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Abstract

Quantifying the effects of environmental factors over the duration of the growing process on

Agaricus Bisporus (button mushroom) yields has been difficult, as common functional data

analysis approaches require fixed length functional data. The data available from commer-

cial growers, however, is of variable duration, due to commercial considerations. We employ

a recently proposed regression technique termed Variable-Domain Functional Regression

in order to be able to accommodate these irregular-length datasets. In this way, we are able

to quantify the contribution of covariates such as temperature, humidity and water spraying

volumes across the growing process, and for different lengths of growing processes. Our

results indicate that optimal oxygen and temperature levels vary across the growing cycle

and we propose environmental schedules for these covariates to optimise overall yields.

1 Introduction

Modern agricultural production processes are evolving in a new era of sensor network tech-

nologies. These technologies are improving the monitoring of farming environments. The out-

put of such technology has led to the rise of data analytics in this precision agriculture

environment, in order to aid in the optimization of production and output of such farming

practices.

Discussions on the evolution of farming processes in regard to the use of sensor network

technologies are provided by [1], [2] and [3]. The majority of works in this area deal with ques-

tions related to large scale outdoor environments and aspects of sensor placement, sensor

design, communications and power control. Few studies have begun to consider how to utilize

all the sensor data being recorded, in order to perform statistical modelling that will inform

and improve the process of farming crop management and optimization.

Furthermore, there is a new emerging field in this area which involves indoor commercial

farming precision agriculture. In this field there is the a technological push for the adoption of
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specialized sensor networks that provide precision monitoring for optimization of commercial

agriculture production.

There is now a growing amount of sensor network data available for a range of farming

activities. However, there is a dearth of available statistical techniques, accessible by the farm-

ing industry to combine the data collected with understanding the farming process. This paper

addresses this missing aspect by demonstrating how to perform statistically rigorous and accu-

rate sensor data processing and then modelling of the sensor output with regard commercial

considerations of yield and productivity. Following this, we also demonstrate how to utilize

these models to then optimize commercial precision agricultural considerations. Examples of

practical considerations that can be addressed by our proposed framework include: optimal

sensory monitoring and control of key environmental conditions that will maximise yield and

output of the precision agricultural farming environment.

In modern farming settings the data collected by sensor networks can be utilized to influ-

ence the farming practice and consequently may therefore be used for commercial results.

Examples of such applications include increasing resulting product yields and reducing pro-

duction costs and waste. There is thus a new challenge for statistical modelling to adapt meth-

ods of modelling and optimization to these new sensor network data outputs for utilization in

the precision agriculture industry.

For instance, [4] utilized sensor network data to optimize irrigation processes in the farm-

ing cycle of cotton. In [5], the authors considered how sensor network data can be utilized to

optimize greenhouse growing environments. These papers were focused on cost or efficiency

gains in particular aspects of the production process. The sensor network studied in the first

instance were specifically for moisture monitoring and in the second paper they also studied

irrigation considerations in a green house growing environment. In our work, we develop a

general statistical modelling approach for multiple sensor output types. We then use this

framework to demonstrate how it may be applied to develop an optimization methodology

that allows for modelling and environmental process control beyond just irrigation but applies,

as we demonstrate to several precision growing conditions including temperature, humidity,

irrigation, CO2 levels etc. This approach can be used to model and then optimize many desir-

able commercial considerations in precision agriculture. We chose to demonstrate this frame-

work on yield maximization, however other considerations such as waste reduction, water

reduction etc are equally applicable in our general modelling framework. Furthermore, we

apply our framework for the optimization of production of a staple dietary ingredient for a

number of countries, the protein rich mushroom.

The commercial cultivation of mushrooms has experienced explosive growth in the past 40

years. Total production has increased from 60,000 tons in 1978 to 25.7 million tons in 2011 to

become a $24 billion industry [6]. It is particularly common in the Chinese diet, who were the

first to cultivate the Lentinula edodes species in the 13th century [7]. Worldwide per-capita

consumption has also increased four-fold between 1997 and 2012 [8].

In terms of global production, China currently accounts for around 70%, while in Europe,

Poland is the biggest producer with almost 300,000 tons [9], followed by the Netherlands. Cur-

rent cultivation methods can achieve an estimated yield of approximately 30 kilos per square

meter, see details at http://www.mushroomidea.co.uk/about-mushrooms/facts-and-figures/

index.cfm?articles_id=F1AE27D3-4AA4-4373-B699-E4CDEDE89024.

