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Abstract: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first detected in
Egypt in February 2020. Data about the prevalence rates of the SARS-CoV-2 lineages are relatively
scarce. To understand the genetic characteristics of SARS-CoV-2 in Egypt during several waves of the
pandemic, we analyzed sequences of 1256 Egyptian SARS-CoV-2 full genomes from March 2020 to
May 2021. From one wave to the next, dominant strains have been observed to be replaced by other
dominant strains. We detected an emerging lineage of SARS-CoV-2 in Egypt that shares mutations
with the variant of concern (VOC). The neutralizing capacity of sera collected from cases infected with
C.36.3 against dominant strains detected in Egypt showed a higher cross reactivity of sera with C.36.3
compared to other strains. Using in silico tools, mutations in the spike of SARS-CoV-2 induced a
difference in binding affinity to the viral receptor. The C.36 lineage is the most dominant SARS-CoV-2
lineage in Egypt, and the heterotrophic antigenicity of SARS-CoV-2 variants is asymmetric. These
results highlight the value of genetic and antigenic analyses of circulating strains in regions where
published sequences are limited.

Keywords: SARS-CoV-2; Egypt; genetic; variants

1. Introduction

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is an enveloped,
single-stranded, positive-sense RNA virus from the Coronaviridae family. SARS-CoV-2 is
prone to a multitude of recombinations and mutations in its genome that could lead to
changes in viral protein structure, binding affinity, viral transmission, diagnosis, vaccine
efficacy, and antiviral susceptibility [1–3]. The symptoms of infection with SARS-CoV-2 tend
to resemble symptoms of other viral and bacterial infections that range in severity from mild
respiratory and gastrointestinal illness to Acute Respiratory Distress Syndrome (ARDS).

Coronavirus disease (COVID-19) was introduced into Africa via Nigeria, Egypt, and
South Africa during the first quartile of 2020 [4]. On 14 February 2020, the Egyptian Ministry
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of Health and Population (MOHP) announced the detection of the first human COVID-
19 infection in Egypt in a Chinese tourist [5]. A few days later, the MOHP discovered
another source of transmission on board of a Nile cruise ship traveling between Luxor and
Aswan where COVID-19 infections were confirmed amongst 33 passengers and 12 staff
members [5]. Since this first influx of cases, Egypt has ranked as one of the top five
countries reporting COVID-19 cases in Africa [5]. National efforts have been exerted to
control the virus spreading through a comprehensive control plan strategy set by the
Egyptian government. The control strategy included applying various types of lockdowns,
increasing public awareness about COVID-19 and the importance of using community
protective equipment and disinfectants, screening for SARS-CoV-2 before entering the
country, preparing healthcare facilities and reinforcing infection control practices among
healthcare workers, ensuring vaccine availability, and establishment of COVID-19 treatment
protocols. Unfortunately, these attempts and efforts to control the spread of virus have
not succeeded. As of 4 March 2022, 489,000 Egyptian cases and 24,162 deaths have been
reported to WHO from MOHP.

Next-generation sequencing provides high-quality, full-scale genome sequences and
constitutes a rapid approach to determine genetic variations and new emerging vari-
ants of SARS-CoV-2. Analysis of genome sequences gives insight into the pattern of
global distribution, genetic diversity during the pandemic, and the dynamics of newly
emerging variants. Monitoring variants is essential for the control strategy plan to en-
sure the effectiveness of vaccination and treatment protocols. Several public databases
such as The Global Initiative on Sharing All Influenza Data (GISAID) (www.gisaid.org
accessed on 3 January 2022), the NCBI SARS-CoV-2 database (https://www.ncbi.nlm.
nih.gov/sars-cov-2 accessed on 3 January 2022), and the Virus Pathogen Database and
Analysis Resource (ViPR) (https://www.viprbrc.org accessed on 3 January 2022) share
genomic information of circulating viruses and provide further insight into molecular
variations among SARS-CoV-2 genomes. In the same context, several online classification
and analysis tools have been developed such as GISAID, Nextstrain SARS-CoV-2, Pangolin
(https://cov-lineages.org/resources/pangolin.html accessed on 3 January 2022), Nextclade
(https://clades.nextstrain.org/ accessed on 3 January 2022), and others.

Several lineages and sublineages of SARS-CoV-2 have been identified with variable
prevalence rates between the North and the South, depending on the source of introduc-
tion [4]. The continuous direct or indirect spreading of SARS-CoV-2 from person to person,
particularly among those who are fully vaccinated, drives the virus to evolve into new
Variants of Interest (VOIs) or Variants of Concern (VOCs), by escaping different hosts
and immunological pressures [6]. A number of VOCs and VOIs have been documented
worldwide, including the alpha variant (B.1.1.7 (Pango lineage) or GRY (GISAID clade),
United Kingdom), beta variant (B.1.351 or GH/501Y.V2, South Africa), gamma variant (P.1
or GR/501Y.V3, Brazil), delta variant (B.1.617.2 or G/478K.V1, India), Lambda (C.37 or
GR/452Q.V1, Peru), Mu (B.1.621 or GH, Colombia) [7–9], and Omicron (B.1.1.529 or GRA,
South Africa). Several other variants of unknown risks have been detected globally and
therefore designated as Variants Under Monitoring (VUMs) [2,4].

