate
from closely related proteins and is not biased to specific tertiary or domain folds. For the
second, we performed a closer analysis on the results described in SSnet Predicts Ligands
with Low Smina Binding Affinities. Upon validation, we can proceed with using SSnet to
rapidly screen through a large database of drug-like compounds.

3.1. SSnet Predicts Ligands with Low Smina Binding Affinities

SSnet, being a machine learning model, is not free from the pitfalls of overfitting. Thus,
a crucial task is to first check how SSnet correlates with other methods such as smina. The
results of screening for SSnet and smina scores over all approved drugs (8000 compounds)
are shown in Figure 3. The result from screening these compounds demonstrate a strong
correlation between smina and SSnet (Figure 3). Briefly, high binding probability hits from
SSnet have corresponding low binding affinities computed by smina. We observe that for
1097 ligands with a prediction score of 0.5 or higher, only 7 ligands (0.6%) have higher than
−6 kcal/mol binding affinity in smina. These values demonstrate that SSnet has a more
stringent acceptance rate than smina and thus a higher likelihood of finding true active
ligand from a large pool of molecules.

Figure 3. Correlation map between smina binding affinities and SSnet scores. Red color indicates strong agreement between
the two methods. Blue color indicates strong disagreement between the two methods.

https://CoVID19screen.smu.edu/
https://CoVID19screen.smu.edu/
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3.2. Ligands with High Binding Affinity Scores

Molecules that demonstrate high scores in both SSnet and smina are prime candidates
for investigation. Preliminary examination of heat maps predicted by SSnet, and poses
identified by smina, indicate that compounds bind to two sites depicted in Figure 1. The
majority of compounds bind to the ACE2 catalytic site proximal to the S1 binding interface.
As discussed below, we do observe some molecules that directly bind to the interface, or
transect the ACE2 catalytic site to contact the S1 interface. In both cases, these ligands
could impact S1 recognition through either allostery or direct competition. Although these
screens might not reflect the efficacy of drugs in vivo, these results allow us to focus on a
handful of ligands that can be experimentally tested. In Tables S1–S3, we complied a list of
12 drugs recognized by both smina and SSnet to be strong binders as well as drugs that are
predicted by one and not the other. The top scorers are taken for all the proteins together to
highlight some of these top predicted binders.

Top Scores for both Smina and SSnet

Our combined machine learning and docking strategy return high binding affinity
ligands consistent with previous computational screens of the ACE2 receptor. Furthermore,
sorafinib, [42] irinotecan, [43] and nilotinib[44] (Table S1) show reduction in infection rates
in cell assays studies, while zanubrutinib is currently in clinical trial. Although these drugs
target other pathways involved in the pathology, the reduction in infection rate could be in
part attributed to the ability of the drug to bind ACE2. MD, simulations and drug assays
specifically targeting ACE2 and ACE2:S1 would be required to test the hypothesis.

Examination of the binding locations for compounds that are either currently being
tested as CoVID-19 treatments, or may intersect with ACE2/RAAS indicates that the
compounds primarily bind to the ACE2 catalytic site (Figure 4). Although the highest
affinity poses of indinavir, zanubrutinib, and sorafenib all reside in the catalytic site,
sorafenib has a pose of comparable score within the ACE2-Spike interface (Figure 4c). In
either case, the compounds contact key elements involved in S1 recognition, and could
impact ACE2-S1 interactions.

(a) DB00224 (b) DB15035 (c) DB00398
Figure 4. Top 9 lowest energy poses for compounds with high scores in both SSnet and smina of biological interest to
CoVID-19. Panel (a): Indinavir binding poses. Panel (b): Zanubrutinib binding poses. Panel (c): Sorafenib binding poses

3.3. Top Scores with SSnet

An examination of compounds identified by SSnet to have a high probability in bind-
ing identifies they primarily fall into three pharmaceutical categories, antivirals, protease
inhibitors, and kinase inhibitors (Table S2). Venetoclax [45] and Aliskiren [46] have shown
efficacy towards CoVID-19. Since ACE2 hydrolyzes the peptide hormone angiotensin II at
C-terminal phenylalanine as well as multiple additional regulatory peptides [11], protease
inhibitors could potentially bind to and inhibit the catalytic site. Consistent with such a
mechanism, examination of the binding poses of antiviral compounds reveals primary
binding within the ACE2 catalytic site, although some antivirals do dock directly to the
ACE2-S1 interface in some poses (Figure S3).

