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Abstract: Two commercial materials, a bamboo charcoal (BC) and a smectite clay (SC), 

were assessed in vitro with aflatoxin B1 (AFB1) in an equilibrium adsorption test. The 

adsorption capacity and proportion adsorbed (0.381 μg/mg, 0.955) for BC were greater 

than for SC (0.372 μg/mg, 0.931). The effects of in vitro ruminal fermentation of hay-rich 

feed incubated with 1.0 μg/mL AFB1 for 0–10 g/L doses of BC and SC were measured at 

39 °C for 72 h. The BC and SC binders increased AFB1 loss at dosages ≥1.0 g/L  

(p < 0.0001). Average AFB1 loss (p < 0.0001) was greater for SC (0.904) than BC (0.881). 

Both SC and SC addition increased in vitro dry matter loss, and the average dry matter 

losses were similar. Asymptotic gas volume and volatile fatty acid production were greater 

for BC than for SC (p < 0.0001). Thus, BC may be as effective as SC in removing  

aflatoxin B1’s detrimental effects on rumen degradability and fermentation under the 

occurrence of microbial aflatoxin degradation. 
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1. Introduction 

Aflatoxin B1 (AFB1), a toxin produced by Aspergillus flavus or Aspergillus parasiticus fungi, is 

highly mutagenic and carcinogenic to animals [1]. The transfer rates from dietary AFB1 to aflatoxin 

M1 in milk have been reported to be 0.01–0.02 [2], and the carry over rate is positively related with the 

milk yield when large amounts of contaminated concentrate are consumed [3]. Aflatoxin contaminants 

in feeds fed to ruminants are more problematic than other mycotoxins, because they are only partially 

degraded by rumen microorganisms [4]. Over the years, various methods, including chemical (e.g., 

ammoniation, alkalization), physical (e.g., activated charcoal, bentonite and hydrated sodium calcium 

aluminosilicate (HSCAS)) and biological (e.g., bacteria, yeasts, fungi and enzymes) processes, have 

been proposed and tested as tools to overcome AFB1 contamination in food and feeds [5]. Among the 

physical methods to control mycotoxin toxicity, smectite-containing products are made from naturally 

variable montmorillonite or bentonite clays that have high in vitro aflatoxin adsorption capacity and 

are wildly recommended, though the data of the demonstrated in vivo product efficacy have been 

limited until now [6,7]. Bamboo is a renewable, readily available forest resource in China and many 

other Asian countries. It can be harvested with little damage to sensitive ecosystems, due to its rapid 

growth rate (1–4 cm/h during the fertile period). The many pores make bamboo charcoal an excellent 

adsorbent, and it has been widely used in, e.g., medicines, cosmetics and food processing [8]. 

However, no literature has been found that has assessed the adsorption capacity of bamboo charcoal as 

an alternative sequestering agent for binding mycotoxins. 

The high cost and health risk of the in vivo testing of aflatoxin enterosorbents in farm animals calls for 

valid in vitro methods for the selection of potentially useful sorbents for subsequent in vivo studies. 

Several in vitro methods have been developed to study AFB1 binding by sorbents. For instance,  

Lemke et al. [9] reported a multi-tiered approach that simulated the digestive process in non-ruminants, 

and Spotti et al. [10] developed a very low-cost, simple and rapid way to evaluate the in vitro 

adsorptive ability of a binder in ruminant animals. The authors’ previous study noted that the in vitro 

rumen microbial activity declined with the increase of the AFB1 dosage in cultural fluids [11]. The 

effect was more pronounced for a hay-rich diet than for a maize-rich diet. The applicability of 

different binders is to bind dietary mycotoxins and reduce their absorption in the gastrointestinal 

tract of animals [12]. In the present study, a smectite clay product was chosen as an aluminosilicate 

containing reference binder with a high adsorbing capacity for aflatoxin [6,7], and the objective was to 

compare bamboo charcoal with the selected smectite clay with respect to AFB1 adsorption capacity 

and the ability to reduce the detrimental effects of AFB1 on rumen fermentation. 

2. Methods 

2.1. Binders 

A bamboo charcoal (BC) was gifted by the Suichang Biyan Bamboo Charcoal Company Ltd. 