Three main genera constitute approximately 75% of the world’s mushroom supply [8].

Agaricus Bisporus (button mushroom), constitutes about 30%, while Pleurotus (oyster mush-

room) accounts for approximately 27%. Lentinula edodes (shiitake mushroom) contributes

another 17%. We study the cultivation process for the Agaricus Bisporus genus in this paper,

which is by far the leading genus in Europe.
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While there has been extensive research with regard to the preparation of the growth sub-

strate for cultivation and its effect on the yield (see, e.g. [10] and citations within), there has

been relatively little research on trying to identify the optimal environmental conditions for

the growing process. Commercial cultivation is carried out in controlled conditions with set

schedules for, e.g., temperature, humidity, oxygen, CO2 and water irrigation types and sched-

ules. The preferred farming schedules for these different environmental controls differ

amongst growers due to personal experience, as well as commercial considerations, budgetary

constraints, logistics scheduling, yields and qualities required and farming time horizons.

A significant challenge faced in precision agriculture commercial applications is to optimize

growing conditions with regard to a given commercial objective, such as yield maximization.

In the case of Agaricus Bisporus yields this involves finding a means by which one can relate

the scalar yield responses, observed from each farming production cycle, to the complex,

multi-dimensional time-series of environmental factors collected from the sensor networks

throughout the cycle.

It is clear that having constant values for the different variables throughout the growing pro-

cess will lead to suboptimal production results in terms of both yields and product quality, and

one therefore has to quantify the contribution of the environmental covariates at each point in

the process. In this paper our sole focus is on the yield of mushrooms produced, though future

works will also consider influences on product quality achieved for a given yield.

To address this problem we propose a solution based on an interesting new area of statisti-

cal regression modelling. In particular, we consider a functional regression approach, see [11]

for a textbook-level discussion of the wider area of functional data analysis, in general in such

models one relates the scalar response to one or more functional covariates. In this case, the

covariates would be the time-series of temperature, humidity, water etc., over the growing pro-

cess. Such a regression would result in a smooth functional coefficient that indicates at each

point in the process whether the covariate contributes positively or negatively to the yield.

However, there are technical restrictions which prevent us from following such an approach

(discussed in Section 4), which are due to the fact that the growing processes on each produc-

tion run vary in length. The variation in length occurs both due to commercial considerations

to do with logistics, supply and demand considerations and also quality and quantity consider-

ations that are related to grower’s preferences, such as when they observe that there is limited

utility in furthering the growing process due to the current demand or quality of product pro-

duced in the particular growth cycle.

Addressing this issue of different length time-series of the observed covariates is important

because growers target different target environmental schedules according to whether they are

targeting a shorter growth period or a longer growth period. In addition, these schedules may

be modified depending on the particular substrate/compost utilized. Therefore it is important

to carefully incorporate this feature into the regression modelling approach, and certainly

naive truncation or rounding may produce spurious results. In this paper, we therefore employ

a regression technique termed Variable-Domain Functional Regression (VDFR), recently pro-

posed by [12]. As the name implies, this enables us to use our functional data, where each

time-series data point is of different length, without having to resort to any compression to

obtain fixed-length data. Similar to standard functional regression, this results in a functional

coefficient, but which now varies smoothly in 2 directions: Firstly, over the growing process,

but also across the different possible lengths of the growing process.

Our results indicate that there is a very clear effect of oxygen levels on total yield. In particu-

lar, the model verifies that a lower oxygen level is found to be beneficial in the first two-thirds

of the growing process, while higher oxygen levels are found to contribute to increasing yields

in the final third. For temperature, higher temperatures are beneficial for the first half of the
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process, while in the second half these higher temperatures are only favourable for longer

growing process durations.

1.1 Contribution and structure

Summarizing the main contributions of this paper we highlight the following key aspects of

relevance to statistical modelling of output from sensor networks in precision agriculture

settings:

• A functional regression based framework is developed for the statistical modelling of output

from sensor network that produces multivariate time series data and linking this to the varia-

tion of outputs of the production process such as crop yield. This model framework is partic-

ularly focused on the setting of precision agriculture which poses a novel challenge for such

functional regression frameworks, in that each repeated trial is of an unequal length. This

variable length is due to variable harvest times resulting from commercial constraints on

production.

