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ABSTRACT
The basic pancreatic lesions include location, size, shape, number, capsule, calcification/calculi, 
hemorrhage, cystic degeneration, fibrosis, pancreatic duct alterations, and microvessel. One or 
more basic lesions form a kind of pancreatic disease. As recognizing the characteristic imaging 
features of pancreatic basic lesions and their relationships with pathology aids in differentiating 
the variety of pancreatic diseases. The purpose of this study is to review the pathological and 
imaging features of the basic pancreatic lesions.
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INTRODUCTION

The pancreas is an important organ in the 
human body, consisting of  two organs in 
one: an exocrine gland and an endocrine 
gland.[1] Pathological characteristics of  
basic pancreatic lesions include location, 
size, shape, number, capsule, calcification/
calculi, cystic degeneration, fibrosis, duct 
alterations, and microvessel.[2,3] These 
pathological characteristics are reflected 
in radiological images. The spectrum 
of  pancreatic diseases is extensive, 
including pancreatitis and neoplasm. 
Chronic pancreatitis (CP) and serous 
cystic neoplasm (SCN) are characterized 
by calcification. Pancreatic calcification/
calculi in CP are mostly found in the main 
ducts, side branches, or parenchyma.[4,5] 
SCN is characterized by the typical central 
stellate scar that calcium is frequently 
shown.[6] Hemorrhage mainly occurs in 
solid-pseudopapillary neoplasm (SPN).[7] 
CP and pancreatic ductal adenocarcinoma 
(PDAC) are characterized by pancreatic 
duct alterations.[8,9] “String of  pearls” 
appearance of  main duct is found in CP.[10] 
“Double-duct sign” or “cutoff  sign” is 
found in PDAC.[11] In pancreatic cystic 

neoplasms, SCN was mainly multilocular 
and multiseptal,[12] while mucinous cystic 
neoplasm (MCN) was mainly large and 
unilocular,[13] and Intraductal papillary 
mucinous tumors (IPMN) is communicated 
with the main duct.[14] The blood supply of  
the lesion is also a key clue to our diagnosis. 
Most pancreatic neuroendocrine tumors 
(pNETs) are significantly enhanced in late 
arterial or portal phase,[15] while most PDAC 
shows no significant enhancement or the 
mild progressive enhancement. 

However, radiologists start to analyzes the 
imaging findings of  various basic pancreatic 
lesions and then combine these imaging 
findings with the relevant pathological 
characteristics to give the final diagnosis. 
So, it is very important to understand 
the pathological mechanism and imaging 
findings of  the basic pancreatic lesions for 
the accurate diagnosis of  pancreatic diseases. 
However, previous literatures have focused 
on the imaging findings of  a pancreatic 
disease. Therefore, the main purpose of  
this paper is to comprehensively review the 
pathologic and radiologic characteristics of  
the basic pancreatic lesions and improve the 
understanding of  these common pancreatic 
diseases.
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LOCATION

The pancreas is divided into the head, neck, body, and 
tail.[16] The pancreatic head is located at the right margin 
of  the superior mesenteric vein-portal vein (SMV-PV) 
confluence; the pancreatic body is located between the 
SMV-PV confluence and the left margin of  the abdominal 
aorta; the pancreatic tail is located between the left margin 
of  the abdominal aorta and splenic hilum.[17] PDAC, 
mass-forming pancreatitis (MFP), and serous SCN occur 
predominantly in the head of  the pancreas. Branch duct-
IPMN (BD-IPMN) is commonly found in the uncinate 
process,[18] while SPN and MCN are more frequently found 
in the body and tail of  the pancreas.

SIZE

The size of  a mass depends on its location, nature (benign 
or malignant), and functionality. Masses in the pancreatic 
head are often smaller at diagnosis than those in the 
pancreatic body and tail due to narrow growth spaces and 
their tendency to cause pancreaticobiliary obstruction. 
Masses with higher degrees of  malignancy (such as PDAC) 
often cause abdominal pain, lower back pain, weight loss, 
and elevation of  tumor markers (such as carbohydrate 
antigen 19-9); they are also usually smaller at diagnosis 
than benign or low-grade malignant tumors (such as SCN, 
SPN, and MCN). Functional pancreatic tumors, such as 
functional pNET, are often smaller at diagnosis because 
of  their unique clinical symptoms resulting from hormone 
releases.[19]