In addition to antivirals, and protease inhibitors, SSnet recognize among the top
scorer an opioid and linaclotide, used to treat irritable bowel syndrome. Most of the
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anti-cancer drugs have substantial side effects, and most of them, with the exception of
afatinib, have reported side effects correlated with alteration of blood pressure. This might
be an indication of the correlation of this anti-cancer drugs and ACE2 related biological
pathways. It is worth noting that all the drugs identified as top scorers by SSnet are all
good binders according to smina binding affinity.

3.4. Model of Drug Action

Protein-protein interactions require the proteins involved to be in specific confor-
mations. The optimal conformation for protein-protein binding can be both induced or
inhibited by drug binding. While competitive binding of ligands at the protein-protein inter-
action interface can directly inhibit the interaction, ligand binding in allosteric sites can sta-
bilize conformations that inhibit or enhance the protein-protein interaction Yan et al. [14].
observed that the viral S1 fragment could only be co-crystallized with ACE2 in the closed
ACE2 conformation. In contrast, in the absence of S1 fragment, ACE2 crystallized in both
open and closed conformation [14]. Their results indicate that the allosteric control of
ACE2 conformational dynamics may enable a robust way to block ACE2:S1 recognition
and subsequent SARS-COV-2 infection. Since SSnet predicts the same binding affinities
and binding regions regardless of the protein conformation, when multiple structures of a
protein are available, SSnet is able to predict ligand binding using a single conformation.
Further, PLI prediction can be performed for both ACE2 and ACE2:S1 to investigate selec-
tivity. This approach allows us to propose a hypothesis for PLI mechanism. Herein, we
propose four scenarios for ACE2-S1-ligand interaction, summarized in bullets below and
shown in Figure 5.

• Case-I: The ligand binds to the open conformation but does not prevent the protein
from exploring the closed conformation. This would render the drug ineffective.

• Case-II: The ligand binds to and stabilizes the closed conformation. This may make
the drug counter-productive by making the receptor more susceptible to the docking
of the viral S protein.

• Case-III: The ligand binds to and stabilizes the open conformation. This would prevent
the docking of the viral S protein since the closed conformation is no longer explored.

• Case-IV: The ligand binds to the closed conformation with or without the viral S1
protein and biases the receptor towards an open conformation. This would either
prevent or disrupt the viral docking.

Previous validation of SSnet indicated the method was robust in identifying both
allosteric regulators, and ligands that bind to hidden conformations. In this regard, it is
well-suited to identify potential regulators for case I–IV. Further, our rapid method can
be implemented to screen large drug libraries against all three structures and together
with secondary screening in smina, can be used to select for molecules that potentially
fall into the favorable Case-III and Case-IV scenarios. The mechanisms of drug action
proposed cannot be validated using drug docking and scoring methods alone and will
require methods that apply higher levels of theory like molecular dynamics or experimental
verification. However, we can still screen for Case-III as the drugs that present a high
score for the open conformation but low for the complex might lead to the stabilization of
the open conformation and thereby disrupt spike recognition. The case-III would apply
for both interface binding ligands as well as ligands that bind to the catalytic pocket or
peripheral sites not examined in previous CoVID-19 computational screens. Using these
criteria, Table S3 was generated to seek drugs that may selectively bind to ACE2 to negate
interactions with S1 via allosteric disruption of ACE2. In addition to the scenarios just
presented, the virus could be prevented from binding ACE2 by drug molecules that bind
to the surface of the peptidase domain of ACE2, which is the interface where the viral S1
spike protein subunit binds.
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Figure 5. Proposed mechanism of drug action for allosteric inhibitors of ACE2:S1 binding. Case I and Case II represent
undesired stabilization of the ACE2:S1 complex. Case III and Case IV represent ACE2:S1 complex inhibitors due to allosteric
disruption of the ACE2 binding interface, resulting in the stabilization of the open ACE2 conformation.