(Suichang, Zhejiang, China). The quality-labeled product contained 850–880 g/kg carbon and  

20–40 g/kg ash, as indicated by the manufacturer. The selected smectite clay (SC) was a commercial 

product named ConditionAde™200HPC (Oil-Dri Co. Ltd., Chicago, IL, USA), and it contained  

450–650 g/kg of smectite, as guaranteed by the product. All of these products were dried at 65 °C  
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for 24 h and ground to pass a 2.0-mm sieve, and their density, specific surface area and pore volume 

are in Table 1. 

Table 1. Physical characteristics of two quality-labeled binders used in the Experiments 1 and 2. 

Binder Density (kg/m3) Surface area (m2/g) Pore volume (cm3/g) 

Smectite clay 618 115 0.296 
Bamboo charcoal 800 300 0.300 

In Experiment 1, an in vitro AFB1 binding equilibrium test was conducted to determine the 

adsorption capacity and proportion of each binder, assuming that the amount of binder relative to toxin 

is not a limiting factor. Since demonstrated significant in vitro binding capacity might not correlate 

directly with significant biological efficacy, batch cultures to mimic the rumen environment in 

Experiment 2 were done to determine the efficacy of BC in comparison with SC to reduce the 

detrimental effect of AFB1 on the rumen fermentation of a hay-rich feed mixture. 

2.2. Adsorption Capacity and Adsorption Proportion of Two Binders for the Binding of Aflatoxin B1 

(Experiment 1) 

2.2.1. Experimental Design 

Under the presence of 4 mg/L AFB1 in culture fluids, BC and SC with the addition level of 10 g/L 

in a buffer (pH 6.85) [13] were assessed in vitro for their adsorption capacity and adsorption 

proportion for the mycotoxin after 3, 6, 12, 24, 48 and 72 h incubation. Within each binder, there were 

five replicates for each incubation time. 

2.2.2. In Vitro Incubation and Sampling Procedure 

The buffer was freshly prepared, bubbled and saturate with CO2 until the pH reached 6.85 prior to 

the incubation. Following the aflatoxin binding equilibrium test method of Vekiru et al. [14], 50 mg of 

SC or BC binders were individually weighed into 10-mL volume culture tubes containing 5.0 mL of 

the buffer. Afterwards, 0.1 mL of a working solution of AFB1 (Alexis Corporation, San Diego, CA, 

USA) dissolved in methanol were added to the tubes, resulting in final concentrations of 4 μg/mL 

AFB1 and 10 g/L binder, in accordance with the reference levels [15]. Meanwhile, 0.1 mL methanol 

were added to AFB1-free blank tubes with the addition of BC or SC. The whole experiment was 

completed in two batch cultures at a one day interval. The tubes incubated at 39 °C were gently 

agitated and removed at 3, 12 and 48 h in the first batch, and the rest of the tubes were done at 6, 24 

and 72 h in the second batch. After the removal, the tubes were vortexed and immediately centrifuged 

at 10,000× g for 10 min at room temperature, and the supernatants were collected. The pellets were 

resuspended two times in 5 mL methanol by vortexing for 30 s and shaking at 39 °C for 1 h. All three 

supernatants were pooled together for later AFB1 analyses to calculate the adsorption capacity  

and proportion. 
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2.3. Animals and Rumen Fluid Collection 

Three lactating multiparous Holstein cows, fitted with ruminal cannulas (Type 2C: Bar Diamond Inc., 

Parma, ID, USA), served as donor animals for rumen fluid collection in the later Experiment 2. The 

cows were fed daily 40 kg of a total mixed ration (Table 2) with a moisture content of 480 g/kg as fed, 

and the ration was divided into 2 equal portions offered at 06:00 and 18:00. The rumen fluids  

(700 mL), collected from each animal 2 h after the morning feeding, were squeezed through four 

layers of cheesecloth and mixed in equal proportion. The mixed rumen fluid was then transferred into a 

thermos pre-warmed at 39 °C and served as the inocula for the later batch culture. 

Table 2. Ingredients and chemical composition of the ration fed to cows. 

Items Value 

Ingredients (g/kg DM)  

Corn silage 250 
Chinese wildrye grass hay 167 

Alfalfa hay 83 
Corn meal 267 

Soybean meal 138 
Wheat bran 69 
Limestone 11 

Calcium phosphate 6.1 
Salt 4.4 

Premix † 4.5 

Nutrients  

Net energy for lactation (MJ/kg DM) 6.69 
Crude protein (g/kg DM) 160 

Neutral detergent fiber (g/kg DM) 382 
Acid detergent fiber (g/kg DM) 225 

Note: † The trace mineral and vitamin premix contained Cu 3 g/kg, Zn 12 g/kg, Mn 4.8 g/kg, Fe 10 g/kg,  

Co 0.2 g/kg, I 0.1 g/kg, Se 0.1 g/kg, vitamin A 1000 IU/g, vitamin D3 250 IU/g, vitamin E 10 IU/g and 

vitamin B3 5 mg/g. 

