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In this paper, a novel approach called GSA-DenseNet121-COVID-19 based on a hybrid convolutional
neural network (CNN) architecture is proposed using an optimization algorithm. The CNN architecture
that was used is called DenseNet121, and the optimization algorithm that was used is called the
gravitational search algorithm (GSA). The GSA is used to determine the best values for the hyperpa-
rameters of the DenseNet121 architecture. To help this architecture to achieve a high level of accuracy
in diagnosing COVID-19 through chest x-ray images. The obtained results showed that the proposed
approach could classify 98.38% of the test set correctly. To test the efficacy of the GSA in setting
the optimum values for the hyperparameters of DenseNet121. The GSA was compared to another
approach called SSD-DenseNet121, which depends on the DenseNet121 and the optimization algorithm
called social ski driver (SSD). The comparison results demonstrated the efficacy of the proposed GSA-
DenseNet121-COVID-19. As it was able to diagnose COVID-19 better than SSD-DenseNet121 as the
second was able to diagnose only 94% of the test set. The proposed approach was also compared
to another method based on a CNN architecture called Inception-v3 and manual search to quantify
hyperparameter values. The comparison results showed that the GSA-DenseNet121-COVID-19 was able
to beat the comparison method, as the second was able to classify only 95% of the test set samples. The
proposed GSA-DenseNet121-COVID-19 was also compared with some related work. The comparison
results showed that GSA-DenseNet121-COVID-19 is very competitive.
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. Introduction

On 11/March/2020, the world health organization (WHO) an-
ounced that the novel coronavirus disease-2019 (COVID-19)
ad been a Pandemic outbreak. COVID-19 is a respiratory dis-
ase caused by severe acute respiratory syndrome coronavirus 2
SARS-CoV-2). SARS-CoV-2 is a virus that belongs to the Coron-
virdeae family, which is the same family of both severe acute
espiratory syndrome coronavirus and middle east respiratory
yndrome coronavirus (MERS-CoV) [1]. Both SARS-CoV-1 and
ERS-CoV are the 2002 severe acute respiratory syndrome
ausative agent and the 2012 middle east respiratory syndrome
ERS epidemic [2,3]. This announcement was the beginning of

he current medical health problem faced and shared by the
hole world during the last few months. Up till now, there are
o efficient protective vaccines, neutralizing antisera or curative
edication have been developed or officially approved to be used

n COVID-19’s patients worldwide. The continuous increase in
orbidities and mortalities due to SARS-CoV-2 leads to interna-

ional medical health worsen situations day after day. Therefore,
his emerging COVID-19 pandemic becomes an ongoing challenge
or all medical health workers and researchers, by applying the
atural timeline of infectious diseases [4] on COVID-19, as shown
n Fig. 1. The importance of shortening the period between the
nset of symptoms and the usual diagnosis will appear. Therefore,
n efficient rapid diagnostic test or protocol will help to achieve
roper early medical caring to COVID-19 patients that, by its
ole, will help to save a lot of lives worldwide. Finding a rapid,
fficient diagnostic test or protocol becomes one of those top
ritical priorities.
Quantitative reverse transcriptase-polymerase chain reaction

qPCR) is the golden standard test for confirmed laboratory di-
gnosis of COVID-19. Other rapid, bedside, field, and point of
are immunochromatographic lateral flow, nucleic acid lateral
low, nucleic immunochromatographic lateral flow, and CRISPR
AS-12 lateral flow are under development [5]. COVID-19 as a
neumonic disease characterized by general pneumonic lung af-
ections with absolute uniqueness from other pneumonia-causing
oronaviruses. Although the radiological imaging features closely
imilar and overlapping those associating with SARS and MERS.
he bilateral lung involvement on initial imaging is more likely
o be seen with COVID-19, as those associating SARS and MERS
re more predominantly unilateral. So using radiological imaging
echniques such as X-rays and computed tomography (CT) is
f great value as confirmed, need an expert but rapid diagnos-
ic approach either separately or in combination with qPCR. To
void the false negative/positive COVID-19 results, recorded and
eported during separate qPCR in the disease’s early stage [6].

Deep learning (DL) is the most common and accurate method
or dealing with medical datasets that contain a relatively large
umber of training samples. For instance, the classification of
rain abnormalities, the classification of different types of cancer,
he classification of pathogenic bacteria, and biomedical image
egmentation [7–11]. One of DL’s most important characteristics
s its ability to handle relatively large amounts of data effi-
iently [12]. As well as, it eliminates the need to extract essential
eatures manually [13]. According to these reasons, many efforts
ave depended on the DL methods, especially CNN architec-
ures, to diagnose COVID-19 through chest radiological imaging,
specially X-rays. For instance, in this study [14], the authors
sed several state-of-the-art CNN architectures by applying the
ransfer learning method to diagnose COVID-19. The results of
heir experiments indicated that the MobileNet architecture was

he best with an accuracy of 96.78%. In another study [15], the

2

DarkCovidNet model was proposed to diagnose COVID-19 us-
ing a two-classes dataset (COVID-19, No-Findings) and three-
classes dataset (COVID-1, No-Findings, Pneumonia). The exper-
imental results showed that the DarkCovidNet model had di-
agnosed the COVID-19 with higher accuracy by using the two-
classes dataset, where the accuracy reached 98.08%. In [16] to
improve CNN architectures’ performance in diagnosing COVID-19,
a new model called CovidGAN is built, generating new samples
from the dataset samples used. The experiment results demon-
strated that the CovidGAN model helped the VGG16 network
diagnose the COVID-19 with 95% accuracy. In [17], the authors
produced a model called CoroNet, and this model was able to
diagnose COVID-19 with 89.6% accuracy in a four-category clas-
sification (COVID-19 vs. bacterial pneumonia vs. viral pneumonia
vs. normal). In a three-category classification (COVID vs. pneumo-
nia vs. normal), the CoroNet model achieved 94% accuracy. While
in a two-category classification (COVID vs. normal), the CoroNet
achieved a higher accuracy.