3.5. Top Scores for SSnet ACE2 (Open)-ACE2:S1 (Closed)

Following the rationale illustrated in our proposed allosteric mechanisms of drug
action, where a drug that binds preferably to the ACE2 open conformation compared
to the closed one might stabilize the open conformation, in Table S3 the scores from the
SSnet scores based on the difference between ACE2 in the open conformation and ACE2:S1
complex in closed conformation are presented. Pyronaridine [47], have shown efficacy
towards CoVID-19 in cell assays while Methylprednisone, Linagliptin, and ormeloxifene
are in clinical trials (Table S3). The top smina docking poses for compounds with a high
selective difference (SD) indicates that they lie within the ACE2 catalytic site, close to
ACE2:S1 interface. Antivirals such as Nelfinavir [22], and remdesvir [21] are in clinical
trials which all display high SD. Remdesvir demonstrates a preference for the open confor-
mation(SSnet = 0.748) compared to the ACE2:S1 complex (SSnet = 0.578) with a selectivity
difference(SD) of 0.17. Lopinavir and ritonavir have shown SD of 0.08 and 0.09 respec-
tively with a preference to open conformation of ACE2 with SSnet scores of 0.90 and 0.91
respectively. Although not presented in the table, we highlight these molecules since they
have high SSnet scores as well as are in the clinical trial. These results provide a favorable
outlook on the methodology proposed here and might indicate a complementary route of
actions of these drugs that leverage the conformational selectivity of the viral spike protein.

3.6. Zinc Effect on SSnet Binding Probabilities

ACE2 is a zinc-dependent metalloprotease, which cleaves the C-terminal residue of
angiotensin II within its catalytic site. Given the importance of zinc for function we deemed
it necessary to include zinc for all smina docking runs. Notably, SSnet was originally trained
on structural models independent of any bound metals or cofactors. As such, SSnet strips
protein targets of all ligands and cofactors, including zinc. Although SSnet has proven
robust in identifying high affinity drug molecules, including for metalloprotein targets, we
decided it was important to examine if the presence of zinc may alter predicted affinities
from SSnet. To force SSnet to consider ligands in the presence of zinc, smiles strings were
modified to include zinc in a manner that mimics co-analysis (or co-administration) of zinc
and each ligand. Noteworthy is the fact that SSnet considers metal binding to the protein.
Further, SSnet can recognize multiple ligands such as Ferrous cysteine glycinate (Fe2+ and
cysteine glycinate) and it is therefore capable to consider both Fe2+ and cysteine glycinate
together. Comparison of the SSnet scores with and without zinc revealed unexpected results
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that may impact analysis of compounds selective for the open and S1-complex structures
Figure 6 and Table S4. Correlations of SSnet with and without zinc, indicate the inclusion
of zinc has only a modest positive effect for most compounds. This is especially true at low
and high scores, where the two methods are equivalent. In this manner, the two methods
do not differ in the selection of top-binding compounds. Based on a preliminary analysis,
we observed that the top 15 ligands influenced most strongly by the inclusion of zinc lie in
the catalytic site near the zinc ion binding site (Figure S4). Further examination reveals two
aspects, which may have implications in the identification of compounds selective for the
open conformation. First, the effect of zinc on SSnet scores is significantly more pronounced
in structures lacking S1 (Figure 6b). In this regard, zinc seems to enhance ligand binding
in the absence of the S1 complex regardless of whether ACE2 is in the open or closed
conformation. Second, the effect of zinc is most pronounced within the range of modest
SSnet scores where we observed the most selective compounds. To determine whether the
role of zinc in SSnet scores may be artifactual, we sorted the approved compound libraries
by the difference between SSnet with zinc and SSnet without zinc.
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Figure 6. Effect of zinc ion on SSnet binding probabilities.