2.4. Effect of BC and SC on In Vitro Rumen Fermentation of a Hay-Rich Feed in the Presence of AFB1 

(Experiment 2) 

2.4.1. Preparation of a Hay-Rich Feed 

Chinese wildrye grass (Leymus chinensis) hay prepared at the late-bloom stage was chopped (2–5 mm), 

dried at 65 °C overnight in a forced air oven and ground in a Wiley mill to pass a 2.0-mm sieve. Maize 

meal (2 mm), stored in the laboratory, was mixed with the chopped hay in a 1:4 ratio to make a  

hay-rich substrate. The chemical composition (calculated per kg DM) of the hay-rich feed was: 133 g 

crude protein, 565 g neutral detergent fiber, 312 g acid detergent fiber and 54 g ash. 
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2.4.2. Experimental Design 

A completely randomized block design was applied to determine the effect of BC in comparison 

with SC at four doses (0 (control), 0.1, 1, 10 g/L) on in vitro ruminal fermentation of the hay-rich 

substrate in the presence of 1.0 µg/mL AFB1. Meanwhile, the methanol negative controls included the 

substrate, but no binder or AFB1. For each treatment were arranged four fermentations, and the batch 

culture was repeated in three runs. 

2.4.3. In Vitro Ruminal Batch Cultures 

Briefly, 500 mg of the substrate were weighed into 120-mL bottles containing 7.5, 75 or 750 mg of 

the binders. To each bottle were added 25 mL of the filtered rumen fluid, 49 mL of the buffer [13], as 

noted in Experiment 1, and 1.0 mL of the aflatoxin working solution of 75 mg AFB1 dissolved in 1 L 

methanol, purged with N2 for 5 s to remove air in the bottle’s headspace. Methanol (1.0 mL) was 

added to the negative control bottles with the substrate. All bottles were sealed with butyl rubber 

stoppers and Hungate’s screw-caps. A one-off use transfusion needle was inserted into bottles through 

the stopper, and its pipe was immediately connected to each gas inlet of the automated gas production 

recording system (AGRS, Beijing, China) [16]. All bottles were incubated at 39 °C for 72 h.  

Substrate-free blank bottles containing buffer, ruminal fluid and AFB1 were run simultaneously to 

correct difference between the runs of batch culture due to variation in rumen fluid preparation.  

2.4.4. Gas Production and Curve Fitting  

The cumulative gas production values (GP, mL/g dry matter), exported from the automated gas 

production recording system, were fitted with time (t) to the exponential model [17] as Equation (1):  

GP = b × [1 − e−c × (time − Lag)] (1)

where b is the asymptotic gas production; c is the gas production rate; and t is the gas recording time. 

The parameters b, c and Lag were estimated by an iterative least squares procedure using the NLIN 

procedure of the Statistical Software Package for Windows (version 9.02, 1999; SAS Institute Inc., 

Cary, NC, USA). The average gas production rate (AGPR, mL/h) [18] was calculated to obtain the rate 

between the start of the incubation and the time at which the cumulative gas production was half of its 

asymptotic value with Equation (2):  

2 ( 2 )

b c
AGPR

Ln c Lag




   (2)

2.4.5. Sampling Procedure and Digestibility Determination  

After the incubation, the pH in the culture fluids was measured immediately, and the whole biomass 

culture (75 mL) in each bottle was removed from the bottles to 100 mL tubes and centrifuged at 10,000× g 

for 15 min at 4 °C. The supernatants were sampled later for ammonia N and volatile fatty acid (VFA) 

analyses and AFB1 analysis to estimate the mycotoxin disappearance rate. The pellets remaining in the 

tubes were resuspended in 75 mL pure methanol solution, agitated and washed at 39 °C for 1 h to 

partially remove AFB1, presumably not incorporated into the adsorbent-AFB1 complexes. Afterwards, 
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the tubes were then centrifuged at 10,000× g for 15 min, and these supernatants from the above washes 

were sampled for later analysis of the residual AFB1 concentration to estimate the recovered quantity 

of AFB1 that would not be detoxified, but that would be bound to the hay-rich feed and binders in the 

system. The whole residual pellets were dried at 105 °C to a constant weight. In vitro dry matter 

disappearance (IVDMD) was calculated as the dry matter (DM) loss, represented as the difference 

between the original incubated DM and the residual DM, corrected by blanks [16]. 