• A variable domain functional regression framework is then developed to overcome this

unique challenge in the precision agriculture setting and the model is applied to a detailed

study of indoor precision agriculture in the area of mushroom production.

• Furthermore, we then demonstrate how to utilize the statistical model developed to optimize

the production yield. This is possible to achieve since the model developed links the relation-

ship between environmental conditions being monitored by the sensor network to a com-

mercial variable of interest, in our case yield allowing us to obtain an optimal growing

environmental control output. That is, we design a simple and effective model based optimal

growing schedule for environmental variables that are monitored and can be controlled in a

precision indoor growing environment. These variables are defined in detail in Tables 1, 2

and 3 and included: compost type; total yield in kg per square meter of growing surface; pH

level of the soil; moisture content of the soil; are of growing surface; weight of compost per

square meter; duration of growing period in number of days; air temperature in degree Cel-

sius; percentage of oxygen context in growing environment; air conditioning capacity; CO2

Table 1. Compost providers and irrigation systems for the 92 growing periods under consideration.

Irrigation system

Compost provider New Old

A 68 0

B 0 24

https://doi.org/10.1371/journal.pone.0181921.t001

Table 2. Scalar variables used in our models.

Variable Description

YieldTotalkgsqm The total yield (in kg) per squared metre of growing surface. This is the response

variable.

pH This is the pH of the compost, provided by the compost provider. The industrial

process used to determine this is similar to that described by [10].

MC This is the moisture content of the compost, i.e. the percentage of water that

constitutes it.

Growingareasqm The area of the growing surface.

Compostfilledkgsqm The weight of compost per squared metre of area.

totdays The total duration of the growing period (in number of days).

https://doi.org/10.1371/journal.pone.0181921.t002
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produced in g per hour, per square meter of compost; amount of water evaporated in g per

hour per square meter of compost.

The rest of this paper is structured as follows: Section 2 provides a short background regarding

mushroom production and reviews studies related to yield modelling in this area. In Section 4

we review the area of functional data analysis, focusing on functional regression, and introduce

VDFR. Section 5 outlines the VDFR results, along with a detailed interpretation. Section 6 uti-

lises these results within a Lagrange multiplier framework to obtain optimal environmental

schedules for the grower. Section 7 concludes.

2 Mushroom production and yield modelling background

In this section we provide a brief overview of mushroom production. This is important to

understand, in order to develop a practically meaningful framework for the modelling to be

undertaken. Such context can aid in the understanding and selection of which environmental

variables and processes are likely to affect the yield produced in the growing process. This in

turn ought to be considered in the modelling process.

2.1 Basics of mushroom production

Mushrooms grow on vegetable waste, breaking down the organic material present. In com-

mercial cultivation, various vegetable wastes can be used in the preparation of mushroom

growth substrates. For instance, mushrooms can be grown on wheat straw, rice straw, sugar

cane waste, coffee pulp and cottonseed hulls, among others. Typically the choice of growth

medium will depend on the type of mushroom selected by the grower and the availability and

abundance of such raw materials.

The commercial cultivation of the edible mushroom Agaricus Bisporus, which is the focus

of this paper, uses a fermented and pasteurised substrate as a growth medium. This usually

consists of wheat straw, water, minerals and nitrogen sources, such as manure and urea and its

preparation is usually broken down into three distinct phases.

Phase I is composting, which can be done either outdoors or indoors. Its main purpose is to

release the nutrients present in the ingredients in such a way that they are easily accessible by the

mushroom mycelium, once the latter is introduced. This is achieved by wetting the substrate,

allowing it to self-heat and repeatedly turning it in order to mix and homogenize it. Through the

microbiological and chemical processes involved in composting, the substrate is rendered selec-

tive by encouraging the growth of mushroom mycelium over other, competitive fungi.

Following composting, phase II ensues. The substrate is moved into purpose-built cham-

bers, called tunnels, where the conditions of temperature, moisture content, oxygen levels and

Table 3. Functional variables used in our models.

Variable Description

AirtemperatureC The temperature in degrees Celsius as measured by a termperature sensor in the

middle of the growing room.

Oxygen The percentage of oxygen in the growing room air.