Despite the promising results these CNN architectures have
achieved in detecting the COVID-19, the large number of hy-
perparameters therein represents an obstacle to achieving better
results. However, very few studies, such as [18], have sensed
these hyperparameters’ importance in obtaining high efficiency
with CNN architectures and the necessity of treating them as
an optimization problem. Where in [18], the authors presented
a method for detecting COVID-19, which is the deep Bayes-
SqueezeNet method. This method is based on Bayesian opti-
mization to fine-tune hyperparameters of the CNN architecture
called SqueezeNet. The deep Bayes-SqueezeNet reached 98.3% ac-
curacy in the three-category classification (Normal vs. COVID-19
vs. Pneumonia).

Many studies, such as [19,20] conducted to determine the
extent of hyperparameters’ influence on various DL architectures.
These studies have found the hyperparameters that offer signifi-
cant performance improvements in simple networks do not have
the same effect in more complex networks. The hyperparameters
that fit one dataset do not fit another dataset with different
properties The choice of values for these hyperparameters often
depends on a combination of human experience, trial and error,
or a grid search method [21]. Due to the nature of computation-
ally expensive CNN architectures, which can take several days to
train, the trial and error method is ineffective [22]. The grid search
method is usually not suitable for CNN architectures because the
number of combinations grows exponentially with the number of
hyperparameters [23]. Therefore, the automatic optimization of
the hyperparameters of CNNs architectures is so essential [24,25].

This paper introduces an approach called GSA-DenseNet121-
COVID-19. This approach relies on a pre-trained CNN architecture
called DenseNet121 to diagnose COVID-19 by applying the trans-
fer learning method. GSA [26] was used to select optimal values
for the hyperparameters of DenseNet121. The aim of proposing
this approach is to facilitate and expedite the analysis of chest
X-rays taken during various COVID-19 diagnostic protocols. Es-
pecially now, after the regular increase in COVID-19 patients
every day, it is complicated and exhaustive to all medical field
personnel to achieve the same high-quality analysis of chest X-
rays along the whole day, 24/7. Therefore, automating specific
steps of diagnostic protocols is a must to keep the integrity of the
diagnostic quality of medical field practitioners. Accordingly, the
contributions of this paper can be summarized in the following
points:

- This paper provides a diagnostic approach to COVID-19 that
can be used alone or in combination with qPCR to reduce

the false negative and false positive rates of qPCR.
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Fig. 1. Natural timeline of infectious diseases on COVID-19.
Source: Adapted from [4].
- The proposed approach is called GSA-DenseNet121-COVID-
19, and it adopts a transfer learning method using a pre-
trained CNN architecture called DenseNet121 that has been
hybridized with an optimization algorithm called GSA.

- The GSA is used to improve the classification performance
of DenseNet121 by optimizing its hyperparameters.

- The proposed approach is scalable, that is, it can expand the
classification, as the number of training, testing, and valida-
tion samples can be increased without having to specify the
values of the hyperparameters of DenseNet121 manually.

- The results of the proposed approach to diagnosing the
COVID-19 were very felicitous, achieving a 98.38% accuracy
level on the test set.

- The proposed approach was compared with other appro-
aches proposed, the results of the comparison showed that
the proposed approach is superior to the other approaches
despite being trained on smaller and more varied samples.

The rest of the paper is structured as follows: Section 2 represents
the CNNs and the GSA’s theoretical background. The dataset used
is discussed in Section 3. While Section 4 shows details of the pro-
posed approach. The results achieved by the proposed approach
are illustrated in Section 5.

2. Theory and method

2.1. Gravitational search algorithm

GSA is an optimization technique gaining attention in the last
ears and developed by Rashedi [26]. It is based on the law of
ravity, as shown in Eq. (1) and the second law of motion, as
hown in Eq. (3) [27]. It also depends on the general physical
oncept that there are three types of mass: inertial mass, active
ravitational mass and passive gravitational mass [28]. The law of
ravity states that every particle attracts every other particle with
gravitational force (F). The gravitational force (F) between two

articles is directly proportional to the product of their masses
M1 and M2) and inversely proportional to the square of their
istance (R2). The second law of motion states that when a force
3

(F ) is utilized to a particle, its acceleration (a) is determined by
the force and its mass (M).

F = G
M1M2

R2 (1)

Where G is the gravitational constant, which decreases with
increasing time, and it is calculated as equation (2) [29].

