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Abstract: Benefiting from ultra-high theoretical capacity, silicon (Si) is popular for use in energy storage
fields as a Li–ion battery anode material because of its high-performance. However, a serious volume
variation happens towards Si anodes in the lithiation/delithiation process, triggering the pulverization
of Si and a fast decay in its capacity, which greatly limits its commercial application. In our study,
a porous Si/Fe2O3 dual network anode was fabricated using the melt-spinning, ball-milling and
dealloying method. The anode material shows good electrochemical performance, delivering a
reversible capacity of 697.2 mAh g−1 at 200 mA g−1 after 100 cycles. The high Li storage property is
ascribed to the rich mesoporous distribution of the dual network structure, which may adapt the
volume variation of the material during the lithiation/delithiation process, shorten the Li–ion diffusion
distance and improve the electron transport speed. This study offers a new idea for developing
natural ferrosilicon ores into the porous Si-based materials and may prompt the development of
natural ores in energy storage fields.
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1. Introduction

With the fast development of the market economy, the requirements for energy storage devices
are constantly improving [1–3]. Lithium–ion batteries (LIBs) are identified as attractive energy
maintaining devices because of their high specific energy, long service life and excellent environmental
compatibility [4–6]. At present, the low theoretical capacity of the graphite anode restricts its commercial
application in the high-end market [7,8]. To enhance the properties of LIBs further, it is necessary to
develop new anodes with high performance. Silicon (Si) is considered to be one of the potential candidates
to substitute conventional carbon anode for next-generation LIBs on account of the characteristics of
extremely high theoretical mass-specific capacity (4200 mAh g−1), low working voltage and high natural
abundance [9,10]. The main obstacle to its practical application is the tremendous volume variation
(≈420%) during repeated lithiation/delithiation procedures [11], bring about pulverization, shedding
of active materials and rapid decay of capacity [12–14]. To accommodate the volume variation of Si
and boost the electrochemical properties of LIBs, some strategies have been proposed by scholars from
various countries. Firstly, once the Si materials were produced into different nanomaterials, such as
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nanoparticles, nanotubes, nanowires, nano hollow structures and so on [15–17], they can provide
shorter transmission paths and reduce the diffusion distance of Li+. Secondly, many Si nanostructures
may provide sufficient space to suppress the volume variation and capacity attenuation [18–20].
At present, the traditional methods of preparing Si-based nanostructured materials mainly include
chemical vapor deposition, high-temperature laser evaporation, self-assembly growth method and
so on [21,22]. Furthermore, the formation of composites between Si and metal oxides (relatively
low theoretical specific capacity) can also alleviate the volume change and structural damage of Si
anodes to some extent, inducing an improvement in cycling stability [23]. David Zitoun et al. [24]
synthesized Si/γ-Fe2O3 as an anode material for LIBs by successive organometallic decomposition
of pentacarbonyl-iron on Si nanomaterials subsequently by redox reactions, demonstrating a high
reversible capacity of 2600 mAh g−1; however, the above method seems difficult to satisfy the demands
of industrial application because of its complex preparation process, strict preparation conditions and
high cost both in materials and equipment.

In the current work, we propose a new process to fabricate porous Si/Fe2O3 dual-network
composite derived from natural ferrosilicon ores using the melt-spinning, ball-milling and dealloying
process, in which the dual network structure, with abundant mesopores, contains the low-capacity
Fe2O3 network and the high-capacity Si network. In addition, natural ferrosilicon ores are abundant
in reserves and are used as deoxidizers in the steelmaking industry. They are used to synthesize
anode materials of LIBs in this study, which greatly reduces the cost of raw materials, meaning that
ferrosilicon ores can also be used as a cheap and sufficient resource for large-scale preparation of
Si-based anode materials. The strategy also provides an idea for the preparation of low-cost Si-based
anode materials.