Examination of compounds with the largest SSnet score differences with and without
zinc are summarized in Table S5. Here, we observe members of the proton pump inhibitor
(PPI) families. Notably, PPIs are well known to potentially cause zinc deficiencies, due
to the high affinity of PPIs to zinc. Analysis of other members observed in the top 15
affected compounds, indicates that all are known to have high affinities for zinc, including
an ACE-inhibitor and ACE2 receptor blocker. These results strongly suggest that zinc
may preferentially enhance binding to the ACE2 receptor that may be particularly relevant
to compounds selective to the uncomplexed vs. ACE2-S1 complex structures. Based
on these results, we tabulated the top compounds with SSnet(Zn) scores based on the
difference between ACE2 in the open conformation and ACE2:S1 complex in the closed
conformation in order to identify any that may be zinc dependent (Table S6). Notably, three
estrogen-related molecules, estriol-3-glucuronide, estradiol glucuronide, and 17-alpha-
estradiol-3-glucuronide are now observed in the top 20 most selective compounds.

3.7. Natural Compounds and Large Drug Molecules

An interesting finding of our smina screening is the abundance of natural compounds
from the NuBBE and SANC datasets in the top binder list (Table S7). We see compounds
related to avonoids, flavonones, and polyketides in this group. We note that several gly-
copeptide antibiotics and macrolactams also demonstrate high affinities in smina. However,
the comparison of smina affinity scores for these large molecules is complicated by poor 3D
structures in molecular databases. Further, high degree of flexibility and conformational
degrees of freedom limits the ability to identify the highest affinity pose, as demonstrated
by a high average of absolute deviations for some of these compounds. Due to these con-
straints, we identified that smina has a limitation in the reproducibility of docked energies
for these large molecules. They are not included in the tables above but are discussed in
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the discussion below. Despite the limitations of smina in analyzing these molecules, we
do not exclude them entirely for two reasons. First, compounds in these families such as
azithromycin and oritavancin have been suggested as CoVID-19 treatments. Further, the
efficacy of these large molecules for the intended targets is very high with the working
concentrations at sub nM range [48–50].

3.8. SSnet as Tool to Aid the Discovery of De Novo Compounds

In order to assist the design of de novo drugs tailored to fight SARS-COV-2, we
developed an interface where libraries of non-approved compounds can be clustered
based on structural similarity and visualized in a 2D heatmap based on their affinity and
selectivity to a particular conformation of the ACE2 receptor. Potentially active molecular
scaffolds can be inferred from the visualization of high affinity compound clusters and used
as starting point for further drug design. SSnet proved to be sensitive to functional group
modifications. This translates into direct valuable information for drug designers which
are now provided not only with potential active scaffold but functional group information
to build pharmacophores and help rational drug design as well. An example is provided
by estradiol. When analyzing Estradiol analogues from the heatmap derived cluster, they
showed considerable deviations in binding affinity upon functional group substitution as
can be seen in Figure 7.

Hormones are extremely selective in their functionality and as such small changes in
functional groups could significantly alter their selectivity towards protein target. Since
SSnet has been trained on a wide variety of ligands from BDB, it is not surprising that the
selectivity of hormones is well captured by our model. This is demonstrated in Figure 7,
the coordinates for estradiol were selected in the pseudo-Hilbert map on the website to
identify other potential estradiol derivatives that could have strong binding to ACE2. It
is important to mention that a normal screening values-based sorting would have not
provided such insight as estradiol derivatives are not in the high scoring area. Ulterior
information from the clustering on the heatmap can be used to extrapolate how small
groups affect the selectivity towards the ACE2 or the ACE2:S1 complex. Figure 8 shows
that the highest selectivity is achieved for ACE2 binders with binding probabilities in the
range 0.60–0.70. Furthermore, SSnet is blind to tertiary protein conformations, with only
up to 0.5% difference in drug scores between the ACE2 open and closed conformations
(Figure 8c). This characteristic reduces the workload since only one ACE2 conformation
and one ACE2:S1 complex conformation are needed. Being able to avoid the screening
against all the crystal structures allowed us to save precious computational resources and
time in the screening of 750,000 compounds in the BindingDB database.