G(t) = G (t0) ×

(
t0
t

)β

, β < 1 (2)

a =
F
M

(3)

The GSA is similar to the above basic laws with minor mod-
ifications in Eq. (1). Where Rashid [26] stated that based on
the experimental results, inverse proportionality to distance (R)
produces better results than R2. The GSA can be expressed as an
isolated N particle system, and their masses measure their perfor-
mance. All particles attract each other by the force of gravity, and
this force causes a universal movement of all particles towards
the particles that have heavier mass. Consequently, masses col-
laborate using a direct form of communication through the force
of gravity. The heavy masses represent good solutions as they
move more slowly than lighter mass, while light masses represent
worse solutions, moving towards the heavier masses faster. Each
mass has four specifications: active gravitational mass, passive
gravitational mass, inertial mass, and position. The mass’ position
corresponds to a solution to the problem, and the other specifica-
tions of the mass (active gravitational mass, passive gravitational,
inertial mass) are determined utilizing the fitness function. The
algorithm of GSA can be summarized in eight steps as follows:

• Step one: Initialization
Assuming there is an isolated system with N particles
(masses), the position of ith particle is denoted as :

Pi =
(
p1i , p

2
i , . . . , p

d
i , . . . , p

N
i

)
for i = 1, 2, 3, . . . , N (4)

Where pdi presents the position of ith particle in the dth
dimension.

• Step two: Fitness evaluation of particles
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In this step, the worst and best fitness is calculated as
Eqs. (5) and (6) respectively for a minimization problem, and
calculated as Eqs. (7) and (8) respectively for a maximization
problem.

worst(t) = max
j›{1,..., N}

fitnessj(t) (5)

best(t) = min
j›{1,..., N}

fitnessj(t) (6)

worst(t) = min
j›{1,..., N}

fitnessj(t) (7)

best(t) = max
j›{1,..., N}

fitnessj(t) (8)

Where fitnessj(t) is the fitness of the jth particle at time t .
• Step three: Calculate the gravitational constant G(t)

In this step, the gravitational constant G(t) at time t is
calculated as follows [30]:

G(t) = G0 × (1 −
t

tmax
) (9)

Where G0 represents the initial value of the gravitational
constant initializes randomly, t is the current time, tmax is
the total time.

• Step four: Update the inertial and gravitational masses
In this step, the inertia and gravitational masses are updated
by the fitness function. Assuming the equality of the inertia
and gravitational mass, the masses’ values are calculated as
follows:

Mii = Mpi = Mai = Mi for i = 1, 2, 3, . . . , N (10)

mi(t) =
fitnessi(t) − worst(t)
best(t) − worst(t)

(11)

Mi(t) =
mi(t)∑N
j=1 mj(t)

(12)

Where fitnessi(t) is the fitness of the ith particle at time t ,
Mi(t) is the mass of the ith particle at time t .

• Step five: Compute the total force
In this step, the total force F d

i (t) that exerting on particle i
in a dimension d at time t is calculated as follows:

F d
i (t) =

kbest∑
j=1,j̸=i

randjF d
ij (t) (13)

Where randj is a random number ∈ [0, 1], kbest is the
set of first kbest particles with the best fitness value and
the biggest masses. F d

ij (t) is the force exerting from mass
‘j’ on mass ‘i’ at time ‘t ’ and is calculated as the following
equation:

F d
ij (t) = G(t)

Mpi(t) × Maj(t)
Rij(t) + τ

(
pdj (t) − pdi (t)

)
(14)

Where Mpi represents the passive gravitational mass associ-
ated with particle i, Maj represents the active gravitational
mass associated with particle j. τ is a small positive constant
to prevent division by zero, Rij(t) represents the Euclidian
distance between particles j and i:

Rij(t) =
pi(t), pj(t)2 (15)

• Step six: compute the velocity and acceleration
In this step based on F d

i (t), the acceleration of the particle i,
adi (t), at time t in the direction dth, and the next velocity of
the particle i in the direction dth, ud

i (t + 1), are calculated
as follows:

adi (t) =
F d
i (t) (16)
Mii(t)
4

ud
i (t + 1) = randi × ud

i (t) + adi (t) (17)

Where Mii(t) represents the inertial mass of ithparticle, randi
is a random number ∈ [0, 1].

• Step seven: update particles’ position
In this step the next position of the particle i in the direction
dth, pdi (t + 1), is calculated as follows:

pdi (t + 1) = pdi (t) + ud
i (t + 1) (18)

• Step eight: Repeat steps two to seven until the stop criteria
are reached; these eight steps are illustrated by a flowchart
shown in Fig. 2.

2.2. Convolutional neural networks

In this section, the main structure of any CNN architecture will
be illustrated. Additionally, the transfer learning method and how
to apply this method using a pre-trained CNN architecture will be
explained.

Network Structure: CNN architectures consist of two bases,
namely convolutional base and classifier base.

The convolutional base includes three significant types of lay-
ers are: convolutional layers [31], activation layers [32], and
pooling layers [33]. These types of layers are used to discover
the basic features of input images, which are called feature maps.
A feature map is getting by performing convolution processes to
the input image or prior features using a linear filter, merging
a bias term. Then passing this feature map through a non-linear
activation function such as Sigmoid [34] and Rectified Linear Unit
(RELU) [35]. In contrast, the classifier base includes the dense
layers combined with the activation layers to convert the feature
maps to one dimension vectors to expedite the classification task
using many neurons. Usually, one or more dropout layers [36] are
added to the classifier base to minimize the overfitting that may
encounter CNN architectures and improve their generalization.
Adding any dropout layer to the classifier base introduces a new
hyperparameter called dropout rate. This hyperparameter deter-
mines the probability at which outputs of the layer are removed,
or reciprocally, the probability at which outputs of the layer are
kept. Typically, the dropout rate is set in the range from 0.1 to
0.9 [37].