SHAPE AND NUMBER

Pancreatic masses may be circular, circle-like, or lobulated. 
Most are unifocal; multifocal masses are relatively rare 
and mainly develop in cases involving pNET-associated 
syndromes, BD-IPMN or mixed-IPMN, von Hippel-Lindau 
(VHL) syndrome,[20] SPN, and pancreatic metastases.[21]

CAPSULE

Tumor capsules, a fibrous membrane surrounding the 
tumor, can be categorized as either true capsules or 
pseudocapsules. The former is inherent, while the latter 
are fibroplasia as a result of  slow tumor growth and 
compression of  the surrounding tissues. Most true capsules 
are observed in rare pancreatic tumors such as pancreatic 
schwannoma, lipoma, leiomyosarcoma, solitary fibrous 
tumor, hamartoma, and perivascular epithelioid cell tumor. 
Pseudocapsules, on the other hand, are frequently found in 
cases of  pNET and SPN. The majority of  highly invasive 
masses, such as PDAC and adenosquamous carcinoma, lack 
capsules. Generally, a tumor with an intact capsule shows 

a clear separation from the peripheral pancreatic tissues, 
whereas a tumor without a capsule shows invasive growth 
and unclear separation from its peripheral pancreatic 
tissues. Capsular changes also reflect the pathological 
process of  disease progression. For instance, the disruption 
of  an initially intact capsule indicates that the tumor tends 
to become malignant, as it has penetrated the capsule and 
shows an invasive growth pattern.

Despite differences in the mechanisms of  formation, both 
true capsules and pseudocapsules are fibrous capsules 
and thus show low attenuation on unenhanced multislice 
computed tomography (MSCT), hypointense signals on 
T1WI, and iso-hyperintense signals on T2WI with delayed 
postcontrast enhancement.

PANCREATIC CALCIFICATION/
CALCULI

Calcification caused by pancreatic diseases is considered 
dystrophic calcification; it implies the abnormal deposition 
of  calcium salts in degenerated, necrotic tissues or foreign 
body granulomas.[22] Pancreatic calcification/calculi 
are mostly located in the side branches, main ducts, or 
parenchyma in the cases of  CP.[23] Pancreatic stone protein 
(PSP) plays a vital role in the formation of  calcification. 
Reduced PSP leads to supersaturation of  calcium carbonate 
in the pancreatic juice.[24] Calcification is also often found 
in cases of  MFP and pancreatic pseudocyst (PPC). 
Calcification with MFP results from CP. PPC consists 
mainly of  mature granulation and fibrous connective 
tissues. In contrast, calcification in PPCs is more frequently 
observed in patients with a longer history of  CP and 
may lead to calcium deposition on cystic walls. In colloid 
carcinomas, the thick jelly-like mucus inside is prone to 
calcification. Calcium deposition due to hemorrhage and 
poor absorption by necrotic tissues may lead to calcification 
in the SPN. Calcification in pNETs is similar to that in 
the SPN and may be associated with hormone secretion. 
Calcification in the MCN is commonly found on cyst 
walls and in the intercapsular septa, and it is characterized 
by lamellar calcification.[25] Calcification in the SCN is 
often found in polycystic lesions and is characterized 
by the typical central stellate scar with calcium deposits  
(Figure 1).[12,26,27]

Unenhanced CT is the most sensitive imaging modality for 
detecting calcification/calculi, which are characterized by 
“hyper attenuation.”

HEMORRHAGE

The disruption of  blood vessels by inflammation and 
tumors and the fragility of  blood vessels may lead to 



Bian et al.: Basic pancreatic lesions: Radiologic-pathologic correlation

20 JOURNAL OF TRANSLATIONAL INTERNAL MEDICINE / JAN-MAR 2022 / VOL 10 | ISSUE 1

hemorrhage. Massive infiltration of  inflammatory cells 
during acute pancreatitis (AP) may result in the rupture of  
blood vessels and hemorrhage.[28] The SPN is most prone 
to hemorrhage, as it mainly contains fragile blood vessels, 
which is the stalks of  the pseudopapillae.[29–31] The fragile, 
thin-walled blood vessels lack a strong support structure 
and rupture when tumor cells detach (Figure 2A, B). The 
majority of  pNETs consist of  well-differentiated tumor 
cells and abundant stromal blood vessels, which form a 
dense network of  capillaries that may lead to intratumoral 
hemorrhage following rupture of  blood vessels destroyed 
by tumor cells. In the solid mass, there are large of  cells, 
separated by thin stroma and small blood vessels in an 
acinar cell carcinoma of  the pancreas (ACCP).[32,33] ACCP 
is thus prone to hemorrhage.[34] Inflammation caused by 
PDAC disrupts surrounding blood vessels and may also 
lead to intratumoral hemorrhage (Figure 2C, D). The SCN 
is characterized by the secretion of  a clear, serous fluid, 
but secretion of  blood-stained fluids can also be observed 
within the cystic cavities. MR T1WI is the most sensitive 
imaging modality for detecting hemorrhage, which is 
characterized by a “hyperintense signal.”