2.5. Chemical Analysis and Calculations 

Representative samples of the hay and maize meal were analyzed, respectively, following the 

standard method [19] for DM (ID 930.5), crude protein (ID 984.13) and ash (ID 942.05). Neutral 

detergent fiber and acid detergent fiber contents were analyzed [20] and expressed without residual ash. 

Following the method of Upadhaya et al. [21], 0.3 mL of the supernatant samples in Experiments 1 

and 2 were added to 1.5-mL Eppendorf tubes and mixed thoroughly with 0.7 mL methanol. The 

extracted AFB1 samples were immediately diluted to a final methanol concentration of 70% (v/v) with 

deionized water. The concentration of AFB1 in the sample extracts was determined at 490 nm with an 

AFB1 enzyme-linked immunoassay test kit (Brins-livePro Biotechnology Co., Ltd., Beijing, China). 

All chemical analyses were done in triplicate. 

Ammonia N concentration in the supernatant samples resulting from the first centrifugation in 

Experiment 2 was measured at 637 nm [22]. The supernatant samples (1 mL) were mixed with 0.3 mL 

of 250 g/L meta-phosphoric acid solution for 30 min and centrifuged at 10,000× g for 15 min at 4 °C. 

The concentrations of acetate, propionate, butyrate, iso-butyrate, valerate and iso-valerate in the 

supernatants were measured by a gas chromatography (GC522, Wufeng Instruments, Shanghai, China). 

The ratio of non-glucogenic to glucogenic acids (NGR) [23] was calculated as Equation (3): 

2Acetate Butyrate Valerate
NGR

Propionate Valerate

  


  
(3)

where VFAs were expressed in molar proportions of total volatile fatty acid production. 

2.6. Statistical Analysis 

Data in Experiment 1 consisted of 2 binders, 6 incubation times and 5 fermentations, making a total 

of 60 observations, and these were analyzed using a general linear model in which the fixed effects of 

binder and incubation time were considered. Data in Experiment 2 consisted of 1 control, the 3-dose 

level of each binder of SC and BC, 4 fermentations and 3 runs, making a total of 84 observations, and 

the statistical analyses were performed using a general linear model in which the fixed effects of 

binder and dosage were considered. All of the analyses were performed using the statistical software 

package for Windows (version 9.02, 1999; SAS Institute Inc., Cary, NC, USA). Least squares means 

and standard errors (SEM) for the measured variables were calculated. The means within each binder 

were compared using a multiple comparison test (Tukey), and orthogonal contrasts were used to assess 

the difference between SC and BC. Significance was declared at p < 0.05, unless otherwise noted. 
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3. Results 

3.1. Experiment 1 

Neither the adsorption capacity nor the proportion differed in response to incubation time (Figure 1), 

but they were comparatively higher in BC than in SC. 

Figure 1. The adsorption capacity (a) and proportion (b) of smectite clay (SC) and bamboo 

charcoal (BC) for binding aflatoxin B1 (AFB1) in vitro at different incubation times  

(Experiment 1). 

(a) (b) 
Notes: Aflatoxin adsorption capacity (a) was calculated as (C0 − Ceq) × V/m; and the aflatoxin adsorption 

proportion (b) was calculated as (C0 − Ceq)/C0, in which C0 is the initial concentration of AFB1 (4 µg/mL) 

spiked in the buffer; Ceq is the residual AFB1 (µg/mL) recovered from the pellets after the methanol washing 

and centrifuging procedure; V is the volume of incubation system (mL); m is the mass weight (mg) of  

each binder. 

3.2. Experiment 2 

As shown in Table 3, IVDMD increased against the addition of SC (p = 0.048) and BC (p < 0.0001), 

but no differences occurred for IVDMD between two binders (Table 2). Cumulative gas production at 

72 h (p < 0.05) and asymptotic gas production (p < 0.0001) increased when a concentration greater 

than or equal to 1.0 g/L was applied for both binders. The asymptote was greater in BC than SC 

treatments (p < 0.0001). The parameter c value was decreased by the SC dosage of 10 g/L (p = 0.0006) 

and the high BC dosages (≥1 g/L, p < 0.0001), and it was lower in the BC than in the SC treatments  

(p < 0.0001). Both SC (p = 0.0001) and BC (p < 0.0001) additions decreased the fermentation lag time. 