Transfer Learning: One of the famous and very influential
techniques for dealing with small datasets is using a pre-trained
network. A pre-trained network is a network that was trained
on a vast dataset, usually in the task of categorizing images, and
then its architecture and weights were preserved. If this initial
dataset is big enough and general enough, the set of features
that the pre-trained network has learned can be useful as a
general visual model. Therefore, these features can help several
different computer vision tasks, even if the new tasks may contain
fully different categories from the initial task [38,39]. For exam-
ple, networks that have been trained on the ImageNet database,
such as DenseNet121 [40], can reset to something as remote as
exploring medical image features. Transfer learning from a pre-
trained network can be applied in two ways, namely feature
extraction and fine-tuning. The Feature extraction involves taking
the convolutional base of a pre-trained network to extract the
new dataset features and then training a new classifier on top of
these outputs. The fine-tuning is complementary to the feature
extraction method, where it involves unfreezing the last layers
of the frozen convolutional base utilized for the feature extrac-
tion. The unfrozen layers are then retrained in combination with
the new classifier previously learned in the feature extraction
method. The fine-tuning method aims to adjust the pre-trained
model’s most abstract features to make them more relevant to
the new task. The steps for using these ways can be explained as
follows [41]:
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Fig. 2. GSA flowchart.
Table 1
Number of cases of COVID-19, SARS, ARDS, Pneumocystis and Streptococcus, number of cases diagnosed with X-rays, and CT scans in each
cause of pneumonia, and the total number of cases in the COVID19 Chest X-ray dataset.
The cause of
pneumonia

Total number
of samples

Number of cases diagnosed
with X-ray images

Number of cases
diagnosed with CT scans

COVID-19 121 99 22
SARS 11 11 –
ARDS 4 4 –
Pneumocystis 6 6 –
Streptococcus 2 2 –
Undefined 6 6 –
Total 150 128 22
- A pre-trained network is taken, and its classifier base is
removed.

- The convolutional base of the pre-trained model is frozen.
- A new classifier is added and trained on top of the convolu-
tional base of the pre-trained network.

- Unfreeze some layers of the convolutional base of the pre-
trained network.

- Finally, both these unfrozen layers and the new classifier are
jointly trained.

3. Binary COVID-19 dataset description

The binary COVID-19 dataset used in this paper is a combina-
ion of two datasets. The first dataset is the COVID19 Chest X-ray
ataset made available by Dr. Joseph Paul Cohen of the University
f Montreal [42]. The COVID19 Chest X-ray dataset consists of 150
hest X-ray and CT images as of the time of writing this paper, 121
mages of this dataset represent cases infected with the COVID-
9. While 11 images represent cases infected with SARS, and four
mages represent cases infected with acute respiratory distress
5

syndrome (ARDS). This dataset also contains five pneumocystis
cases and six cases of streptococcus, as shown in Table 1.

The COVID19 Chest X-ray dataset contains many metadata for
each image. The most important of which are: offset, sex, age,
finding, survival, modality, date, location, and clinical observa-
tions about the radiograph in particular, not just the patient. The
offset is the number of days since the onset of symptoms or
hospitalization; the offset values ranged from 0 to 32. The ages
of the patients enrolled in this dataset ranged from 12 to 87.
While the finding field explains the cause of pneumonia, and the
surviving field clarifies whether the patient is still alive or not.
The modality defines how the diagnosis was made, either X-ray
or CT scan. Fig. 3 shows some samples of the COVID19 Chest X-ray
dataset and metadata for each sample.

The second dataset is the Kaggle Chest X-ray dataset made
available for a Data Science competition [43]. This dataset con-
sists of 5811 X-ray images, 1538 images represent normal cases,
and 4273 images represent pneumonia cases. The binary COVID-
19 dataset was built to distinguish COVID-19 cases from those
suffering from other diseases and healthy cases using only X-

ray images. The cases that were diagnosed using CT scans were
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Fig. 3. Some images of the COVID19 Chest X-ray dataset, next to each image is its metadata.
xcluded. The used dataset consists of two categories: positive
nd negative, as shown in Table 2. The positive category contains
9 X-ray images representing cases infected with the COVID-
9, taken from the COVID19 Chest X-ray dataset. The negative
ategory contains 207 X-ray images, 104 images in this category
epresent healthy cases, and 80 images represent pneumonia
ases, taken from the Kaggle Chest X-ray dataset. The other 23
mages in the negative category represent cases affected by SARS,
RDS, pneumocystis, or streptococcus, taken from the COVID19
hest X-ray dataset. Some images of each category of the binary
OVID-19 dataset are shown in Fig. 4.

. The proposed GSA-DenseNet121-COVID-19 approach

The proposed approach GSA-DenseNet121-COVID-19, relies
n the transfer learning from a pre-trained CNN architecture.
he pre-trained architecture utilized in the proposed approach is
enseNet121. For this architecture’s best performance, its hyper-
arameters have been optimized using the GSA. After determin-
ng the optimal values for these hyperparameters, DenseNet121
as trained using transfer learning techniques. Once this training

s completed, it is evaluated using a separate test set. In other
ords, the training and validation sets were used to determine
he optimal values for the hyperparameters of the DenseNet121
nd trained it. Whereas the fully trained DenseNet121 is then
valuated using the test set. The proposed approach consists of
our main stages, as shown in Fig. 5. The first stage is the data
reparation, the second stage is the hyperparameters selection,
he third stage is the learning, and the performance measurement
s the fourth stage. Each stage will be explained in detail in the
ollowing sections.