2. Materials and Methods

The typical synthesis route is shown in Figure 1. Firstly, the arc-melting method [25] was used
to prepare the master alloy ingot. Ferrosilicon ore (Fe: 27.15 wt.%, Si: 72.36 wt.%, total of other
associated elements Mn, C, S, P, etc.: 0.49 wt.%) and aluminum ingots (99.99 wt.%) were produced into a
Fe1.9Si10.1Al88 alloy ingot by high-temperature electric arcs. Then, Fe1.9Si10.1Al88 ribbons were obtained
using the melt-spinning process [26]. In this situation, the melts were sprayed onto a water-cooled Cu
roller with a rotate speed of 1800 r/min to produce ribbons tens of centimeters long, 20 microns thick
and 3 mm wide. A 2.0 g ribbon was placed in a ball mill tank with stainless steel balls, where the ratio
of grinding media to material was 20:1. To prevent oxidation of the sample, n-heptane was added into
the tank and the liquid level was ensured to exceed the sample. Three kinds of powder precursors
were obtained by ball-milling the ribbons for 24–72 h at a rotation speed of 600 r/min at ambient
temperature. The samples were rinsed with anhydrous ethanol to remove n-heptane and dehydrated
in a vacuum drying box at 60 ◦C for 12 h to obtain the BM-24, BM-48 and BM-72 samples, respectively.
Then, the above samples were dealloyed in 1.25 M NaOH solution for 4 h [27,28]. After washing in
ethyl alcohol and drying in vacuum drying box at 60 ◦C for 12 h, the dealloyed products of BM-24-4,
BM-48-4 and BM-72-4 were finally synthesized. In particular, the above process can be improved by a
scale-up continuous melt-spinning process [27]. Tens of kilograms of alloy ribbons with a large output
can be prepared for each furnace, inducing a relatively low cost per cell. As a result, all the processes
are suitable for mass production or can be produced in batches. In addition, the dealloying process
is free of costly reagents and free of solutions that could lead to serious environmental pollution,
which provides many advantages, such as convenient operation and low environmental pollution.

The phase composition of the samples was analyzed by X-ray diffraction (XRD, Bruker D8-Discover,
Karlsruhe, Germany). The valence state of products was studied by X-ray photoelectron spectroscopy
(XPS, V-Sorb 2800P, Beijing, China). Raman spectra were tested via the Reflex machine. Scanning
electron microscope (SEM, JSM-7100F, Tokyo, Japan) and transmission electron microscope (TEM,
JEM-2100F, Tokyo, Japan) were used to observe the microstructure. The Brunauer–Emmett–Teller (BET)
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method was used to analyze the specific surface and the Barrett–Joyner–Halenda (BJH) method was
employed to determine the pore size distribution.

Si/Fe2O3 material, carboxymethyl cellulose (CMC) and conductive agent (Super P) (8:1:1, mass ratio)
were mixed in deionized water to create a slurry. The slurry was smeared onto the surface of the Cu
current collector (Cu foil) and dehydrated in a vacuum furnace at 60 ◦C for 12 h and then cut into discs
of 10 mm in diameter to make a working anode. The mass loading of the anode was in the range of
0.89–1.05 mg/cm2. In a glove box with an argon environment (H2O/O2, less than 0.01 PPM), the anode,
the lithium tablet cathode, the Celgard 2320 diaphragm and the electrolyte (1 M LiPF6 dissolved in
EC/DEC, 1:1 in volume ratio) were encapsulated in a CR2032 coin battery case. The electrochemical
impedance spectroscopy (EIS) and cyclic voltammetry (CV) curves of the cell were detected through an
electrochemical workstation (CHI760E) with a test scan speed of 0.1 mV s−1 in 0.01–3 V. Galvanostatic
charge/discharge curves were monitored on a newway battery tester in the range of 0.01–3 V (vs. Li+/Li).
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Figure 1. Schematic diagram presenting the fabrication route of Si/Fe2O3.