The addition of SC or BC did not alter AGPR values compared to the value in the control. No 

differences in lag time and AGPR were observed between two binders. 

AFB1 disappearance (Table 4) was increased by the addition of SC or BC at a dose level ≥1.0 g/L  

(p < 0.0001), and it was greater in SC than BC (p < 0.0001). Neither SC nor BC treatments altered 

AFB1 recovery, but the recovery value was greater in BC than SC addition treatments (p = 0.035). 
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Table 3. The effect of different doses of bamboo charcoal in comparison with smectite clay on in vitro dry matter disappearance (IVDMD) 

and gas production (GP) of a hay-rich feed in the presence of 1.0 µg/mL aflatoxin B1 (Experiment 2).  

Items NC * 
Smectite clay 

SEM ‡ p-value 
Bamboo charcoal 

SEM ‡ p-value Contrast § 
Control † 0.1 g/L 1 g/L 10 g/L Control † 0.1 g/L 1 g/L 10 g/L

IVDMD (g/kg DM) 604 550 b 586 a,b 593 a 599 a 11.9 0.048 550 b 576 a,b 589 a 594 a 7.8 <0.0001 0.184 

GP at 72 h (mL/g DM) 208.4 147.0 b 151.0 b 169.1 a,b 183.2 a 6.86 0.021 147.0 b 148.0 b 179.3 a 193.2 a 6.20 0.0014 0.366 

Fermentation kinetics #  

GPmax (mL/g DM) 209.1 186.7 c 193.8 c 240.4 b 282.9 a 6.60 <0.0001 186.7 c 182.5 c 270.2 b 315.9 a 10.77 <0.0001 <0.0001 

c (/h) 0.085 0.021 a 0.020 a 0.020 a 0.012 b 0.0010 0.0006 0.021 a 0.020 a 0.015 b 0.007 c 0.0009 <0.0001 0.001 

Lag time (h) 0.008 0.021 0.020 0.018 0.010 0.0007 0.0001 0.021 0.020 0.015 0.007 0.0010 <0.0001 0.458 

AGPR (mL/h) 3.92 2.67 2.82 2.84 2.85 0.197 0.640 2.67 2.88 2.95 2.73 0.153 0.641 0.711 

Notes: a,b,c Means in a row without a common superscript letter differ within a subclass as the noted p-value; NC * negative control fermentation of the hay-rich substrate 

without the inclusion of binder and aflatoxin B1; † fermentation of the hay-rich substrate without binder inclusion; ‡ standard error of least squares means; § statistical  

p-value estimated for the comparison between smectite clay and bamboo charcoal; # the nonlinear equation [17], GP (mL/g DM) = GPmax × [1 − e−c × (time − Lag)], was used to 

analyze the gas production kinetic data. GPmax, asymptotic gas production; c, gas production rate; Lag, lag phase before gas production commenced; AGPR, average gas 

production rate when half of the asymptotic gas volume was produced. 
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Table 4. The effect of different doses of bamboo charcoal in comparison with smectite clay on aflatoxin B1 (AFB1) disappearance, mycotoxin 

recovery and fermentation characteristics in the cultures after a 72-h in vitro incubation of a hay-rich feed in the presence of 1.0 µg/mL AFB1 

(Experiment 2). VFA, volatile fatty acid. 

Items NC * 
Smectite clay 

SEM ‡ p-value 
Bamboo charcoal 

SEM ‡ p-value Contrast § 
Control † 0.1 g/L 1 g/L 10 g/L Control † 0.1 g/L 1 g/L 10 g/L

AFB1 disappearance (µg/µg) - 0.836 c 0.844 c 0.901 b 0.969 a 0.0073 <0.0001 0.836 b,c 0.818c 0.862 b 0.962 a 0.0092 <0.0001 <0.0001 

AFB1 recovery (µg/µg) - 0.062 0.059 0.042 0.026 0.0112 0.186 0.062 0.068 0.055 0.043 0.0099 0.197 0.035 

Final pH 6.76 6.88 6.88 6.88 6.82 0.023 0.215 6.88 6.93 6.99 6.87 0.053 0.445 0.081 

Ammonia N (mM) 15.7 13.6 13.6 13.1 13.2 0.47 0.816 13.6 14.1 13.7 13.2 0.31 0.332 0.257 