.1. Data preparation stage

As explained in the data description section, the positive cat-
gory of the binary COVID-19 dataset contains 99 samples, while
he negative category includes 207 samples, which means that
6

this dataset is not balanced. In most cases, not all ML algo-
rithms can handle this type of dataset well. Because most of
the information available in this type of dataset belongs to the
dominant category, making any ML algorithm learn to categorize
the dominant class and not categorize the other minor category.
Therefore, samples in the positive category have been increased
by randomly copying some images after cutting each image. So
that random copying does not cause the used CNN architecture
to overfit the dataset. After that, the dataset became balanced,
with each category containing 207 images.

The balanced binary COVID-19 dataset was divided into three
sets: training set, validation set, and testing. The training set con-
tains 70% of the dataset; that is, it has about 146 images in each
category. While each of the validation and the test set contains
15% of the dataset samples; that is, each set includes 31 images
in each category. Various data augmentation techniques [44]
have been applied to increase the number of training samples to
reduce overfitting and improve generalization. The data augmen-
tation techniques used are brightness, rotation, width shift, height
shift, shearing, zooming, vertical flip, and horizontal flip. Also, fea-
turewise centering, featurewise standard deviation normalization
and fill mode. Before the images were supplied to other stages,
they were resized to a 180 x 180.

4.2. Hyperparameters selection stage

As previously reviewed in Section 2.2, the transfer learning
method takes the same structure of the pre-trained network after
making minor changes. The most crucial change is to replace the
classifier with a new one, which requires changing the values
of some hyperparameters or adding new ones. Examples of the
hyperparameters that require modification are the batch size, the
learning rat’s value, and the number of neurons in the dense layer.
The hyperparameter that may add is the rate of the dropout layer.
In the proposed GSA-DenseNet121-COVID-19, three hyperparam-
eters have been optimized, namely the batch size, the rate of the
newly added dropout layer, and the number of the neurons of the
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Fig. 4. Representative images of the positive and negative categories of the binary COVID-19 dataset.

Fig. 5. The structural form of the proposed approach GSA-DenseNet121-COVID-19 for the binary COVID-19 dataset, DA=Data Augmentation, FE=Feature Extraction,
FT=Fine Tuning.

7
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Table 2
Details of samples included in each category of the binary COVID-19 dataset in terms of sample type, number of samples, and sample source.
For each category, the total number of samples is reported.
Category Sample type Number of

samples
Sample source Total number of samples

in the category

Positive COVID-19 99 COVID19 Chest X-ray dataset 99

Negative

Healthy 104 Kaggle Chest X-ray dataset

207

Pneumonia 80 Kaggle Chest X-ray dataset
SARS 11 COVID19 Chest X-ray dataset
ARDS 4 COVID19 Chest X-ray dataset
Pneumocystis 6 COVID19 Chest X-ray dataset
Streptococcus 2 COVID19 Chest X-ray dataset
C
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first dense layer. Therefore, the search space is three-dimensional,
and each point in the space represents a mixture of these three
hyperparameters.

4.3. Learning stage

The feature extraction and fine-tuning techniques are utilized
o prepare the DenseNet121 architecture to learn from the binary
OVID-19 dataset. In the feature extraction, the convolutional
ase is kept unchanged, Whereas, the original classifier base is
eplaced by a new one that fits the binary COVID-19 dataset.
he new classifier consists of four stacked layers: a flatten layer,
nd two dense layers separated by a new dropout layer. GSA
etermines the number of neurons in the first dense layer that
ses RELU as an activation function and the dropout layer rate.
he second dense layer has one neuron with a sigmoid function.
fter training the new classifier for some epochs, the fine-tuning
s configured by retraining the last two blocks of the convolu-
ional base of the DenseNet121 with the newly added classifier
imultaneously.

.4. Performance measurement stage

At this phase, the proposed approach is evaluated. Six mea-
ures are utilized to evaluate the proposed approach, namely
ccuracy, precision, recall, F1 score, and confusion matrix. Ac-
uracy is among the foremost remarkably used measures for
easuring the performance of classification models. It is outlined
s a proportion between correctly classified samples to the overall
umber of samples as shown in Eq. (19). The error rate is the
omplement of the accuracy; it represents the samples that are
isclassified by the model and calculated as Eq. (20) [45].

ccuracy =
TP + TN

TP + TN + FP + FN
(19)

rror rate = 1 − Accuracy =
FP + FN

TP + TN + FP + FN
(20)

here P= the number of the positive samples, and N= the num-
ers of the negative samples.
Precision as shown in Eq. (21), it is the number of true posi-

ives divided by the number of true positives and false positives.
n other words, it is the number of positive predictions divided by
he total number of positive category values predicted. Precision
an be considered a measure of the rigor of a classifier. A low
recision can also indicate a large number of false positives [46].

recision =
TP

TP + FP
(21)

ecall, which also termed as sensitivity is the number of true
ositives divided by the number of true positives and the number
f false negatives as shown in Eq. (22). In other words, it is the
umber of positive predictions divided by the number of positive
lass values in the test set. Recall can be considered a measure
 c

8

Table 3
The augmentation techniques and the range of each technique.
Augmentation technique Range

Shearing 0.2
Zooming 0.3
Width shift 0.4
Height shift 0.4
Rotation 15
Brightness [0.5, 1.5]
Featurewise center True
Featurewise standard deviation normalization True
Fill mode Reflect
Vertical flip True
Horizontal flip True

of how complete a classifier is. A low Recall indicates many false
negatives [46].