Although Egypt is the largest connecting point between Europe, Asia, and Africa with
a remarkable number of intercontinental airlines directly linked to Europe, data about the
prevalence rates of the SARS-CoV-2 lineages and sublineages including the VOIs, VOCs,
and VUMs are relatively scarce. In this article, we report the distribution of SARS-CoV-2
variants, highlighting the prevalence of certain mutations and their cross reactivity, in
addition to hACE2 binding affinity to the most detected strains in Egypt between March
2020 and May 2021. We present data on the genetic characteristics of the evolution of
SARS-CoV-2 variants in the first year of pandemic in Egypt, highlighting the characteristics
of spike protein mutations. To achieve this, we measured neutralizing antibody titers in
sera collected from confirmed cases of SARS-CoV-2 and performed protein–protein docking
experiments to illustrate the characteristics of virus variants circulating in Egypt.

www.gisaid.org
https://www.ncbi.nlm.nih.gov/sars-cov-2
https://www.ncbi.nlm.nih.gov/sars-cov-2
https://www.viprbrc.org
https://cov-lineages.org/resources/pangolin.html
https://clades.nextstrain.org/
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2. Results
2.1. Epidemiology of SARS-CoV-2 in Egypt

Three SARS-CoV-2 waves were recorded in Egypt based on the available epidemiolog-
ical data (Figure 1A). The first wave began in April 2020 and receded by August 2020. It
was associated with the religious and cultural celebrations of the holy month of Ramadan
as well as the yearly wedding celebration season. The second wave coincided with the
onset of winter weather. The third reported wave followed the mass gatherings associated
with the start of the following year’s religious and cultural celebrations in 2021.
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Figure 1. Prevalence rates of SARS-CoV-2 lineages and sublineages in Egyptian isolates from March to
May 2021. (A) Waves of SARS-CoV-2 were recorded in Egypt based on the available epidemiological
data. (B) Distribution of full-genome sequences were submitted to the database. (C,D) The prevalence
ratio of the detected SARS-CoV-2 lineages using Nextclade and Pangolin analysis.

2.2. Clades and Lineage Distribution of SARS-CoV-2

The analysis included 1256 whole-genome sequences of SARS-CoV-2 strains submitted
to the GISAID until 31 May 2021 from Egypt. The number of submitted sequences by
month during the duration of our study (n = 15 months) is shown in Figure 1B. We noted
that the number of submitted sequences was closely correlated with the number of cases
shown in the epidemiological curve (Figure 1A). Full-genome sequences (n = 778) were
submitted to the database in 2020 and 478 were submitted (n = 478) by May 2021. Seven
clades according to GISAID classification for SARS-CoV-2 were identified in Egypt: G
(n = 164), GH (n = 347), GR (n = 580), GRY (n = 3), L (n = 29), O (n = 105), and S (n = 28), of
which GR was the predominant clade. Six clades were detected in 2020: G (n = 130), GH
(n = 305), GR (n = 255), L (n = 16), O (n = 64), and S (n = 8), and in 2021, seven clades were
detected. At the beginning of the pandemic in March 2020, the three clades G, GH, and O
were identified. However, clade G was not detected in March and April, but in May 2021.
The GRY clade (n = 3) was reported in April and May 2021.

According to Nextclade analysis, 529 of the identified genomes belonged to Nextstrain
clade 20D, 484 belonged to clade 20A, 94 belonged to clade 20B, 59 belonged to clade
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19A, 28 belonged to clade 19B, and 3 belonged to clade 20C. The remaining sequences
were classified as variants, 29 belonged to clade 20I (Alpha, V1) which was identified in
March—May 2021, nine sequences belonged to 21J (Delta), and one strain belonged to clade
21H(Mu) (Figure 1C).

Furthermore, analysis of sequences using Pangolin COVID-19 platform showed the
presence of 63 lineages. Lineages B (n = 37), B.1 (n = 363), B.1.1 (n = 72), B.1.1.1 (n = 27),
B.1.1.7 (n = 8), B.1.170 (n = 68), C.36 (n = 347), and C.36.3 (n = 109) were found to be the
predominant lineages (Figure 1D). The lineage C.36 was identified in the beginning of the
pandemic in March 2020 and continued to circulate till May 2021 and divided into two
other lineages C.36.3 and C.36.3.1 in January 2021 and May 2021, respectively (Figure 1D).