Total VFA # (mM) 78.7 68.0 68.5 66.2 60.4 3.64 0.487 68.0 b 81.3 a 85.8 a 87.1 a 2.50 0.012 <0.0001 

Acetate (mol/100 mol) 71.8 70.2 a 68.7 a,b 68.0 b 67.2 b 0.59 0.025 70.2 70.3 69.0 68.8 0.57 0.184 0.001 

Propionate (mol/100 mol) 18.5 20.0 c 21.7 b 22.1 a,b 22.5 a 0.19 <0.0001 20.0 b 20.4 b 21.5 a 22.1 a 0.24 0.0004 0.0004 

Butyrate (mol/100 mol) 4.09 4.19 4.31 4.36 4.40 0.13 0.700 4.19 4.03 4.24 3.98 0.10 0.322 0.002 

Iso-butyrate (mol/100 mol) 0.74 0.71 0.78 0.73 0.82 0.026 0.227 0.71 0.75 0.76 0.76 0.020 0.974 0.263 

Valerate (mol/100 mol) 1.32 1.49 1.51 1.64 1.57 0.056 0.403 1.49 1.47 1.46 1.40 0.049 0.709 0.007 

Iso-valerate (mol/100 mol) 2.96 2.97 3.06 2.99 3.07 0.010 0.916 2.97 2.97 3.02 2.92 0.074 0.817 0.286 

NGR ζ 3.97 3.76 a 3.40 b 3.29 b 3.22 b 0.039 0.003 3.76 a 3.65 a,b 3.44 b,c 3.32 c 0.055 0.006 0.001 

Notes: a,b,c Means in a row without a common superscript letter differ within a subclass as the noted p-value; NC * negative control fermentation of the hay-rich substrate 

without the inclusion of binder and AFB1; † fermentation of the hay-rich substrate without binder inclusion; ‡ standard error of least square means; § significant p-value for the 

comparison between smectite clay and bamboo charcoal; # total concentration of acetate, propionate, butyrate, iso-butyrate, valerate and iso-valerate; ζ ratio of non-glucogenic 

to glucogenic acids. 
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The pH and ammonia N levels did not differ between binders and between dosages (Table 4). The 

total VFA concentration was lower in SC than BC (p < 0.0001). The SC addition numerically 

decreased the total VFA concentration, whereas the BC addition treatments increased the total VFA 

concentration (p = 0.012). No differences in response to the addition of SC or BC occurred for molar 

proportions of butyrate, iso-butyrate, valerate or iso-valerate. The molar acetate proportion was 

decreased by SC compared to the control (p = 0.025), but it did not differ among BC additions. The 

molar acetate proportion was greater in BC than SC addition (p = 0.001). The molar propionate 

proportion was increased by both SC (p < 0.0001) and BC (p = 0.0001), and it was greater in SC than 

BC (p = 0.0004). Molar proportions of butyrate (p = 0.002) and valerate (p = 0.007) were lower in BC 

than SC. Consequently, the NGR value was decreased by the addition of SC (p = 0.003) or BC  

(p = 0.006), and it was greater in BC in comparison with SC (p = 0.001). 

4. Discussion 

4.1. AFB1 Adsorption by BC in Comparison with SC 

The adsorption capacity reflects the ability of a binder to adsorb AFB1 when the AFB1 was 

presented in a sufficient concentration. Physical methods are considered to be the most efficient way to 

reduce the toxicity of AFB1, in which smectite clays have been evaluated for their binding capacity 

and affinity for AFB1 [24–27]. The surface area, sodium:calcium ratio, porosity characteristics,  

the amount of smectite, the cation exchange capacity, the hydrated radius of the interlayer cations,  

the occurrence of Fe and/or Mg in the smectite structure, the amount of organic carbon and the 

hydrophobicity of the smectite surface in the clays may be involved in a complex way to bind  

aflatoxin [6,27–30]. The in vivo binding capacity of activated charcoal in different sources varied due 

to the variations in the surface area, although all of the activated charcoal bound over 95% of the 

aflatoxin in vitro [6]. Hydrated sodium aluminosilicate was regarded as one of the most widely used 

binders for AFB1 adsorption, and it exhibited strong AFB1-binding ability in vitro and in vivo.  