3. Results and Discussion

XRD results of the as-obtained ball-milled samples and the dealloyed samples are presented in
Figure 2a,b, respectively. After ball-milling for a different time, the samples present strong diffraction
peaks at 38.5◦, 44.7◦, 65.1◦ and 78.2◦, corresponding to (111), (200), (220) and (311) lattice planes of crystal
Al (JCPDS No.04-0787), respectively. While the peaks at 28.1◦, 34.6◦, 45.1◦ and 49.7◦ are consistent
with (110), (111), (210) and (211) lattice planes of FeSi phase (JCPDS No.38–1397), respectively [29–31].
With the extension of the ball-milling time, a part of the Al elements may dissolve into the FeSi phase,
inducing a broader peak. In addition, the relative intensity of the FeSi diffraction peak increases
gradually while that of the Al peak declines, indicating that the elemental distribution has greatly
changed, as shown in Figure 2a. No diffraction peak of Al can be found in the dealloyed materials
(Figure 2b), indicating that the most of Al elements have been leached out. In this situation, Fe elements
are oxidized concurrently in the dealloying process by oxygen dissolving in corrosion liquid, generating
Fe2O3. Besides the diffraction peak of Fe2O3, diffraction peaks of (111), (200) and (311) crystal planes
of Si phases are also observed [32–34]. The above results confirm that the as-synthesized dealloying
product is mainly composed of Si and Fe2O3 phases.
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Figure 2c displays the Raman spectra of the dealloyed products, the peaks observed at 520 cm−1

correspond to Si-Si bonds [35], while the peaks at about 293 cm−1 relate to the Fe-O bonds (Fe2O3) [36].
Furthermore, the peaks in the range of 900–1000 cm−1 are in accord with the multi-phonon peaks
of Si [37]. The Raman data indicate that the products mainly contain two components of Fe oxides
and Si, which is compatible with the XRD result. The inductively coupled plasma (ICP) result shows
that the weight ratio of Si, Fe2O3 and residual Al in the BM-24-4, BM-48-4 and BM-72-4 samples
are about 83.7:7.4:8.9, 75.1:19.4:5.5 and 63.2:32.7:4.1, respectively. This indicates that the ball-milling
process affects the elemental distribution of the precursor and thus influences the composition ratio of
dealloyed products.

The SEM images of the dealloyed products (BM-24-4, BM-48-4 and BM-72-4) are displayed in
Figure 3a–c. BM-24-4 presents a typical network-like structure consisting of ligaments and pores. It can
be observed that the surface of the ligaments is loaded with nanosheets. A large number of nanosheets
with a length of ~140 nm are connected together, but they block the pores of the network, which is not
conducive to the passage of lithium ions during charging and discharging process. Figure 3b presents
the dual network structure of BM-48-4, which is composed of the nanoparticles (diameter: ≤50 nm)
accumulation network and the nanosheets (length of ~500 nm) network. The nanoparticles fill the
interspace among the nanosheets network, improving the utilization rate of space. The two sets
of networks interpenetrate each other to form a double network structure, which is beneficial to
buffer the volume variation in the repeated charging/discharging procedure. Figure 3c shows the
microstructure of the BM-72-4 sample. It can be seen that the product is composed of a blocky structure
(accumulated by coarsened nanoparticles) and the thick nanosheets network, showing a composite
with poor porous structure.

The microstructure of the optimal BM-48-4 sample was further analyzed by TEM. The interlacing
distribution of nanoparticles and finely fragmented nanosheets demonstrates that the nanoporous
structure is formed across the composite as shown in Figure 3d. The measured crystal interplanar
distance of 0.31 and 0.20 nm shown in Figure 3e corresponds to (111) and (220) crystal planes of Si,
respectively. While the interplanar distance of 0.24 and 0.25 nm marked in Figure 3f corresponds to
(112) and (020) crystal planes of Fe2O3. These results indicate the co-presence of Si and Fe2O3, which
are consistent with XRD results. The elemental mapping of BM-48-4 shown in Figure 3g–l reveals
that Si, Fe, O and a small amount of residual Al elements were distributed in the sample. The energy
dispersive X-ray (EDX) spectrum (the insert in Figure 3l) reveals that the atomic ratio of Si, Fe, Al and
O is about 76.6:7.1:5.9:10.4. Si and Fe are enriched in different local areas (Figure 3h), which further
confirms the formation of the dual network structure composed of the corresponding product of Si
and Fe2O3.
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The formation process of iron oxide can be explained as follows. In the NaOH solution, OH−