CYSTIC DEGENERATION/VARIANTS

Cystic degeneration is found in the SPN, pancreatic 
undifferentiated carcinoma with osteoclast-like giant 
cells (UC-OGC), and solid pNET, which are associated 
with hemorrhage. Cystic pNET might occur as the initial 
manifestation, which is not related to hemorrhage or necrosis 
and represents an uncommon variant of  pNET.[35–37]

Cystic degeneration may also be caused by intratumoral 
necrosis. Pancreatic adenosquamous carcinoma (PASC), 
which is a variant of PDAC, shows the central necrosis.[38,39] 

PASC is composed of  two distinct components of  
adenocarcinoma and squamous carcinoma in which the 
squamous component should be at least 30%[40]; its imaging 
characteristics are determined by the proportions and 
distributions of  both components. Most PASCs consist of  
cells arranged in solid nests and are prone to degeneration, 
necrosis, and, consequently, cystic lesions due to the lack 
of  blood supply in the central region of  the solid nests.[41] 
Cystic degeneration exhibits low attenuation on CT scans, 
hypointense signals on T1WI, and hyperintense signals on 
T2WI (Figure 3).[42]

FIBROSIS

The formation of  fibers is an important step in tissue repair 
in the human body and is significant in the reconstruction 
of  tissue structures and functions. Any deviation that 
develops during the physiological process may lead to 
abnormal or pathological fibrosis that will seriously 
affect relevant organs and tissues. There are two types of  
pancreatic lesions, CP and PDAC, with extraordinarily 
significant fibrosis as their histological characteristic. 
Pancreatic stellate cells (PSCs) are distributed in pancreatic 
interlobular spaces, accounting for 4% of  pancreatic tissues. 
When PSCs are activated, collagen deposition occurs, 
leading to fibrosis of  the organ.[43]

The histopathological components of  fibers include 
fibroblasts and fibrocytes, collagen fibers, and inflammatory 
cells (mainly lymphocytes and histiocytes). Based on the 
proportions of  the above three components, the fibers 
can be categorized into cell-rich, intermediate, and fiber-
rich stroma. 

In the early stages of  CP, fibrosis is rich in cellular and 

Figure 1: Serous cystic neoplasm of the pancreas in a 38-year-old woman. (A) Surgical specimen (distal pancreatectomy): serous cystic neoplasm with typical 
microcystic appearance and central scar (arrow). (B) Axial nonenhanced computed tomography image shows a cystic mass with central calcification, known 
as the “sunburst” sign (arrow).
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Figure 2: (A, B) Hemorrhage caused by solid-pseudopapillary neoplasm of the pancreas in an 18-year-old woman. (A) Microscopically, a large well-demarcated 
lesion with large hemorrhage. (B) Axial T1-weighted fat-saturated magnetic resonance image shows a large well-demarcated inhomogeneous hyperintense 
lesion in the pancreatic tail (arrow). (C, D) Hemorrhage caused by pancreatic ductal adenocarcinoma in a 66-year-old man. (C) Microscopically, a hemorrhagic 
area (arrow heads) at the edge of the tumor (black dotted line) (HE×1). (D) Axial T1-weighted fat-saturated magnetic resonance image shows a hypointense 
(arrow) and inhomogeneous hyperintense (arrowhead) lesion in the pancreatic head.