2.3. Phylogenetic Reconstruction of SARS-CoV-2 in Egypt

Phylogenetic analysis of the full genome sequences showed that Egyptian strains
diversified into several lineages (Figure 2). Among VOCs, only B.1.1.7 was detected
in limited number of sequences. The most dominant is the C.36 that is subsequently
subdivided into C.36.1, C.36.2, and C.36.3 (Figure 2).

The variant C.36.3 was identified first in Egypt in March 2020 and continued to be
prevalent until May 2021. Meanwhile, it acquired several mutations (Table 1) including
the S12F, W152R, R346S, L452R, D614G, Q677H, A899S substitutions, and 69–70 Deletion
(Del 69–70) in spike protein. R346S, L452R, and Q677H mutations were associated with
better receptor binding affinities and consequently increased transmissibility and reduced
ability to neutralize convalescent or vaccinated sera [10]. The D614G mutation was also
associated with increased SARS-CoV-2 transmissibility [11]. Mutations detected in spike
protein of C.36.3 (e.g., W152R and ∆H69-V70) are probably associated with lower sensitivity
to monoclonal antibodies (mAbs) and vaccine sera [10–12].

Table 1. Characteristic mutations of C.36.3 linage.

Gene Amino Acid Mutations

ORF1a E102K, A859V, T1246I, D1639N, P2287S, D2980N, D3222N, G3278S, S3687L,
L3691S, T4090I, P314L, D1028Y

S S12F, del69/70, W152R, R346S, L452R, D614G, Q677H, A899S

M I82T

ORF7b A43S

ORF8 S84L

N R203K, G204R, G212V

2.4. Mutational Pattern Analysis

We performed a comprehensive mutational pattern analysis of the SARS-CoV-2 strains
from this study in Egypt. In total, we identified mutations in S, N, M, ORF1a, ORF1b, ORF3a,
ORf8, and ORF7b genes as compared with the reference strain Wuhan/WIV04/2019.

The D614G mutation is an amino acid substitution in the spike protein that was
discovered early in the pandemic and has since become the most common SARS-CoV-2
mutation worldwide. In our study, 1016 samples had D614G and 79 samples from GISAID
clade L, O, and S did not have this mutation (Figure 2B). The VOCs (Alpha, Beta, and
Gamma) have a common mutation N501Y in spike gene, we show that N501Y mutation has
been identified in VOCs Alpha (B.1.1.7) and two strains (B.1 and B.1.1.10 Lineages). The
N501T was detected in A.28 (n = 20), B.1.1 (n = 4), and C.36 (n = 3). E484K spike mutation
was detected in B.1.44.1 (n = 1) and C.38 (n = 11). Spike protein H69/V70 deletion was
observed in 68 and 66 (5.4%, and 5.2%) sequences, respectively. Most deletions of H69/V70
were detected in C.36.3 Lineage (n = 49) (Table 2, Figure 2B).
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Table 2. Spike mutations investigated and their proportion in our study.

Mutations No (%) Nextclade Pangolin GISAID

S:Q677H 420 33.4 19A, 20A, 20B, 20D,
20I (Alpha, V1)

A, B, B.1, B.1.1, B.1.1.1,
B.1.1.10, B.1.170, B.1.177,

B.1.36, B.1.371, B.1.516, C.17,
C.36, C.36.3, C.36.3.1

G, GH, GR, L, O, S

S:S12F 224 17.8 19A, 20A, 20B, 20D,
20I (Alpha, V1)

B.1, B.1.1, B.1.1.1, B.1.1.10,
B.1.170, B.1.180, B.1.187,
B.1.221, B.1.417, B.1.516,

B.1.575, C.17, C.36, C.36.3,
C.36.3.1

G, GH, GR, L, O

S:L452R 189 15.04 19A, 20A, 20D B.1, B.1.1, B.1.1.1, B.1.1.10,
B.1.187, B.1.516, C.36, C.36.3 G, GH, GR, O

S:R346S 128 10.19 19A, 20B, 20D B.1.1, B.1.1.1, B.1.1.10, B.1.187,
B.1.516, C.17, C.36.3, C.36.3.1 G, GH, GR, L, O

S:W152R 119 9.47 20D B.1, B.1.1, B.1.1.10, B.1.187,
B.1.516, C.36.3, G, GR, O

S:N542K 118 9.39 20A, 20B, 20D

B.1, B.1.1, B.1.1.1, B.1.1.117,
B.1.1.184, B.1.1.192, B.1.1.51,

B.1.170, B.1.180, B.1.187,
B.1.293, B.1.36.31, B.1.36.39,

B.1.371, B.1.417, B.1.456,
B.1.517, B.1.533, B.1.575, C.36,

C.36.3, C.36.3.1, C.38

G, GH, GR, O

S:A899S 114 9.07 19A, 20D, 20I
(Alpha, V1) B.1.1, B.1.1.10, B.1.516, C.36.3 G, GR, O