Recall =
TP

TP + FN
(22)

F1 score, which is also termed as F score, is a function of precision
and recall and calculated as Eq. (23). It is used to seek a balance
between precision and recall [46].

F1Score = 2 ∗
Precision ∗ Recall
Precision + Recall

(23)

onfusion Matrix is a synopsis of the prediction results regarding
he classification problem. The confusion matrix gives insight
nto not only the mistakes committed by the classifier but, more
mportantly, the types of errors that are made [47].

. Experiment results

This section presents and analyzes the results obtained through
he proposed approach described in detail in Section 4. All the
roposed approach procedures have been executed on Google
olaboratory [48] and implemented using Python with Keras [49].
eras is a high-level neural network API, written in Python and
apable of running on top of TensorFlow, CNTK, or Theano. It
as developed for rapid use and the ability to conduct several
xperiments and get results as quickly as possible and the lowest
elay, which helps to conduct adequate research. The results are
ivided into five sections to display clearly.

.1. Conducting the data augmentation techniques

The Keras ImageDataGenerator was utilized to implement
ugmentation techniques to increase the number of images of the
inary COVID-19 dataset’s training set. The data augmentation
echniques used and the range used for each technique are
isted in Table 3. Fig. 6 illustrates some of the images obtained
y applying augmentation techniques to one image from each
ategory.
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Fig. 6. Some samples generated from applying various augmentation techniques.
able 4
reparation of the required parameter values for GSA in conjunction with
ensNet121.
Parameter Value

Maximum number of iterations 15
Population size 30
Dimension 3
Batch size bounds [1,64]
Dropout rate bounds [0.1,0.9]
Number of neurons bounds [50,500]
Maximum number of DenseNet121 training epochs 10

5.2. Setting up the GSA for the hyperparameters selection stage

The search space for hyperparameters whose values are to be
et by the GSA was bounded as follows. The searching range of
atch size was bounded by [1,64], and the searching space of
he dropout rate was bounded by [0.1,0.9]. While the searching
pace of the number of neurons is bounded by [5,500], as listed
n Table 4.

The GSA parameters’ values were randomly specified, where
he maximum number of iteration and population size set to
5 and 30, respectively, as listed in Table 4. The number of
enseNet121 training epochs was chosen by experimenting with
ore than one value. The experiment concluded that when using
number of epochs over ten, the training process for each of

he GSA takes exponential time. While when using less than
en epochs, the results of the DenseNet121 were not sufficiently
ccurate. Therefore, the number of epochs used to train the
enseNet121 was set to ten epochs. The goal of using the GSA is
o reduce the loss rate of the validation set as much as possible.
he proposed GSA solutions’ suitability is evaluated based on
he achieved loss rate of the validation set using these proposed
olutions after ten network training periods.
After completing the approximately 11-hour GSA training, the

ptimum values for the batch size, dropout rate, and number
f neurons of the first dense layer were determined. Table 5
hows the optimal values for the hyperparameters selected by
SA, where the batch size, dropout and the number of neurons
re 8, 0.1, 110 respectively.

.3. Learning the DenseNet121 using the optimized hyperparameters

At this stage, the DenseNet121 was trained using the optimal
alues for the hyperparameters chosen by GSA. DenseNet121
rchitecture was trained on the training set and evaluated on the
9

Table 5
Optimal values for the hyperparameters that were determined by GSA.
Hyperparameters Optimal values

Batch size 8
Dropout rate 0.1
Number of neurons of the first dense layer 110

validation set for K number of epochs. To determine the value
of K, several experiments were conducted, and it was found that
the DenseNet121 achieved the best results on the validation set
around the 30th epoch within the feature extraction method.
While about the 40th epoch within the fine-tuning method and
that no improvement was observed after that. Thus, the value of K
was marked to 30 within the feature extraction and 40 within the
fine-tuning. To minimize the overfitting, the process of the train-
ing was forced to finish before repetition K if no improvement
was perceived for seven iterations, this control was made using
early stopping [50]. As the COVID-19 dataset used is a binary-
class classification problem, the DenseNet121 is compiled with
the binary cross-entropy [51]. The Adam optimizer algorithm [52]
was used with a constant learning rate =2e-5 within the feature
extraction method. Within the fine-tuning method, a step decay
schedule [53] was utilized, where the initial learning rate LR0 =

1e − 5, and the value of the learning rate drops by 0.5 every 10
training epochs. The use of a low learning rate in the fine-tuning
method is due to the fact that the number of changes that will
occur in this method should be very small. So that the features
learned from the feature extraction method are not lost.