HumDeficitinletgkg The capacity of the air coming in to the growing room (in g/kg) to absorb excess

moisture evaporating from the growing beds, independently of the air temperature.

Co2productionghm2 The amount of CO2 produced (in g) per hour, per squared metre of compost.

Evaporationghm2 The amount of water that has evaporated (in g), per hour, per squared metre of

compost.

https://doi.org/10.1371/journal.pone.0181921.t003
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air flow are carefully controlled by specialised software and an array of sensors and environ-

mental devices. Inside the tunnels, the substrate undergoes a pasteurisation process at high

temperatures, where all undesirable organisms that can hinder mushroom development are

destroyed. The compost is then gradually cooled down from around 58˚C to 48˚C over a

period of 6-7 days in a process called conditioning. The purpose of conditioning is to release

any excess ammonia compounds in the substrate, which cannot be tolerated by mushrooms

and, also, to promote the growth of thermophilic microorganisms, like actinomycetes, which

further the selectivity of the compost. This process is described in detail in the textbook-level

discussions of [13, 14, 15] and analysed using electron microscopy by [16].

Phase III of substrate preparation involves the introduction of the mushroom mycelium by

use of commercial spawn. Commercial spawn is a pure culture of mycelium, normally growing

on cereal grains. It is very important to ensure that spawn is applied evenly in the compost to

ensure an even colonisation of the substrate. Following spawn inoculation, the newly-intro-

duced mycelium is allowed to fully colonise the substrate in a controlled environment over a

period of 14-17 days. The substrate is then ready to be delivered to the commercial mushroom

growers.

Mushrooms of the genus Agaricus Bisporus, however, cannot grow on compost alone. It

has been found that the use of a protective, covering layer of casing soil placed over of the com-

post is imperative for growing mushrooms commercially [17]. Commercial growers and aca-

demic researchers alike have experimented with many types of materials to be used as casing

soil for mushrooms, see e.g. [18, 19, 20, 21, 22].

In practice, a combination of peat and lime is used by most commercial growers of mush-

rooms, since peat has been found to have a great water-holding capacity [15]. This casing must

be free of microorganisms that can become competitive to the mushroom mycelium.

Although we will not look into the casing soil in detail in this paper, it is important to point

out its main functions as described in [23], which are:

• To assist in creating the appropriate microclimate for mushroom formation.

• To promote the development of fruit bodies through the provision of the necessary bacteria.

• To absorb large quantities of water and release that water gradually, so it acts as a water res-

ervoir. Without the casing layer, it would be impossible to control the moisture content of

the compost, as the surface would dry out by ventilation.

• Water transports nutrients from the core of the compost layer to the mushrooms on the top

where it then evaporates. A wet casing soil with good structure will support this water move-

ment and, thus, provide adequate nutrients for good mushroom growth.

2.2 Compost and environmental factor effects on yields

We should distinguish firstly between the two types of growth, i.e. mycelium and fruiting body

growth. The mycelium is the vegetative part of the fungus, which branches into the soil, while

the fruiting body is only produced after a period of sustained mycelium growth [24]. In gen-

eral, optimal environmental conditions are more restrictive for fruiting body growth rather

than for mycelium growth. As an example, [24] suggests that mycelial growth is found to

occur over the range of 5 to 33˚C, whereas fruiting occurs only from 13 to 24˚C.

The variation in fruit body (mushroom) yields has been the subject of extensive research

for approximately half a century, see e.g. [25]. With regards to the growing medium, yields are

influenced by the composition of the substrate, but also casing, moisture content, CO2 etc.

[10]. They found that a partial least squares model considering additionally ammonia, carbon,

Precision agriculture case study: Optimal environmental schedules via variable domain functional regression

PLOS ONE | https://doi.org/10.1371/journal.pone.0181921 September 29, 2017 6 / 34

https://doi.org/10.1371/journal.pone.0181921


hydrogen, Cu etc was able to explain almost 90% of this variation. Because of heterogeneity in

the raw material, as well as seasonal weather factors and nutrient availability, there will be a

natural variation in the aforementioned characteristics [10] and thus in compost quality.