S:N501Y 29 2.3 19A, 20A, 20I
(Alpha, V1) B.1, B.1.1.10, B.1.1.7 G, GR, GRY

S:E484K 12 0.95 20A, 20D B.1.441, C.38 G, GR, O

S:H69- 68 5.41 19B, 20A, 20D, 20I
(Alpha, V1)

A.28, B.1, B.1.1, B.1.1.1, B.1.1.7,
B.1.187, B.1.516, C.17, C.36.3, G, GH, GR, GRY, S

S:V70- 66 5.25 19B, 20D, 20I
(Alpha, V1)

A.28, B.1, B.1.1, B.1.1.1, B.1.1.7,
B.1.187, B.1.516, C.17, C.36.3, G, GH, GR, GRY, S

The genetic diversity of SARS-CoV-2 has increased rapidly, we observed other muta-
tions in other genes of SARS-CoV-2 (Supplementary Materials Table S1). Most mutations
were detected in N, ORF1a, and ORF1b and few mutations in M and E genes, indicating
that these proteins are highly conserved among these viruses.

2.5. Microneutralization Assay of Infected Cases with C.36.3 Lineage

We collected sera samples from seven convalescent patients who were infected with
the SARS-CoV-2 C.36 strain and exhibited mild or moderate symptoms from May–June
2021. Using an in vitro neutralization assay with authentic viral isolates of B.1, C.36.3,
B.1.1.7, and B.1.617.2, we measured the neutralizing capacity of the collected sera from
infected patients with C.36 (Figure 3). All sera had detectable neutralizing antibody titers
against C.36.3 (7.7 ± 1.1 log2 VMN titer). The cross reactivity of sera against B.1, B.1.1.7,
and B.1617.2 was 6, 7.4, and 6.6 log2 VMN titer, respectively (Figure 3). The high prevalence
of circulating C.36 and C.36.3 variants and their ability to continuously acquire crucial new
mutations to escape increased selective pressures in vaccinated populations emphasize the
importance of their close monitoring and inclusion in the VUM/VOCs list.



Pathogens 2022, 11, 834 7 of 13

Pathogens 2022, 11, x FOR PEER REVIEW 8 of 15 
 

 

 

Figure 3. Neutralizing antibody responses against the B.1, C.36.3, B.1.617.2, and B.1.1.7 variants. 

2.6. Molecular Docking and Protein Simulation 

2.6.1. Protein–Ligand Interaction Fingerprints (PLIF) of B.1, C.36, and C.36.3 Lineage 

Strains with the Target hACE2 

The protein–ligand interaction fingerprints (PLIF) were studied for each selected 

pose from the three applied docking processes. Regarding the hCoV-19/Egypt/NRC-

03/2020 (B.1 lineage)-hACE2 docking process, it was noted that Glu231 and Val604 of the 

RBD of the hCoV-19/Egypt/NRC-03/2020 (B.1 lineage) S protein (12.4%) were responsible 

for the interactions. Moreover, Gln24, Asp136, Glu197, Glu224, and Asn601 of the RBD 

formed the major binding interactions (Supplementary Materials Figure S1A). 

On the other hand, the PLIF of the hCoV-19/Egypt/NRC-369/2021 (C.36.3 lineage)-

hACE2 docking process showed that both Asn601 and Val604 of the RBD of the hCoV-

19/Egypt/NRC-369/2021 (C.36.3 lineage) S protein represented the most essential amino 

acids involved in the interactions (13.1%). Furthermore, Asp615, Lys465, Glu231, Asp216, 

and Glu197 amino acids were found to form many other binding interactions as well (Sup-

plementary Materials Figure S1B). 

Furthermore, the PLIF of the hCoV-19/Egypt/NRC-6071/2021 (C.36 lineage)-hACE2 

docking process showed that Glu197 represented the most essential amino acid from the 

RBD of the hCoV-19/Egypt/NRC-6071/2021 (C.36 lineage) S protein responsible for the 

interactions (11.2%). Additionally, Tyr255, Lys596, Asn601, and Val604 amino acids 

formed other interactions with the hACE2 (Supplementary Materials Figure S1C). 

2.6.2. Visualization and Description of the Selected Docking Poses 

The best pose in each docking process was selected depending on the score, rmsd_re-

fine value, and the binding interactions for further studies. For the hCoV-19/Egypt/NRC-

03/2020 (B.1 lineage)-hACE2 docking process, pose number 2 was selected with a binding 

score of −79.82 kcal/mol and an rmsd_refine value of 0.68. It was obvious that the hCoV-

19/Egypt/NRC-03/2020 (B.1 lineage) S protein (represented in turquoise color) fitted with 

the RBD region of the hACE2 receptor (represented in black color), which explains largely 

the expected intrinsic binding affinity as represented in Figure 4A,B. 