Duarte et al. [31] noted that the in vitro AFB1 binding capacity values of all HSCAS sequestering 

agents were greater than 95%. Such high AFB1 binding capacity was observed for SC at a 

concentration of 10 g/L. Although activated charcoal was also widely used for its adsorption capacity 

and adsorption proportion for mycotoxin, the practical value of activated carbon as a feed additive 

might be limited by the fact that it also binds other nutrients, such as vitamins [32]. BC had a good 

capability for adsorbing dyes in wastewater, because it had larger pores than activated charcoal, 

allowing it to adsorb larger molecules [33]. In the present study, the binding ability of BC for AFB1 

reached an equilibrium state after 3 h, and it remained stable throughout the rest of the incubation 

period, with the same adsorption pattern as seen for SC. The overall AFB1 adsorption capacity and 

proportion were comparatively greater in BC than SC (Figure 1), suggesting that BC could be as 

effective as SC in adsorbing AFB1.  

The adsorption proportion reflects the mycotoxin adsorption ability of a binder when the addition 

level of the binder is not limited, and its value is affected by the binder pore size and surface area, as 

well as the mycotoxin structure and concentration. The in vitro adsorption proportion of BC (average 

value = 0.955) in the present study (Figure 1) was remarkably greater than 0.673, noted for the yeast 
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cell extracts [34], and similar to the in vitro result of HSCAS [31], the adsorption capacity for HSCAS, 

which was also studied in an in vivo experiment, shows a higher binding capacity for AFB1 in feed and 

can reduce the AFB1 transmission from feed into milk [7]. The surface area and the water holding 

capacity are important factors affecting the binding capacity for AFB1. Regarding these factors in the 

above, BC maybe show a high binding capacity for AFB1 an in vivo experiment, because of the large 

surface area, the many pores and a high water holding [33], but the in vivo study results should be 

measured following in vitro evaluation to clarify if BC does or does not do not bind vitamins or 

minerals, otherwise the use of this absorbent in animal nutrition could be limited or not recommended. 

4.2. Disappearance of AFB1 in the Presence of BC in Comparison with SC 

Spotti et al. [10] developed an in vitro method to test the ability of sorbent materials to bind 

aflatoxin in 1 mL ruminal fluids incubated for 2 h at 39 °C. With the application of these methods, the 

binders containing HSCAS, SC and clinoptilotile were proven to have different adsorption 

characteristics for binding AFB1, though the length of exposure to AFB1 might not be adequate to 

mimic rumen fermentation.  

In the present study, batch cultures in Experiment 2 were conducted in a 75-mL (rumen fluid:  

buffer = 1:2) ruminal system for in vitro mimicry of 72-h rumen fermentation, and the mycotoxin 

disappearance rate for AFB1 was 0.836 in the control without the addition of any binders (Table 4). 

Engel and Hagemeister [35] reported that 42% of AFB1 was degraded when incubated in vitro with 

rumen fluid. Westlake et al. [36] in their in vitro mycotoxin studies with rumen fluid reported that the 

degradation of AFB1 after 12 h was <10% when added at levels of 1.0 and 10 µg/mL Forty-five 

percent of AFB1 was degraded when AFB1 at an initial concentration of 0.2 µg/mL was incubated at 

39 °C in a 1-mL fresh ruminal fluid system for 2 h [10]. All of these reported AFB1 disappearance 

rates were far lower than the value of 0.836 in the present study. These results imply that the ability of 

rumen microorganisms to reduce AFB1 toxicity might depend on the length of time of mycotoxin 

exposure for rumen microorganisms. The type of microbes in the rumen influenced by the species of 

animal and the types of forage fed for the animal would also affect the extent of the degradation of 

AFB1 [21]. Kiessling et al. [37] found that AFB1 and ochratoxin A were not well metabolized by whole 

rumen fluid, although mycotoxins zearalenone, T-2 toxin, diacetoxyscirpenol and deoxynivalenol were 

well metabolized. Westlake et al. [36] reported that Butyrivibrio fibrisolvens was able to degrade 

mycotoxins zearalenone, T-2 toxin, diacetoxyscirpenol and deoxynivalenol, but not AFB1. The results in 

the above suggested that the mycotoxin might disturb the growth and metabolic activity of rumen 

microorganisms, though the microbial population of the rumen plays a role in detoxification. 