5.4. Measuring the performance of GSA-DenseNet121-COVID-19

This section presents the results of the performance evalu-
ation of the DenseNet121 architecture using hyperparameters
values specified by the GSA. The performance of the proposed
approach GSA-DenseNet121-COVID-19 was evaluated using ac-
curacy, loss rate, precision, recall, and F1 score. The proposed
approach achieved 98.38% accuracy in the test set, the average
precision, recall, and f1 score were 98.5%, 98.5%, and 98%, respec-
tively. The macro average and weighted average for the precision,
recall, and F score was equal as the values for both were 98%, as
listed in Table 6.

To find out the number of samples incorrectly classified by the
proposed approach

GSA-DenseNet121-COVID-19. As well as the number of sam-
ples that it was able to classify correctly, the confusion matrix
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Fig. 7. The confusion matrix obtained from the proposed approach GSA-
DenseNet121-COVID-19.

Table 6
The performance of the proposed approach GSA-DenseNet121-COVID-19 and the
overall performance is calculated using macro and weighted average.
Categories Precision Recall F1 score

Negative 97% 100% 98%
Positive 100% 97% 98%
Average 98.5% 98.5% 98%
Macro Average 98% 98% 98%
Weighted Average 98% 98% 98%

Table 7
Comparison of the proposed GSA-DenseNet121-COVID-19 performance with the
performance of the SSD-GSA approach and Inception-v3. MA-Precision=macro
verage of precision, MA-Recall = macro average of recall, and MA-F score =

acro average of F-score.
Comparison items Proposed approach SSD-DenseNet121 Inception-v3

Batch size 8 6 10
Dropout rate 0.1 0.71 0.5
Number of neurons 110 220 150
Accuracy 98.38% 94% 95%
MA-Precision 98% 94% 96%
MA-Recall 98% 94% 95%
MA-F Score 98% 94% 95%

was used as shown in Fig. 7. The dark-colored shaded cells of the
confusion matrix represent samples that were correctly catego-
rized in each category. Whereas, the light-colored shaded cells of
the confusion matrix represent incorrectly categorized samples in
each category.

As shown in the confusion matrix in Fig. 7, the proposed ap-
roach GSA-DenseNet121-COVID-19 erroneously classified only
ne sample from the test group, while it succeeded in classify-
ng all other samples. Fig. 8 shows the results of the proposed
pproach for four images. The images surrounded by a green
ectangle represent the images that the proposed approach cor-
ectly classified. While the image surrounded by the red rectangle
epresents the only sample that the proposed approach has incor-
ectly classified. The image in the red rectangle is an image that
elongs to the positive category. However, the proposed approach
lassified this image as belonging to the negative category with
certainty of 83.8% as a first decision and to a positive category
ith a certainty of 16.2% as a second decision.
To know whether the proposed GSA-DenseNet121-COVID-19

s aware of X-rays as radiologists do, or whether it is learning
nhelpful features to make predictions. The gradient weighted
lass activation mapping (Grad-CAM) [54] was used. As shown in
ig. 9, the Grad-CAM visualization of a positive sample and a neg-
tive sample, prove the effectiveness of the proposed approach in

etermining the important features relevant to each category.

10
5.5. Comparison with other methods and related work

To ensure the effectiveness of the GSA in determining opti-
mum values for the hyperparameters of the DenseNet121 archi-
tecture that can achieve the highest level of accuracy. It has been
compared with the SSD algorithm [55] that has been proven
effective in determining optimal values for the hyperparameters
of the CNN architecture used to detect the nanoscience scanning
electron microscope images [25]. For a fair comparison between
GSA and SSD algorithm. The values of the SSD algorithm param-
eters have been set with the same values that have been set for
the GSA parameters, as shown in Table 4. After the SSD algorithm
has completed the training process, the batch size value was set
to 6, while the number of neurons and the dropout rate were
set to 220 and 0.71, respectively. The comparative results showed
that the GSA is more suitable for pairing with the DenseNet121 to
classify the binary COVID-19 dataset. Where the GSA was able to
choose better values for the hyperparameters of DenseNet121 ar-
chitecture, which in turn made this architecture achieve a higher
accuracy ratio. Where the approach SSD-DenseNet121 achieved
an accuracy rate of 94% on the test set. As well as the macro
average for the precision, recall, F1 score of the SSD-DenseNet121
were equal as the values for both were 94%, as listed in Table 7.

To ensure the performance of the proposed approach GSA-
DenseNet121-COVID-19 as a whole. It was compared with the
Inception-v3 architecture based on the manual search. The man-
ual search indicates that the values of the Inception-v3 hyperpa-
rameters were randomly chosen. Where the values of batch size,
dropout rate, and the number of neurons were set manually to
16, 0.5, 250, respectively. The results of this comparison showed
that the proposed GSA-DenseNet121-COVID-19 was superior to
the Inception-v3 architecture based on the manual search. Where,
the accuracy of the Inception-v3 architecture is 95%, while the
macro average precision, recall, and F1 score of this architecture
are 95%, 96%, 95%, 95%, respectively, as shown in Table 7.