Furthermore, regarding the hCoV-19/Egypt/NRC-369/2021 (C.36.3 lineage)-hACE2 

docking process, pose number 3 was selected with a binding score of -91.47 kcal/mol and 

B
.1

C
.3

6.
3

B
.1

.6
17

.2

B
.1

.1
.7

3

4

5

6

7

8

9

10

Variant

lo
g

2
 (

V
M

N
 T

it
e
r)

Figure 3. Neutralizing antibody responses against the B.1, C.36.3, B.1.617.2, and B.1.1.7 variants.

2.6. Molecular Docking and Protein Simulation
2.6.1. Protein–Ligand Interaction Fingerprints (PLIF) of B.1, C.36, and C.36.3 Lineage
Strains with the Target hACE2

The protein–ligand interaction fingerprints (PLIF) were studied for each selected pose
from the three applied docking processes. Regarding the hCoV-19/Egypt/NRC-03/2020
(B.1 lineage)-hACE2 docking process, it was noted that Glu231 and Val604 of the RBD of
the hCoV-19/Egypt/NRC-03/2020 (B.1 lineage) S protein (12.4%) were responsible for the
interactions. Moreover, Gln24, Asp136, Glu197, Glu224, and Asn601 of the RBD formed the
major binding interactions (Supplementary Materials Figure S1A).

On the other hand, the PLIF of the hCoV-19/Egypt/NRC-369/2021 (C.36.3 lineage)-
hACE2 docking process showed that both Asn601 and Val604 of the RBD of the hCoV-
19/Egypt/NRC-369/2021 (C.36.3 lineage) S protein represented the most essential amino
acids involved in the interactions (13.1%). Furthermore, Asp615, Lys465, Glu231, Asp216,
and Glu197 amino acids were found to form many other binding interactions as well
(Supplementary Materials Figure S1B).

Furthermore, the PLIF of the hCoV-19/Egypt/NRC-6071/2021 (C.36 lineage)-hACE2
docking process showed that Glu197 represented the most essential amino acid from the
RBD of the hCoV-19/Egypt/NRC-6071/2021 (C.36 lineage) S protein responsible for the
interactions (11.2%). Additionally, Tyr255, Lys596, Asn601, and Val604 amino acids formed
other interactions with the hACE2 (Supplementary Materials Figure S1C).

2.6.2. Visualization and Description of the Selected Docking Poses

The best pose in each docking process was selected depending on the score, rmsd_refine
value, and the binding interactions for further studies. For the hCoV-19/Egypt/NRC-
03/2020 (B.1 lineage)-hACE2 docking process, pose number 2 was selected with a binding
score of −79.82 kcal/mol and an rmsd_refine value of 0.68. It was obvious that the hCoV-
19/Egypt/NRC-03/2020 (B.1 lineage) S protein (represented in turquoise color) fitted with
the RBD region of the hACE2 receptor (represented in black color), which explains largely
the expected intrinsic binding affinity as represented in Figure 4A,B.

Furthermore, regarding the hCoV-19/Egypt/NRC-369/2021 (C.36.3 lineage)-hACE2
docking process, pose number 3 was selected with a binding score of -91.47 kcal/mol
and an rmsd_refine value of 1.66. Moreover, the hCoV-19/Egypt/NRC-369/2021 (C.36.3
lineage) S protein (represented in orange color) bound the RBD region of the hACE2
receptor (represented in black color) which indicates the expected superior binding affinity,
as depicted in Figure 4C,D.
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However, for the hCoV-19/Egypt/NRC-6071/2021 (C.36 lineage)-hACE2 docking
process, pose number 3 was selected with a binding score of -96.00 kcal/mol and an
rmsd_refine value of 0.31. Notably, the hCoV-19/Egypt/NRC-6071/2021 (C.36 lineage) S
protein (represented in purple color) achieved the best binding score with the RBD region
of the hACE2 receptor (represented in black color) which explains its great binding affinity,
as represented in Figure 4E,F.
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Figure 4. Protein–ligand interactions of the three SARS-CoV-2 Egyptian strains towards the hACE2
receptor. (A,B) The large area of binding interactions between the hCoV-19/Egypt/NRC-03/2020 S
protein (represented in turquoise color) and the RBD region of the hACE2 receptor (represented in
black color). (C,D) The large area of binding interactions between the hCoV-19/Egypt/NRC-369/2021
S protein (represented in orange color) and the RBD region of the hACE2 receptor (represented in
black color). (E,F) The large area of binding interactions between the hCoV-19/Egypt/NRC-6071/2021
S protein (represented in purple color) and the RBD region of the hACE2 receptor (represented in
black color).