Int. J. Mol. Sci. 2021, 22, 1573 12 of 17

Figure 7. A road-map for navigation of the chemical map to find areas of interest. The cluster of molecules with high
similarity to Estradiol, when the latter was selected in the map, are shown.
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Figure 8. Correlation diagram for SSnet scores between each of the protein targets for ligands in BDB (a) ACE2:S1 vs.
ACE2(closed), (b) ACE2:S1 vs. ACE2(open), and (c) ACE2 (open) vs. ACE2 (closed). The red curve shows the scores for
ligands plotted as x, y. The blue curve is an x = y line representing non-selectivity to the ACE2 conformation. The highest
difference between scores is achieved for probabilities in the range 0.60–0.70. High probability binders show no selectivity.

4. Discussion

The pressure to rapidly find a cure of preventive treatments in response to the life
and economic costs of the CoVID-19 pandemic has exposed the necessity for fast and
reliable protocols and/or methods to identify treatments when new pathogens appear. The
existing computational studies being performed to find therapeutic for CoVID-19 showed
that the current approaches have three main limitations: (1) Most studies have used a
low-level of exhaustiveness in molecular docking algorithms. Such an approach can lead
to difficulty in finding local minima in receptor ligand interactions are a high degree in
variability in resulting binding affinities. (2) Computational efforts have been limited to a
distinct conformation of the ACE2 receptor and compounds that bind to the ACE2-Spike
interface. Such an approach does not leverage the three known structural states of the
ACE2 receptor, which include an open conformation that cannot crystallize in complex
with the Spike protein [14]. As such, compounds that preferentially bind to the open or
closed conformations that may stabilize Spike-incompetent binding states are missed. (3)
The approaches are computationally intensive, which limits the utility of the approach
in large compound libraries for de novo drug identification. To alleviate these issues we
have developed a robust platform to rapidly screen large compound libraries, in three
different states of the ACE2 receptor, to identify both existing approved drugs and de novo
drug candidates.
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With this study, we showed that our protocol that leverages the recently developed PLI
prediction ML algorithm, SSnet, can greatly reduce the chemical space of molecular libraries
and, at the same time, ensuring that potential tight binders are not excluded. The fact that
SSnet is blind to protein conformation allows us to consider all cryptic and allosteric sites
by only looking at a single structure. Our PLI prediction using SSnet against the ACE2
structures to find potential treatment for CoVID-19 resulted in identifying potential binders
that are being confirmed experimentally as a treatment for infected individuals.