groups violently collide with the Al-Fe-based ribbons to form the intermediate Fe(OH)2 [38]. Then,
this phase decomposes into Fe, Fe3O4 and H2. At the same time, the reduction of Fe3O4 by H2 happens,
inducing the formation of Fe2O3 and even α-Fe in the dealloying products. The composition of the
dealloyed product is affected by the concentration of the corrosive solution, the proportion of the
initial element, the ratio between the reactant and the corrosive solution, etc. In a more concentrated
NaOH solution (e.g., 10 M), the reaction between Al and NaOH is enhanced, producing H2 in a short
period. Most of the Fe3O4 is reduced and thus α-Fe will dominate in the reaction products. While
in NaOH solutions with appropriate concentrations (e.g., 1–2 M), iron oxides will dominate in the
reaction products.

Nitrogen adsorption–desorption isotherm and pore diameter distribution curves are displayed in
Figure 4a,b, respectively. The results show that the specific surface area of BM-48-4 (38.4 m2 g−1) is
higher than that of BM-24-4 (23.9 m2 g−1) and BM-72-4 (11.2 m2 g−1). A large number of mesopores
less than 10 nm exist in the product (Figure 4b), which can cushion the volume expansion of the
material and shorten the Li–ion diffusion distance. Based on the above analysis, BM-48-4 is expected to
possess relatively good electrochemical performance [39]. The surface elements and valence states of
BM-48-4 were analyzed by XPS. The full XPS spectrum shown in Figure 4c shows that elements Si,
Fe, Al, O and C exist in BM-48-4 without other impure substances. The appearance of Al 2p spectra
stems from un-dealloyed residual Al elements. The Si 2p spectrum in Figure 4d reveals two typical
peaks of Si located at 98.3 and 102.1 eV, relating to Si0 and Si4+, respectively. This indicates that slight
oxidation occurs in the outermost layer of Si [40]. Fe 2p spectrum in Figure 4e shows clear peaks
concentrated at 710.8, 724.8 and 719.8 eV, which are connected to Fe 2p3/2, Fe 2p1/2 and satellite peaks,
respectively. In addition, an energy difference of 14.0 eV between Fe 2p3/2 and Fe 2p1/2 can be obtained,
demonstrating the generation of Fe2O3 [41,42]. The O 1s spectrum shown in Figure 4f can be divided
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into two peaks, the peak at 531.8 eV is from hydroxyl (OH bond, possibly from residual sodium
hydroxide), and the wide peak centered at 530.8 eV can be attributed to the peak of metal bond in
oxide, namely Fe-O bond (OM bond) in Fe2O3 [43].
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To study the charging/discharging reaction mechanism of Si/Fe2O3 anode in detail, a CV test
was performed towards the BM-48-4 electrode with the scanning speed of 0.1 mV s−1 in the range of
0.01~3.0 V, as presented in Figure 5a. In the initial reduction process, an apparent peak at 0.2 V and a
steep peak appeared at 0.01~0.15 V can be found, relating to the creation of amorphous LixSi from
lithiation of crystal Si and the generation of solid electrolyte interphase (SEI) film. Two obvious peaks
of 0.3 V and 0.5 V correspond to delithiation reaction from LixSi to Si [44,45] in the first anode scan.
The peak appearing at about 1.1 V corresponds to the reaction between the surface oxygenic functional
groups and Li+ [46]. A relatively wide peak at 1.85 V is in connection with the oxidation of metal Fe to
Fe2+/Fe3+ and decomposition of Li2O. From the second cycle, two peaks can be found at 1.3 V and 0.68
V in the cathode reaction, which are believed to the multi-step electrochemical reaction from Fe2O3 to
Fe (Fe2O3→LixFe2O3→Li2Fe2O3→Fe) [47]. While the broad peak in the anode reaction is decomposed
into two peaks at 1.65 V and 1.85 V, relating to the transformation from Fe0 to Fe2+ and from Fe2+ to
Fe3+, respectively. In addition, the CV curves in different cycles reflect relatively good reversibility [48].
As the number of cycles increases, the closure area of CV curves decreases slightly, showing that the
BM-48-4 composite possesses acceptable cyclic stability. Although there have been a lot of studies
on the application of Fe2O3 anode in LIBs, there is some controversy on its electrochemical reaction
mechanism, and opinions have not been unified yet. A lot of detection and analysis is still needed in
the future.
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Figure 5. (a) Cyclic voltammetry (CV) curves of the BM-48-4 electrode detected at 0.1 mV s−1, (b) cyclic
performances of BM-24-4, BM-48-4, BM-72-4 anodes at 200 mA g−1, galvanostatic charge–discharge
(GCD) profiles of the Si/Fe2O3 electrodes recorded under 200 mA g−1: (c) BM-24-4, (d) BM-48-4 and
(e) BM-72-4.