Figure 3: Cystic degeneration caused by pancreatic adenosquamous carcinoma. (A) The tumor with central necrosis (arrowheads) (HE×1). (B) Axial T2-weighted 
magnetic resonance image shows a round, ill-defined, mild, hypointense mass with central hyperintense necrosis (arrow).
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shows a flaky, mainly interlobular distribution.[34,44] As 
the disease continues to advance, fibrosis extends with 
and between atrophic lobules and becomes confluent, 
forming extensive sheets of  fibrosis and scar tissue with 
few cellularities and abundant collagen content.[44–46]

PDAC consists of  highly infiltrated neoplastic epithelial 
tumor cells, which are embedded in a remarkable 
desmoplastic stroma.[47] The desmoplastic stroma is 
composed of  fibroblasts, collagen fibers, and a scattering 
of  inflammatory cells. The tumor stroma can vary from 
cellular rich with more densely packed tumor glands to less 
cellular and abundant collagen.[34] 

Fibrosis shows low attenuation on CT, hypointense 
signals on MRI T1WI, and slightly hyperintense or iso-
hyperintense signals on T2WI.

PANCREATIC DUCT ALTERATIONS

Pancreatic lesions can be categorized into lesions without 
ductal communication (pancreatic extraductal lesions) and 
lesions with ductal communication (partially intraductal 
pancreatic lesions). Pancreatic lesions can show the 
different patterns of  pancreatic duct dilatation: upstream, 
downstream, and diffuse. The relationship between most 
pancreatic masses and pancreatic ducts can be confirmed 
via magnetic resonance cholangiopancreatography 
(MRCP) or multiplanar reformation (MPR) along the main 
pancreatic duct.

Parenchymal fibrosis and calculi result in pancreatic 
changes in CP. The spectrum of  changes in the pancreatic 
duct is wide and may include stricture, dilatation, stenosis 
of  intraductal calculi, and occasional side-branch duct 
dilatation (Figure 4A, B).[45] 

Autoimmune pancreatitis (AIP) is characterized by 
periductal lymphoplasmacytic inflammation, phlebitis, and 
fibrosis.[48] The medium-sized ducts are often involved by 
the periductal inflammation. Segmental or diffuse stenosis 
of  the main pancreatic duct is the characteristic finding in 
endoscopic retrograde cholangiopancreatography.[49,50] CT 
and MRI often detect mild pancreatic ductal dilation and 
the upstream narrowed segment.[51,52] Low-grade malignant 
tumors (such as pNET, SPN, or SCN) often compress the 
lesion areas on pancreatic ducts, resulting in stenosis or 
abrupt cutoff  of  pancreatic ducts, followed by upstream 
pancreatic duct dilation. However, the degree of  upstream 
pancreatic duct dilation is usually milder than that in PDAC 
due to the relatively soft nature and slow growth of  the 
mass (Figure 4C, D). 

PDAC can easily compress or invade the ducts and 

cause variable degrees of  stenosis, ultimately resulting in 
complete stenosis and upstream pancreatic duct dilation. 
A minute carcinoma may only manifest with abdominal 
pain and significant dilatation of  the main pancreatic duct 
(MPD). Therefore, careful observation of  minor changes 
in the pancreatic duct may help detect small pancreatic 
tumors. The typical “double-duct sign” occurs when a 
carcinoma located in the pancreatic head compresses or 
invades the pancreatic duct and the common bile duct, 
combining “soft-rattan” dilation of  the common bile duct 
(Figure 4E, F).

Lesions with ductal communication mainly include IPMN, 
pancreatic intraductal tubulopapillary neoplasm (ITPN), 
and PPC; pNET rarely develops in pancreatic ducts. The 
communication between the main pancreatic duct and the 
cystic lesion is a vital feature at diagnosis. 

Based on IPMN imaging[53] and gross pathological findings, 
the location of  ductal involvement can be categorized as 
in the main duct, branch duct, or a mixture of  both; each 
category accounts for approximately one third of  resected 
IPMNs.[54,55] The imaging characteristics of  IPMN lie on 
the location of  the tumors. The main-duct type appears as 
diffuse or segmental duct dilation (Figure 4G, H).[56,57] The 
branch-duct type appears as clustered pleomorphic cysts or 
a unilocular cystic lesion and is often located in the uncinate 
process.[57] ITPN is an extremely rare pancreatic intraductal 
tumor that produces relatively less mucus. PPCs represent 
collections of  pancreatic juice secondary to duct rupture 
due to increased pancreatic duct pressure, stenosis, calculi, 
and occlusion caused by protein plugs.[34]

MICROVESSEL

The arterial supply to the pancreas is derived from 
branches of  superior mesenteric artery and the celiac 
trunk.[58] Lobular branches emanating from these arterial 
branches along interlobular connective tissues enter 
pancreatic lobules and give rise to intralobular arteries 
that provide blood to exocrine glands. Owing to the highly 
vascular nature of  the pancreas, the normal pancreatic 
parenchyma demonstrates a homogeneous blush shortly 
after the arrival of  a contrast agent in the abdominal aorta. 
However, the contrast agent can also wash out in the 
delayed phase owing to the abundant pancreatic venous 
drainage network.