Variations in growing processes, as well as room conditions (e.g. temperature, humidity,

evaporation, CO2 etc) will also be factors in the mushroom yield, but quantitative research in

obtaining optimal environmental schedules for the duration of the growing process seems to

be very limited. For Agaricus Bisporus, for example, [26] investigated the effect of manipulat-

ing the temperature schedule whilst keeping a constant CO2 level. They found that they were

able to improve the synchronisation in the growth of mushrooms, resulting in fewer picking

days, but with a contemporaneous decrease in yield.

We note here that the motivation for our analysis of environmental growing conditions is

the study of methods that will increase the yield. Therefore, in this work we do not consider

any potential impact on quality or shelf life. For research in this context, we mention briefly

the work of [27], who has studied the effect of the time of harvest on post-harvest quality,

while [28] suggested that factors such as compost composition, casing material, the irrigation

process, environment and the flush number are likely to play a role. Research on Agaricus Bis-

porus shelf-life focuses mainly on the effect of post-harvest conditions, see e.g. [29] for a recent

review of related work.

3 Experimental design and data

This observational study uses yield, compost and environmental factor data recorded by Kyria-

kides Mushrooms in their normal mode of commercial operation. Note that Kyriakides mush-

rooms is the largest grower in Cyprus, for information about their activities see http://www.

kyriakides.com.cy/en/. In this section we outline the grower’s setup, providing details about

the sensors used to monitor the growing process explaining how environmental data was col-

lected for the subsequent studies we present.

Kyriakides Mushrooms operates a fully-automated system, which enables the grower a

fine-grained control over the conditions throughout the growing process. The grower can set a

predetermined schedule for the different environmental variables, but also intervene to target

particular levels for certain periods of time. The system will then automatically determine the

extent to which it should heat or cool air passing through the air duct, the amount of air being

brought from outside (with the rest being recycled), as well as control fan speeds, so that target

levels of e.g. air temperature, humidity and oxygen/CO2 are achieved.

Fig 1 shows a typical example of a growing room at Kyriakides Mushrooms during the

growing process. It consists of 12 compost beds, with 4 probe-type PT100 4-wire compost tem-

perature sensors, as well as further sensors for the room and air inlet temperatures. Tempera-

ture measurements from the probes is accurate to within 0.1˚C. Relative humidity is measured

using wet bulb and dry bulb air temperature probes, while CO2 is determined through special-

ised apparatus. Oxygen levels can then be calculated from the CO2 and relative humidity

levels.

3.1 Data & descriptive statistics

Our data consists of 92 complete growing periods, the length of which varies between 35 and

43 days. For each growing period, we have a yield, as well as a number of scalar variables,

which we describe in Table 2. In addition, we have observations for the environmental factors

every half hour interval during the growing process in each trial. We will refer to such environ-

mental factors as the ‘functional variables’, as this is how they will be treated in this analysis,

and we present these variables in Table 3.

Precision agriculture case study: Optimal environmental schedules via variable domain functional regression
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There are several other variables that could form part of our analysis, including compost

temperature, evaporation, the position of the inlet and the speed of the fans, the temperature

of the heating and cooling valves and others. Our choice regarding the variables is based on

the environmental factors that are considered fundamental for the growing process, as well as

a choice with regard to those variables that the grower has more control over through their

own interventions.

For the purposes of standardisation among growing schedules used in different mushroom

farms across the globe, in this paper we shall discuss the environment conditions in the grow-

ing room after the instant in time known to mushroom growers as ‘venting’: the introduction

of ventilation (fresh air) into the room in order to halt the vegetative growth of mycelium and

promote fruiting body development.

Within this dataset, there are 2 different compost providers (which we term ‘A’ and ‘B’) and

2 different irrigation systems (which we term ‘New’ and ‘Old’). However, all growing periods

that use compost from provider A also use the New irrigation system, while growing periods

that use compost from provider B use the Old irrigation system, and the breakdown is given in

Table 1. Thus we term the first group (which uses provider A and the new irrigation system) as

‘G1’ and the second group as ‘G2’. Fig 2 shows the density for YieldTotalkgsqm—a two sample

t-test provides no evidence at the 5% level for a difference in means.