3. Discussion

Since its detection in Egypt in March 2020, Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) strains have varied. The number of COVID-19 cases in
Egypt has risen steadily over the last two years, with the first recorded case registered on 14
February 2020, according to the World Health Organization (WHO) and Egyptian officials.
The initial wave of the pandemic in Egypt was dominated by lineage B viruses (mainly B.1),
while the second and third waves were dominated by C-like lineages (especially C.36).
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Genomic epidemiology allows for the detection of new variants as well as a better
understanding of how individual virus lineages’ mutations contribute to their relative
adaptive advantages. This information can then be utilized to inform the development
of vaccines and treatments, as well as establish effective pandemic control measures. In
this study, we analyzed 1256 SARS-CoV-2 full genome sequences from Egypt. We have
identified a novel SARS-CoV-2 cluster in Egypt, descended from the VUM in lineage C.36,
L452R with an additional spike protein substitution at amino acid position 677, namely
Q677H. The cluster of cases carries the core substitutions of the C.36 lineage, and was first
found in the UK, USA, and United Arab Emirates in January 2021 and has risen in frequency
to comprise the majority of sequenced cases in Egypt. They also contain mutation L452R
from VOI substitutions which is present in B.1.526.1, B.1.427, and B.1.429 lineages, as well
as B.1.617 lineage and sublineages. The novel variant strains also contain del69–70 with or
without 142-143-144 del, which represents an important mutation in a VOC that has been
previously observed in the Alpha variant, raising interest in potential convergent evolution.
Independently, both C.36 lineages with L452R substitutions and 69–70 del substitutions
have increased in prevalence. The impact of the detected VOC on viral transmission,
vaccine effectiveness, and viral pathogenicity requires further investigation.

We examined 1256 SARS-CoV-2 sequences for mutation countryside tracking and
observed that the most common subclade of SARS-CoV-2 in Egypt was D614G/Q57H/V5F/
G823S, consistent with the findings of Lamptey et al. [13]. There was only one Egyptian
sequence where four mutations occurred at the same time [13]. SARS-CoV-2 sequences
examined in the current study are all identical and closely related to Wuhan-Hu-1. A
previous study found >99.8 percent identity with the reference isolate (NC 045512) [14].
Based on the spike amino acid sequence, the Pangolin lineage C.36 can be separated into
three sublineages. The C.36.3 sublineage, which was discovered in January 2021 and has a
similar global distribution with highest prevalence in Egypt, is the focus of this research.
With the common spike mutation L452R and deletion 69/70HV, C.36 sublineages reached
the pinnacle of their outbreak in May 2021. Sublineage 3 was initially identified in late
January 2021, and its prevalence has been slowly increasing since then, while the global
incidence has remained modest. It has a distinct geographic distribution from the other
C.36 sublineages, being found primarily in Europe and the United States, as well as a
greater number of spike variants that are preserved among samples belonging to it.

The following mutations and deletions have been identified: S12F, H69-V70, W152R,
R346S, L452R, D614G, Q677H, and A899S. It is worth noting that VOC B.1.427/B.1.429
(Epsilon) has analogous mutations (S13I and W152C) in the N-terminal domain (NTD) that
significantly reduce the neutralizing potency of antibodies specific for this domain. The
NTD-specific neutralization escape of H69-V70, which is found in VOC B.1.1.7 (Alpha) and
VOI B.1.525, is also well described (Eta). The R346S and L452R mutations are found in the
RBD of SARS-CoV-2 isolates of VOI B.1.427/B.1.429, VOI B.1.526.1 (Iota), and VOI B.1.617.2
(Delta) [15]. Resistance to the therapeutically approved monoclonal antibody (mAb) LY-
CoV555 [16], as well as a significant fraction of other anti-RBD mAbs in the setting of VOC
B.1.427/B.1.429 pseudoviruses have been reported [12,17,18]. Finally, the spike contains
the D614G mutation, which promotes SARS-CoV-2 transmissibility, the Q677H mutation,
which is found in VOI B.1.525, and the rare A899S mutation. Overall, C.36.3 has a spike
structure similar to VOI B.1.427/B.1.429, which has been reported as an important amino
acid of reactivity to mAbs [19], as well as other NTD and RBD mutations/deletions. Until
the end of May 2021, approximately 21% of the Egyptian population had received at least
one dose of vaccination, while only 6% of the total population had been fully vaccinated.

Based on the above, we can conclude that Glu231, Asn601, Val604, and Glu197
amino acids are the binding domains responsible for the binding interactions of the dif-
ferent studied strains of SARS-CoV-2, hCoV-19/Egypt/NRC-03/2020 (B.1 lineage), hCoV-
19/Egypt/NRC-369/2021 (C.36.3 lineage), and hCoV-19/Egypt/NRC-6071/2021 (C.36
lineage) strains with the target hACE2 receptor.
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We can also conclude that the hCoV-19/Egypt/NRC-6071/2021 (C.36 lineage) strain of
SARS-CoV-2 shows superior binding affinity towards the RBD of the hACE2 with expected
intrinsic activity as well. This was followed by the hCoV-19/Egypt/NRC-369/2021 (C.36.3
lineage) and then the hCoV-19/Egypt/NRC-03/2020 (B.1 lineage) strains in descending
order. Finally, these observations indicate the severity level of the hCoV-19/Egypt/NRC-
6071/2021 (C.36 lineage) strain of SARS-CoV-2 to infect humans, but at the same time,
not very distant from the hCoV-19/Egypt/NRC-369/2021 (C.36.3 lineage) and hCoV-
19/Egypt/NRC-03/2020 (B.1 lineage) strains severity as well. However, more advanced
in vitro and in vivo tests are highly recommended to confirm the aforementioned dock-
ing results.