In mild AP, the edematous pancreas shows that the 
collections of  fibrin and neutrophils may be present in the 
widened interlobular septa.[34] Blood-vessel dilation and 
congestion are found by microscope. Therefore, edematous 
pancreatic parenchyma often shows a normal or mildly 
uneven “slow-in and slow-out” pattern of  enhancement 
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Figure 4: (A, B) Pancreatic duct alteration caused by severe chronic pancreatitis in a 58-year-old man. (A) Pancreatic stones from the specimen. (B) Axial 
unenhanced computed tomography image shows a dilated pancreatic duct, multiple calcifications throughout the pancreas, and parenchymal atrophy. (C, D) 
Pancreatic duct alteration caused by G2 nonfunctional pancreatic neuroendocrine tumor in a 72-year-old man. (C) Surgical specimen (distal pancreatectomy): 
a yellowish lesion (red dotted line) of pancreatic body with upstream duct dilation (black arrows). (D) Axial portal vein phase computed tomography image 
shows a hypervascular mass (arrow) in the pancreatic body with significantly dilated upstream main pancreatic ducts (arrow head). (E, F) Double-duct 
sign caused by a pancreatic ductal adenocarcinoma in a 68-year-old man. (E) Surgical specimen (pancreaticoduodenectomy): a hard, whitish lesion (arrow 
head) with irregular faint margins presenting infiltrative growth pattern, with involvement of the Wirsung duct and common bile duct, both upstream-dilated 
(double-duct sign). (F) 2D magnetic resonance cholangiopancreatography image shows significant dilation of the biliary tree and Wirsung duct (double-duct 
sign). (G, H) Pancreatic duct alteration caused by main-duct intraductal papillary mucinous neoplasm in a 64-year-old woman. (G) Surgical specimen (total 
pancreatectomy): main pancreatic duct significantly and diffusely dilated and filled with mucoid material. (H) Axial arterial phase computed tomography image 
shows the diffuse dilation of the main pancreatic duct (arrow). 
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postcontrast. In severe AP, any of  the tissues and the 
constituent cells of  the pancreas can be involved. Necrosis 
of  the pancreatic parenchyma is the important feature. 
The necrotic area shows nonenhancement due to the 
lack of  blood supply. Therefore, contrast-enhanced 
examinations are effective for the detection of  necrotic 
areas.

Microscopic examination shows that acinar atrophy, 
fibrosis, and pancreatic duct changes represent the 
essential triad of  CP.[44–46] The enhancement characteristics 
for CP are determined by the proportion and distribution 
of  residual normal pancreatic tissues and fibrosis. The 
sensitivity of  MRI seems to be superior to that of  CT, 
especially for the diagnosis of  early-stage CP.[44] Early-stage 
CP is characterized by the presence of  abundant normal 
pancreatic tissues and mild fibrosis. It is difficult to detect 

in unenhanced imaging and only shows minimal delayed 
postcontrast enhancement. As the disease progresses, 
CP is characterized by significant fibrosis and atrophic 
lobules. The pancreatic parenchyma shows significant 
hypointensity on T1WI and slightly hyperintense or 
isointense signals on T2WI with significant delayed 
postcontrast enhancement.

The stroma in pNET typically consists of  a delicate 
fibrovascular network. Most pNETs are more significantly 
enhanced than normal pancreatic tissues (Figure 5A, B) 
in the arterial phase or in the portal venous phase. With 
a small number of  poorly differentiated tumor cells, 
abundant stroma, and reduced fibrovascular network, 
pNET can be easily misdiagnosed as PC, as it may also 
show hypoenhancement or delayed minimal enhancement 
on imaging.