Fig 1. A photo of a typical growing room at Kyriakides Mushrooms.

https://doi.org/10.1371/journal.pone.0181921.g001
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4 Modelling approach

In deciding which modelling approach to adopt, one could draw upon a range of different

time series based methods. For instance, one may consider works such as [30], [31] and [32]

who developed various efficient ways to characterize complex systems via multi-scale time

series analysis. In this manuscript we have selected a framework of modelling known as Func-

tional Regression. This approach to modelling is particularly relevant to exploration of tempo-

ral causal relationships that will allow for precision control sequences to be obtained for

optimization of commercial considerations such as yield of product produced.

4.1 Functional data analysis

In our model we focus on the effect of the environmental conditions throughout both the

mycelium and fruiting body growth stages on the final yield. Because of the high dimensional-

ity of the data (there are measurements every half hour for each of our environmental vari-

ables), there are advantages to representing this data in a functional form via Functional Data

Analysis (FDA). Related techniques have already been used in various domains, from studying

meteorological and kinesiology data [11] to financial market activity [33].

FDA has been an area of sustained academic interest for at least 25 years, with initial work

by [34] and [35] giving rise to textbook-level discussions in [36] and [11]. Besides the represen-

tation of the functional data itself as a single functional object using splines, there have been

Fig 2. The smoothed density of the total yields in the two growing groups. The absolute values are obscured due to commercial

considerations.

https://doi.org/10.1371/journal.pone.0181921.g002
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innovations in obtaining functional regression modelling, e.g. for linear models see [11] and

references within.

Compared to multivariate analysis, FDA can:

• Take into account the time-series structure of the data through smoothing [11]

• Represent the series of measurements parsimoniously as a single functional entity [37].

The following exposition of FDA is based on the work of [33]. FDA studies data which is

represented as a function, where the domain of the function is usually time (as it is in the pres-

ent case), although it could also be space or space and time. It enforces continuity in the time-

series through smoothness constraints, and thus z = (z1, . . ., zn) are assumed to be observations

from the functional x(t) at times t = (t1, . . ., tn) in the presence of noise:

z ¼ xðtÞ þ � ð1Þ

where � is assumed to follow some parametric distribution. With this representation of x(t),
one can then proceed to take derivatives of the function. Furthermore, such a representation

allows one to also consider the use of multiple curves in a functional linear regression setting.

In this paper our interest is in the time-series of temperature, humidity, irrigation etc. To

make concepts precise, let y denote a vector of temperature observations for a single yield. Our

first goal is thus to represent this possibly noisy vector with a function x(t). At time tj, j = 1 . . .

n, we will represent x(tj) using a basis expansion:

xðtjÞ ¼
XK

k¼1

�kðtjÞck ð2Þ

If we then have N functions then

xiðtjÞ ¼ cTi �ðtjÞ; i ¼ 1 . . .N:

We can see that for a sufficiently large K, one will be able to approximate a smooth function to

any degree of accuracy. A common choice of spline in this setting is the B-spline as described

in the following section 4.1.1 and section 4.1.2.

4.1.1 Defining a basis system for functional data representation. Let z denote a vector

of temperature observations for a single yield. Our first goal is thus to represent this possibly

noisy vector with a function x(t). We will represent x(t) using a basis expansion: sufficiently

large K:

xðtÞ ¼
XK

k¼1

�kðtÞck ð3Þ

If we then have N functions then

xiðtÞ ¼ cTi �ðtÞ; i ¼ 1 . . .N

We can see that for a sufficiently large K, one will be able to approximate a smooth function.

There are several example of bases which can be used, described in [33] and [11]. We will

use a B-spline basis, which divides the observation range into sub-intervals, and then the basis

functions are piecewise polynomials taking values in each sub-interval. One needs to define:

• The range [t0, uL] in which they take values.

• The order m of the spline, which is one higher than the highest degree polynomial. We con-

sider cubic splines, i.e. m = 4, which is the most common setting.
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• Break point and knot placement—these are the points which divide the observation range.

We consider L − 1 interior knots, equally spaced over the range, and the interior knot

sequence is denoted by u = (t1, . . ., tL−1). We select L = 16 in order to capture the features of

the temperature curve over almost 2000 points.

Splines of increasing order are defined recursively:

Bi;0ðuÞ ¼

(
1 if ui � u < uiþ1

0 elsewhere:

Bi;jþ1ðuÞ ¼ ai;jþ1ðuÞBi;jðuÞ þ ½1 � ai;jþ1�ðuÞBiþ1;jðuÞ

with ∑i Bi,j(u) = 1 and

ai;jðuÞ ¼

( u � ui

uiþj � ui
if uiþj 6¼ ui

0 otherwise:

ð4Þ

The spline function S(u) is then defined as

SðuÞ ¼
XmþL� 1

k¼1

ckBk;mðuÞ ð5Þ

and illustrated in Fig 3.