Figure 5b reveals the cycling properties of the three anodes during cycling at 200 mA g−1.
The specific capacities of the first discharge/charge of the BM-24-4, BM-48-4 and BM-72-4 electrodes
are 2787.2/1969.4, 3167.7/2234.8 and 1732.4/2784.3 mAh g−1, respectively. The capacity drops quickly
in the initial eight cycles. After 100 cycles, the reversible capacity of the three electrodes tends to be
stable, maintaining at 462.2, 697.2 and 308.9 mAh g−1, respectively. The BM-48-4 electrode shows
the best cyclic stability among the three materials. The initial cycle coulomb efficiency of BM-48-4 is
70.5%. After five cycles, the coulomb efficiency approximates to 99.8% and around at 100% during the
following cycles. Figure 5c–e displays the galvanostatic charge/discharge curves of BM-24-4, BM-48-4
and BM-72-4 during cycling under 200 mA g−1. Taking BM-48-4 as an example, the first discharge
curve presents three platforms, which are 1.2~1.5, 0.6~1.0 and 0.01~0.2 V, respectively. While in the
first charging stage, two long platforms of 0.2~0.7 and 1.1~2.0 V are found, according to the CV results.
The capacity loss of the first cycle of BM-48-4 is about 29.5%, which is close to that of BM-24-4 (29.4%)
and much lower than that of BM-72-4 (37.8%). With the increase in cycle number, the profile gradually
moves to the left, demonstrating a slight capacity decline after several cycles. The charge/discharge
profiles of BM-48-4 for the 50th and 100th cycles are close, revealing good cycling stability of the anode
at the later stage of cycling. BM-24-4 and BM-72-4 electrodes show relatively low reversible capacity
after cycling for 100 cycles. The huge capacity decay is induced by the serious volume variation
during the cycling process, the crushing of active Si particles, the cracking of nanosheets structure,
the creation of over-thick SEI film and the failure of electron and ion transport channels during the
cycling process [49]. The difference in the electrochemical performance of a material in different tests
in this work may be caused by the local non-uniformity of a material.