In this article, we have shed light on the viral dynamics underlying Egypt’s COVID-19
outbreak by combining genomic and epidemiological data. We have shown, for instance,
that non-VOC lineages can evolve rapidly within a particular country to acquire adaptive
mutations required to maintain community transmission and change the prognosis of
SARS-CoV-2 infections from mild to severe if they are not properly managed.

4. Materials and Methods
4.1. Sample Collection

Oropharyngeal or nasopharyngeal swabs were obtained from visa applicants, travelers
from Egypt, and patients in different locations all over Egypt between 1 March 2020 and
1 June 2021. Laboratory technicians collected all clinical specimens from the Central
Public Health Laboratory, Ministry of Health and Population, Egypt and the Centre of
Scientific Excellence for Influenza Viruses, National Research Centre, Egypt. This study
was approved by the Research Ethics Committee of the National Research Centre (Egypt)
(protocol number 14 155, dated 22 March 2020).

The collected samples were processed and subjected to nucleic acid extraction using
the Chemagic 360 machine (PerkinElmer Inc., TURKU, Finland). A VIASURE SARS-CoV-2
Real-Time PCR Detection Kit was used to identify SARS-CoV-2 RNA (ORF1ab and N gene)
(Certest Biotec SL, Zaragoza, Spain). Positive samples were verified for SARS-CoV-2 using
a Cobas 6800 system, whereby the RT-PCR runs were performed in duplicate and according
to the manufacturer′s instructions (Roche Holding AG). The cycle threshold (Ct) of SARS-
CoV-2 quantitative real-time PCR (RT-qPCR) in the samples selected for sequencing was
less than 30.

4.2. SARS-CoV-2 Whole Genome Sequencing

The extracted total RNA was subjected to ribosomal RNA removal using the Ribo-
Zero rRNA Removal Kit, followed by 1st and 2nd strand cDNA synthesis using the
truSeq whole RNA (Illumina, San Diego, CA, USA) according to the manufacturer’s
instructions and sequenced on the Miseq sequencer (Illumina). Genomic analysis and
strain typing of SARS-CoV-2 variants is one of the sequence analysis techniques available
with the truSeq assay. Adequate sequencing requires depth coverage of at least 100 strain-
distinguishing regions of the open reading frame 1a (ORF1a), S, N, and ORF8 genes.
With the exception of two sequences, all samples produced sufficient strain-typeable
sequences, and no samples had a mixed population of viruses. The reads were aligned with
the reference genome (NC_045512.2) using CLC Genomics Workbench version 20 (CLC
Bio, Qiagen, Aarhus, Denmark) through workflow, and whole genome sequences were
submitted to the GISAID platform.

4.3. Sequence Data Lineage Classification

The complete Egyptian genomes and their metadata, available on the GISAID platform,
with collection dates between 17 February 2020 and 28 February 2021, were downloaded.
Pangolin (https://cov-lineages.org/ accessed on 3 January 2022) and NextStrain (https:
//nextstrain.org/blog/2021-01-06-updated-SARS-CoV-2-clade-naming (accessed on 3
January 2022)) criteria were used to classify the lineage and sublineage of the collected

https://cov-lineages.org/
https://nextstrain.org/blog/2021-01-06-updated-SARS-CoV-2-clade-naming
https://nextstrain.org/blog/2021-01-06-updated-SARS-CoV-2-clade-naming
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samples. For comparable viruses, novel mutation combinations were examined using the
entire Egypt sequences database (March 2021–May 2021), and/or the GISAID database
(https://www.gisaid.org/ accessed on 3 January 2022).

4.4. Phylogenetic Analysis

To infer the phylogeny of SARS-CoV-2 complete genomes, high-coverage sequences
of Egyptian genomes were obtained from GISAID platform. Consensus sequences of
whole genomes of SARS-CoV-2 strains and reference sequences were aligned using the
MAFFT web server (https://mafft.cbrc.jp/alignment/server 3 January 2022). An inference
maximum-likelihood tree was constructed using a sequence alignment file and IQ-TREE
1.6.1. For better visualization, the phylogenetic tree was modified using FigTree v1.4.2
software (http://tree.bio.ed.ac.uk/softw are/figtree 3 January 2022).