In the present study, AFB1 disappearance was increased by both BC and SC addition treatments 

with dosages greater than or equal to 1.0 g/L compared to the control (Table 4). The average AFB1 

disappearance was comparatively lower in the BC than in the SC addition treatment (0.881 vs. 0.904,  

p < 0.0001). The amount of AFB1, recovered from the pellet after the methanol washing procedure at 

39 °C for 1 h, could reflect the quantity of AFB1 that was not destroyed by rumen microorganisms, but 

had that been bound to the feed and binders in the system. Both the BC and SC addition treatments 

resulted in low AFB1 recovery values, especially for these binders added at 10 g/L (Table 4), but 

comparatively higher AFB1 recovery values were observed for BC in comparison with SC (p = 0.035), 
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suggesting that the optimal binder dosage to reduce the detrimental effects of aflatoxin was different 

for BC compared to SC.  

4.3. In Vitro Ruminal Fermentation Responses to BC in Comparison with SC 

The in vivo digestibility of animal feeds can be estimated by measuring the in vitro gas production 

of feed samples incubated in ruminal fluid [17]. Westlake et al. [36] noted that AFB1 inhibited 

microbial digestion of lucerne hay incubated with bacterial, protozoal and ovine ruminal fluid 

preparations. In the present study, both SC and BC addition treatments increased IVDMD, cumulative 

gas production at 72 h and asymptotic gas production (Table 3), suggesting that both binders indeed 

had the ability to reduce the detrimental effects of AFB1 on microbial digestion. The addition of binder 

reduced the lag time of the fermentation, and asymptotic gas production was greater in the BC than in 

the SC addition treatments, suggesting that BC could be more effective for reducing the detrimental 

effect of AFB1 on rumen fermentation than SC, due to the larger pore size and the greater number of 

pores in BC compared to SC.  

In the present study, binder dosage did not alter ammonia N concentration, and no differences were 

observed for ammonia N concentration between SC and BC. In the rumen, the feed protein is usually 

hydrolyzed and deaminated, forming peptides and free ammonia by the rumen microorganisms [38]. If 

the digestion and metabolism of feed protein were inhibited by AFB1, the concentration of free 

ammonia would be decreased. In the present study, then, ammonia N concentrations in both SC and 

BC were lower than the control without any inclusions of AFB1 and binder, suggesting that the 

method of hydrolysis or deamination of the protein was decreased by the presence of AFB1 regardless 

of the binder added. A decrease of ammonia production was also observed for AFB1 ingestion at  

0.2–0.8 mg/kg body weight in acute bovine aflatoxicosis [39].  

The production of VFAs can account for over two-thirds of the energy intake in a host ruminant  

animal [40], and therefore, VFAs, resulting from rumen fermentation, can be regarded as an important 

index for fermentation efficiency. In the literature, no differences of total VFA concentration  

in the rumen were observed in growing lambs [41] fed 2.5 mg AFB1 per kg diet, steers [38]  

fed 60–600 µg/kg diet and lactating goats [42] daily fed 0.714 µmol AFB1. On the contrary, VFA 

production was decreased by AFB1 at 0.2–0.8 mg/kg body weight in acute bovine aflatoxicosis [39]. 

Regardless of the binder added, the total VFA concentration was lower in both the SC and BC groups 

than in the control without any inclusions of AFB1 and binder, suggesting that AFB1 present in the 

culture fluids decreased the growth and metabolic activity of rumen microorganisms. With the increase 

of the binder dose, the total VFA concentration markedly increased in the BC treatment, while it 

numerically decreased in SC, suggesting that BC indeed reduced the adverse effects of AFB1 on rumen 

microbial activity.  

The balance between the supplies of glucogenic relative to non-glucogenic fatty acids influences the 

efficiency of VFA utilization for different productive purposes in ruminant animals. The observed 

VFA pattern and the occurrence of high NGR values for BC addition treatments (Table 4) imply that 

the addition of BC in comparison with SC would result in greater stimulation of the production of 

glucogenic acids (especially propionate) in the rumen as precursor nutrients for the host animal. 
  



Toxins 2014, 6 2020 

 

 

5. Conclusions 

An equilibrium mycotoxin adsorption test showed that bamboo charcoal had a comparatively higher 

adsorption capacity for aflatoxin B1 (AFB1) than a smectite clay. Relative to the smectite, bamboo 

charcoal increased feed digestibility, gas and volatile fatty acid production, which reduced the 

detrimental effects of AFB1 on rumen fermentation. This study compared bamboo charcoal and a 

smectite in sequestering AFB1 and demonstrated that bamboo charcoal can bind AFB1 as effectively 

as smectite under the occurrence of microbial aflatoxin degradation.  
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