The proposed GSA-DenseNet121-COVID-19 performance was
also compared with other published approaches that were in-
troduced for the same purpose of diagnosing COVID-19 using
X-ray images. The other approaches included in [14–17,19] were
selected for comparison, as they relied on CNN architectures
and were trained on a variety of data samples. The proposed
approach has been compared to other approaches in terms of
the number and variety of samples used, accuracy, precision,
recall, and f score, as shown in Table 8. In [14], many of the CNN
architectures were evaluated to classify two datasets. However,
the best performance was for the MobileNet architecture on the
second dataset containing 224 samples of COVID-19, 504 healthy
samples, and 714 samples of pneumonia. The MobileNet obtained
an accuracy, precision, and recall rate of 96.78%, 96.46%, and
98.66%, respectively, in the second dataset classification when
it was treated as a binary classification problem, as shown in
the second row of Table 8. In [15], the proposed DarkCovidNet
was able to be more accurate by classifying the two categories
more than classifying the three categories, as shown in rows 3
and 4 of Table 8. Whereas in [16], after the CNN-SA approach
was trained in healthy and COVID-19 cases only, it was able to
achieve a rate of 96% for both accuracy, precision, recall, and
f score. The CoroNet proposed in [17] has performed better in
the binary classification that includes only healthy and COVID-19
cases, than the multi-category classification that includes various
types of samples, as shown in rows 5, 6, and 7 of Table 8. While
the Deep Bayes-SqueezeNet approach [19], having been trained
on a relatively large number of samples, was able to achieve 97%
for both accuracy, precision, recall, and f score, as shown in the

eighth row of Table 8.
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Fig. 8. Illustrative examples of some correctly labeled samples (enclosed in a green rectangle) and the incorrectly labeled sample (enclosed in a red rectangle) from
the test set.
Fig. 9. The Grad-CAM visualization of a positive sample and a negative sample.
Table 8 shows that although the proposed GSA-DenseNet121-
OVID-19 has been trained in a smaller and more diverse num-
er of samples than its counterparts. The proposed GSA-
enseNet121-COVID-19 managed to outperform both DarkCovid-
et and CNN-SA. Likewise, the results of GSA-DenseNet121-
OVID-19 outperformed the results of MobileNet in terms of
11
accuracy and precision but were slightly smaller in the recall.
The proposed GSA-DenseNet121-COVID-19 is very competitive
with the Deep Bayes-SqueezeNet. Since the results of GSA-
DenseNet121-COVID-19 are better than the results of Deep Bayes-
SqueezeNet in terms of precision and recall, they are approx-
imately equal in accuracy and slightly less in result f score.
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able 8
comparison between the results of the proposed approach and the best results achieved by the other proposed approaches listed in [14–17,19].
Approach Number of original samples Number of

classes
Accuracy Average

precision
Average
Recall

Average
F score

MobileNet [14] 224 COVID-19
504 Healthy
714 Pneumonia (400 bacterial + 314
viral)

2 classes 96.78% 96.46% 98.66% –

DarkCovidNet [15] 125 COVID-19
500 No- Findings

2 classes 98.08%. 98.03% 95.13% 96.51%

DarkCovidNet [15] 125 COVID-19
500 No- Findings
500 Pneumonia

3 classes 87.02% 89.96% 85.35% 87.37%

CNN-SA [16] 403 COVID-19
721 Normal

2 classes 95% 95% 95% 95%

CoroNet [17] 284 COVID-19
310 Normal
330 Pneumonia Bacterial
327 Pneumonia Viral

4 classes 89.6% 90% 89.92% 89.8%

CoroNet [17] 284 COVID-19
310 Normal
657 Pneumonia (330 bacterial + 327
viral)

3 classes 95% 95% 96.9% 95.6%

CoroNet [17] 284 COVID-19
310 Normal

2 classes 99% 98.3% 99.3% 98.5%

Deep
Bayes-SqueezeNet
[19]

76 COVID-19
4290 Pneumonia (bacterial + viral)
1583 Normal

3 classes 98.3% 98.3% 98.3% 98.3%

Proposed
GSA-DenseNet121-
COVID-19

99 COVID-19
11 SARS
4 ARDS
6 Pneumocystis
2 Streptococcus
104 Healthy
80 pneumonia

2 classes 98.38% 98.5% 98.5% 98%
The DenseNet121-COVID-19 was superior to the CoroNet when
the latter was trained on a variety of samples, just as the
DenseNet121-COVID-19 was trained.

6. Conclusions and future work

This paper proposes an approach called GSA-DenseNet121-
OVID-19 that can be used to diagnose COVID-19 cases through
hest X-ray images. The proposed GSA-DenseNet121-COVID-19
onsists of four main stages are (1) data preparation stage, (2)
he hyperparameters selection stage, (3) the learning stage, (4)
he performance measurement stage. In the first stage, the binary
OVID-19 dataset was handled from the imbalance and then
ivided into three sets, namely training set, validation set, and
est set. After increasing the number of samples of the training set
n the first stage using different data augmentation techniques,
hey were used in the second stage with the validation set. In the
econd stage, GSA is used to optimize some of the hyperparam-
ters in the CNN architecture used which is called DenseNet121.
n the third stage, DenseNet121 was completely trained using
he values of the hyperparameters that were identified in the
revious stage which in turn helped this architecture to diagnose
8.38% of the test set in the fourth stage. The proposed approach
as compared to more than one approach, and the results of the
omparison showed the effectiveness of the proposed approach in
iagnosing the COVID-19. In future work, the number of samples
sed to train the proposed approach can be increased to improve
ts performance in the diagnosis of COVID-19. In addition, the
umber of other diseases causing pneumonia may be increased
nd the proposed approach can be used to distinguish them from
he COVID-19.
12
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