It is interesting to evaluate how our protocol composed of a tertiary screening, SS-
net, and secondary screening, smina, ranked FDA approved drugs. Multiple molecules
identified in this study emerged in other computational studies, have been investigated
using in vitro and in vivo assays, and even gone through clinical trials. Antivirals such as
remdesvir, nelfinavir, and lopinavir-ritonavir are prominent examples of drugs under clini-
cal investigation. Interestingly, these molecules selectively bind to the virus-incompetent
ACE2 open conformation, giving an indication of the validity of our model of drug action.
We found that hormones, and in particular estriol metabolites are amongst our tightest
binding compounds in smina, and have SD scores exceeding 0.20 for SSnet. In the case
of all hormones, we observe that they are binding adjacent to the Zn2+ binding site re-
quired for the function of ACE2, and the primary site differentiating the open and closed
conformations. Notably, previous computational screens neglect this site, as it is not di-
rectly in the ACE2:spike interface, however, the site does modulate conversion between
the open and closed conformation that is believed to be necessary for Spike recognition.
These results may add utility to our workflow as a robust means to quickly identify ligand
scaffolds as well as pre-existing drugs with high binding probabilities. Currently, the
sex-dependent difference in CoVID-19 pathology and therapeutic effects of estrogen are
being associated with different ACE2/TMPRSS2 expression, [51–59], or immune system
modulation [51,55,56,60–63]. To the best of our knowledge direct binding of sex hormones
to ACE2 has not been observed. Given their presumptive ability to selectively bind to the
open conformation, sex hormones could have an additional role in disease progression
and pathology. Lastly, we did observe an abundance of glycopeptide and macrolactam
antibiotics within the top scoring compounds in SSnet and/or smina. We caution in over-
interpreting smina results from this class of compounds as the high-degree of freedom
leads to difficulties in obtaining consistent high-affinity poses. Issues with large flexible
molecules is a known limitation of existing computational docking algorithms [64,65]. The
ability of SSnet to circumvent these issues and selectively identify high probability binders
demonstrates the efficacy of using SSnet as a front-end to drug discovery.

Furthermore, SSnet was shown to be able to emulate co-administration. Based on the
requirement of bound zinc for ACE2 function, we forced SSnet to examine ligand binding
in the presence of zinc ions. Analysis of molecules affected by this approach identified
known zinc-chelators as having significantly affected SSnet scores, that impacted selectivity
for the open conformation. We note, that the approach used to force SSnet to examine
the role of zinc ions mimics co-administration of Zn and some FDA approved drugs. The
results indicate that co-administration of zinc may enhance interactions between some
FDA approved drugs and the open conformation of the ACE2 receptor.

Extending the limits of previous computational studies we performed a screening
using only SSnet on a large database of BDB (750,000 ligands) to obtain useful information
regarding de novo drug design. As described in the result section, we developed a web
interface where molecules are clustered based on similarity on a 2D map and colored
based on binding affinity to the protein. By selecting points into the interface the user can
further explore the effect of different scaffolds and functional groups on the binding score
or affinity. With our web-based tool, we aim to provide a fast, intuitive, and flexible way
to aid the discovery and design of CoVID-19 therapeutics as well as other diseases. To
the best of our knowledge, such an approach for visualizing the chemical space for drug
discovery has not been done. This approach can be used for other therapeutical targets
besides CoVID-19.
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With this study, we highlighted how SSnet can represent a powerful tool in a compu-
tational drug discovery protocol. However, in order to obtain crucial information needed
for understanding the model of drug action and lead optimizations, other tools have to
be used in cooperation with SSnet. In fact, while the latter can provide a fast and reli-
able first-screening of large libraries, it cannot provide binding poses, needed to analyze
protein-ligand interactions, and binding affinities, needed for scoring the most promising
drug candidates. The screened results can be directly employed for rapid testing using
assays when urgency is required. However, from a drug design perspective, drug docking,
molecular dynamics simulations, and binding free energy calculations are still necessary.
Lastly, if a drug discovery campaign is aimed at a specific conformation of a protein,
SSnet will include in the top binders drugs that bind to alternative conformations of the
protein as well.

5. Conclusions

Herein, we have developed a rapid screening method suitable to compound libraries
on the scale of millions of compounds that is capable with high accuracy to identify
probable high affinity compounds for two conformations of the ACE2 receptor and the
ACE2-S1 complex. These compounds can function as putative leads for de novo drug
discovery. We have further developed a web interface to allow researchers to rapidly
identify high affinity scaffolds for in vitro characterization and structure-function activity
studies. We believe that an open-access utility such as this will allow diverse researchers to
contribute to the discovery of both existing FDA approved drugs and de novo development
of CoVID-19 treatments. Further, the methodology can be easily extended to any protein,
or protein complex involved identified as putative drug targets.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1:
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