4.5. Microneutralization Assay

Vero E6 cells were seeded into 96-well plates 24 h before the experiment. Collected
sera from vaccinated animals were used as positive controls. Human sera samples were
decomplemented at 56 ◦C for 30 min. Serial 2-fold dilutions of sera starting with a dilution
of 1:10 were mixed with equal volumes of 100 TCID50/mL of SARS-CoV-2 viruses. After
1 h of incubation at 37 ◦C, 35 µL of the virus–serum mixture was applied in duplicate
to Vero-E6 cell monolayers in 96-well microtiter plates after washing cells with 1X PBS.
After 1 h of adsorption, the inoculums were aspirated. The plates were then incubated
for three more days at 37 ◦C in 5% CO2 in a humidified incubator. The highest serum
dilution that completely protected the cells from Cytopathic Effect (CPE) was recorded as
the neutralizing antibody titer.

4.6. Molecular Docking and Protein Simulation
4.6.1. Protein–Protein Docking Studies

Three protein–protein docking studies were conducted to describe the possible inter-
actions of three SARS-CoV-2 Egyptian strains, hCoV-19/Egypt/NRC-03/2020 (B.1 lineage),
hCoV-19/Egypt/NRC-369/2021 (C.36.3 lineage), and hCoV-19/Egypt/NRC-6071/2021
(C.36 lineage), respectively, with the hACE2 receptor. The MOE 2019.0102 drug design
suite [20] was used to carry out the docking studies to examine the binding affinities and
modes for each of the three SARS-CoV-2 Egyptian strains with the hACE2 receptor ex-
tracted from the spike receptor-binding domain (PDB ID: 7DDN). We confirmed inhibitory
potentials as well.

4.6.2. Preparation of the Three Examined SARS-CoV-2 Egyptian Strains

Each of the three Egyptian SARS-CoV-2 strains were modeled using the protein
builder of Molecular Operating Environment (MOE) 2019. The amino acids of the protein
builder window were selected to draw the three SARS-CoV-2 Egyptian strains hCoV-
19/Egypt/NRC-03/2020 (B.1 lineage), hCoV-19/Egypt/NRC-369/2021 (C.36.3 lineage),
and hCoV-19/Egypt/NRC-6071/2021 (C.36 lineage) in three different processes.

4.6.3. Preparation of the Target hACE2

The X-ray structure of the S protein of SARS-CoV-2 (at its open state) was extracted
from the Protein Data Bank (PDB code: 7DDN) [21]. The open state of the S protein of SARS-
CoV-2 provides the receptor-binding domain (RBD) in its opened orientation which allows
the simulation of the possible epitope binding and interactions. Then, the hACE2 receptor
was extracted from the SARS-CoV-2 spike receptor-binding domain. It was prepared for
docking using the Quickprep protocol by applying the automatic correction step for all the
predicted errors in the amino acids’ connections and types, followed by the addition of
hydrogen atoms in the 3D geometry to their atoms. Additionally, the system atoms were
selected to be free during the energy minimization as a final step for preparation.

https://www.gisaid.org/
https://mafft.cbrc.jp/alignment/server
http://tree.bio.ed.ac.uk/softw
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4.6.4. Protein–Protein Docking Processes

The protein–protein docking protocol was selected to evaluate the possible interactions
between each of the three SARS-CoV-2 Egyptian strains, hCoV-19/Egypt/NRC-03/2020
(B.1 lineage), hCoV-19/Egypt/NRC-369/2021 (C.36.3 lineage), and hCoV-19/Egypt/NRC-
6071/2021 (C.36 lineage)) against the hACE2 receptor in three successive different docking
processes, respectively. The applied methodology is described as follows: the previously
prepared hACE2 was selected in the three docking processes to be the receptor, then each
prepared SARS-CoV-2 Egyptian strain (hCoV-19/Egypt/NRC-03/2020 (B.1 lineage), hCoV-
19/Egypt/NRC-369/2021 (C.36.3 lineage), and hCoV-19/Egypt/NRC-6071/2021 (C.36
lineage), respectively) was inserted in the ligand place in each docking process. Each
docking process was initiated separately using a hydrophobic patch potential as described
earlier [22,23]. Additionally, the scoring tools were selected as default, 10,000 for the
number of pre-placement poses, 1000 for the number of placement poses, and 100 for the
number of refinement poses. Finally, after the end of each docking process, the obtained
100 poses were studied to select the most appropriate one having the best score, binding
interactions, and rmsd_refine value to be studied further and described in detail.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11080834/s1, Figure S1: Maximum likelihood (ML)
phylogeny of Egyptian SARS-CoV-2 whole-genome sequences. Figure S2: cumulative of C.36.3
prevalence worldwide. Figure S3: PLIF for the Egyptian strains-hACE2 docking (in population form).
Table S1: sequences from GISAID used in this analysis. Table S2: shows the most common amino
acid mutations among different lineages occurring in Egypt between March 2020 and May 2021.
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