Figure 5: (A, B) Hypervascular G2 nonfunctional pancreatic neuroendocrine tumor in a 58-year-old woman. (A) High intralesional vascular network is shown with 
CD34 immunohistochemical staining (IHC×100). (B) Axial arterial phase computed tomography image shows inhomogeneous hypervascularity (arrows). (C–E) 
Enhancement feature of the pancreatic ductal adenocarcinoma in a 58-year-old man. (C) The mass (black arrowhead) with a few residual normal pancreatic 
tissues at its periphery (green lines) is shown with CD34 immunohistochemical staining (IHC×1). (D) Axial unenhanced computed tomography image shows a 
solid, round, and distinct border and a low-attenuation mass in the pancreatic head. (E) Axial computed tomography image in delayed phase shows the mass 
with mild progressive enhancement, especially at its periphery. 
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Despite the presence of  abundant thin-walled blood vessels 
in the stroma of  the SPN that usually exhibit hyaline 
degeneration and collagenation, the contrast agent can 
only enter the tumor tissues slowly via thick-walled blood 
vessels. The mass shows hypoenhancement in the arterial 
phase and delayed progressive enhancement; the degree of  
enhancement is lower than that of  its surrounding normal 
pancreatic parenchyma.

Previous research has shown that prognostic significance 
is better assessed by quantification of  the total vascular 
area (TVA) and the branching pattern of  microvessels than 
the microussel density (MVD) for colorectal carcinoma 
patients.[59] PDAC is microscopically composed of  tumor 
cells, stoma, and residual atrophic acinus. The degree of  
enhancement of  PDAC is determined by the MVD and 
TVA in the tumor.[60] PDACs have varying proportions 
of  tumor cells and stroma, as well as varying degrees of  
inflammation. Moreover, there may or may not be residual 
normal pancreatic tissues in the tumors with varying 
extents and distributions. These differential microscopic 
observations determine the enhancement pattern of  the 
tumor (Figure 5C–E).

The pathological basis of  enhanced SCN and MCN is 
the network of  small capillary-sized vessels immediately 
beneath the epithelium. After contrast administration, the 
vascularization of  internal septa is clear, and when extremely 
microcystic, the SCN may even mimic a solid hypervascular 
lesion.[61] Currently, MRI T2WI and MRCP help diagnose 
the hyperintense cyst fluid (Figure 6). Additionally, the 
enhanced solid components of  pancreatic cystic masses, 
such as mural nodules in the IPMN and MCN, reveal the 
mass’s relationship with the tumor microvessel.

CONCLUSION

Although pancreatic diseases are a widely known and easily 
recognizable condition in its typical presentation, there 
are some less well-known forms that may be challenging 

and/or demand special attention on imaging. However, 
diagnosis of  pancreatic diseases can be challenging due 
to numerous pitfalls associated with image acquisition 
and interpretation, including technical factors, imaging 
features, and cognitive errors. Accurate diagnosis requires 
familiarity with these pitfalls and deep understanding of  
pathology, as these can be minimized using systematic 
strategies. 

To overcome the current limitations of  imaging, researchers 
have developed radiomics. Radiomics is an emerging 
field that converts imaging data into a high-dimensional 
mineable feature space using many automatically extracted 
data-characterization algorithms.[62,63] The concept behind 
radiomics is that medical images contain much more 
information than is visible to the eyes of  radiologists, which 
is called “hidden” information.[64] Radiomics combined 
artificial intelligence (AI) algorithms, particularly deep 
learning, has demonstrated remarkable progress in pancreatic 
image-recognition tasks including tumor classification,[65–67] 
grade,[68–70] survival,[71,72] treatment respond prediction,[73–76] 
lymphatic metastasis,[77–79] tumor microenvironment,[80–82] 

and so on. In the future, the diagnosis of  pancreatic diseases 
will enter an era of  precision and individuation.

Conflict of Interest 

The authors have no conflicts of  interest to disclose.

Source of Funding

This work was supported in part by the National Science 
Foundation for Scientists of  China (No. 81871352, 
82171915, and 82171930), Clinical Research Plan of  
SHDC (No. SHDC2020CR4073), 234 Platform Discipline 
Consolidation Foundation Project (No. 2019YPT001, 
2020YPT001), and The Natural Science Foundation of  
Shanghai Science and Technology Innovation Action Plan 
(No. 21ZR1478500, 21Y11910300).

Figure 6: Enhancement feature of the serous cystic neoplasm of the pancreas in a 45-year-old woman. (A) Microscopic examination of the tumor shows the 
network of small capillary-sized vessels beneath the epithelium with CD34 immunohistochemical staining (IHC×40). (B) Axial T2-weighted image shows lobulated, 
distinct borders and a hyperintense mass (arrow). (C) T1-weighted magnetic resonance image in the arterial phase shows the mass is hypervascular (arrowhead).
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