The rate performance of three electrode materials were tested at different current densities in
the range of 200 to 5000 mA g−1, as presented in Figure 6a. The BM-48-4 electrode delivers the
reversible capacity of 1356.5, 963.1, 779.9, 604.3 and 512.2 mAh g−1 under 200, 500, 1000, 2000 and
5000 mA g−1, respectively. At each current density, the BM-48-4 electrode shows the best specific
capacity in the three anodes. When the current density recovers to 500 mA g−1, the BM-48-4 anode
delivers a reversible capacity of 906 mAh g−1 after 30 cycles, which is extremely higher than the other
two anodes, revealing a relatively good rate property of BM-48-4 in three electrodes. Figure 6b presents
the charge and discharge curves of the BM-48-4 electrode at different current densities. It shows that
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with the enhancement in current density, the curve gradually shifts to the left, that is, the capacity
of the electrode gradually reduces. Moreover, when the current density recovers from high current
density to 500 mA g−1, the constant current charge/discharge profile almost coincides with the original
curve tested at the same current density. All tests uncover that the BM-48-4 electrode possesses the
best rate performance.
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Figure 7a–c presents SEM images of three Si/Fe2O3 anodes after cycling at 200 mA g−1 for 100 cycles.
After a long cycle, the pore size and porosity of BM-24-4 (Figure 7a) reduces, and the nanoparticles
reunite to agglomeration, which is not conducive to ion transport. The BM-48-4 material (Figure 7b) can
maintain the original structure of nanosheets and nanoparticles (with local agglomeration), presenting
a relatively good structural stability. It is observed from Figure 7c that the surface of BM-72-4 is
rough, and there are large cracks and some local aggregation. The above phenomenon reveals that
BM-48-4 best preserves the original structure, which guarantees its good cyclic stability. Figure 7d,e
shows the EIS data of Si/Fe2O3 anodes before and after 100 cycles. The EIS is composed of the high
and medium frequency region (concave semicircle) caused by charge transfer resistance and the
low-frequency region (slash) because of ion diffusion [50]. The minimum semicircle of BM-48-4 shows
that the transfer resistance of the anode is significantly inferior to that of the BM-24-4 and BM-72-4
electrodes (Figure 7d). The inclination of the BM-48-4 electrode is higher than that of the BM-24-4 and
BM-72-4 electrodes, indicating that the diffusion resistance of the BM-48-4 electrode is smaller. After
100 cycles, the diffusion resistance of three anodes is similar while the BM-48-4 electrode remains the
smallest transfer resistance in three anodes (Figure 7e). Figure 7f shows a digital photo of a yellow
light emitting diode (LED) bulb powered by an as-assembled half-cell. After 30 minutes, the LED bulb
was less bright (Figure 7g) than it was when it started, but it still works, showing its good potential in
practical applications.

Table 1 [14,17,19,20,34,44,51] compares the electrochemical properties of the electrode materials
currently studied with those previously reported. The Li storage performance of the as-synthesized
Si/Fe2O3 anode is better than that of most listed Si-based composites, and its excellent electrochemical
performance is mainly attributed to the following points. Firstly, Si/Fe2O3 electrodes with a high specific
surface area may provide a large area of contact and interaction between the active material and the
electrolyte. Secondly, the three-dimensional porous network structure with interconnected ligaments
can enhance ionic mobility and permeability. Moreover, ample pores can effectively alleviate the volume
expansion of Si. In summary, Si/Fe2O3 material synthesized from natural ferrosilicon ores in this study
possesses immense potential as an anode for LIBs application. Furthermore, the study also offers a new
idea for the synthesis of low-cost Si-based electrodes and opens a new direction for the application of
ferrosilicon ores in a brand-new field other than deoxidizing agents for steel manufacturing.
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Table 1. Comparison of electrochemical properties of different Si-based materials as Lithium–ion
battery (LIBs) anodes.

Si-Based
Electrodes

Current Density
(mA g−1) Cycle Number Reversible Capacity

(mAh g−1) Reference

Si@NiAl-LDH 50 60 534 [17]
Si@rGO 100 100 450 [44]

AC < nc-Si > AC 100 100 492 [51]
Si-TiO2 100 200 510 [34]

SiFS/G@C 100 100 730 [20]
Si/SiO2-OMC 200 100 958 [14]

Si/NC 200 100 459.2 [19]
Si/Fe2O3 200 100 697.2 This work

4. Conclusions

Porous Si/Fe2O3 dual network material was synthesized through the melt-spinning, ball-milling
and dealloying process by utilizing natural ferrosilicon ores. The as-obtained Si/Fe2O3 anode displays
a dual network structure. Due to this special porous structure, the BM-48-4 anode uncovers good Li
storage property, delivering a good reversible capacity of 697.2 mAh g−1 after cycling at 200 mA g−1

for 100 cycles, which shows its great potential as LIBs anode. In addition, we also offer a new idea for
the synthesis of porous Si-based electrodes and open a new direction for the application of ferrosilicon
ores in a brand-new field.
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