B-splines have the compact support property, where each function can only be positive

over at most m sub-intervals. The smoothness and continuity constraints are enforeced

through matching the first two derivatives at the knot points.

Fig 3. The basis functions used in our temperature curve representation. Note the x-axis reflects the time index for each 30min

observation interval.

https://doi.org/10.1371/journal.pone.0181921.g003
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This basis representation of the functional data is estimated using least squares. However,

we note that it is important in practice to enforce smoothness of the functional representation

obtained from the least squares solution. This is achieved by incorporating an additional con-

straint, known as a “roughness penalty”, which is added to the least squares criterion. Fig 4

shows an example of a cubic B-spline fit to the temperature time-series for a single growing

period.

4.1.2 Estimation of functional representations of covariate curves. The basis function

representation of x(t) can be obtained through ordinary least squares, i.e. minimising

SSE ¼
XN

j¼1

ðyj �
XK

k¼1

ck�kðujÞÞ
2
¼ ðy � FcÞ0ðy � FcÞ ð6Þ

where F is an N by K matrix containing ϕj(tk). From this we obtain

ĉ ¼ ðFTFÞ
� 1

FTy ð7Þ

and the vector of fitted values is

ŷ ¼ Fĉ ¼ FðFTFÞ
� 1

FTy ð8Þ

from which we can see that F(FTF)−1FT acts as a simple linear smoother. This approximation

is only appropriate if we assume i.i.d errors, but this is not often the case with functional data.

In order to enforce smoothness, we can add a roughness penalty to the least squares criterion

PENSSEl ¼ ðy � FcÞ0ðy � FcÞ þ lJðxÞ ð9Þ

where λ is a tuning parameter and J(x) measures roughness, for example through the

curvature J2(x) =
R
u[D2x(u)]2du, or, more generally, using any linear differential operator

Fig 4. Cubic B-splines fit to the temperature time-series data (points) for a single growing period. Note the x-axis reflects the time

index for each 30min observation interval.

https://doi.org/10.1371/journal.pone.0181921.g004
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JðxÞ ¼
R

u

Pm
k¼1

akDk½ðxðuÞÞ�du. The D operator is used to denote derivatives, such that

D0x(u) = x(u) and DmxðuÞ ¼ dmxðuÞ
du .

We impose the J2 roughness penalty in the estimation, as in areas where the function is

highly variable, the square of the second derivative will be large. A theorem from [38] shows

that when choosing J2(x) =
R
u[D2x(u)]2du, a cubic spline with knots at points uj minimises

PENSSEλ. Spline smoothing with the roughness penalty above is still a linear operation, where

the smoother is now (FTF + λR)−1FT, where

R ¼
Z

D2�
0
ðuÞD2�ðuÞdu ð10Þ

see [11] for a derivation. This is usually computed by numerical integration.

4.2 Functional linear models

Functional linear regression encompasses quite a large array of models, which can have:

1. A set of functional dependent variables and a scalar response, usually termed a functional

linear model;

2. A set of scalar dependent variables and a functional response;

3. A set of functional dependent variables and a functional response. In this case, we have

either a concurrent model, in which we assume that the response is only affected by the

dependent variables at the same point of the domain of the functions, or a local influence

model, which allows for integration over an interval of the domain [11].

[39] provides a recent review of the developments in this area, while [40] draws the three

categories under a single framework. In modelling agricultural yields, we have a scalar

response, therefore we will be focusing on the first category, i.e. functional linear models. For

an example of the second category of functional regression models, see [11] and for the third,

[33] provides an example for a concurrent model in a financial setting.

A general formulation of the functional linear model, where we have both functional and

scalar covariates is

yi ¼ a0 þ
Xq

k¼1

akzi;k þ
Xp

j¼1

Z T

0

bjðtÞxi;jðtÞdt þ �i ð11Þ

with �i � N ð0; s2Þ.

The model is estimated using least squares, in a similar fashion to obtaining the functional

representation above, using a further roughness penalty to ensure smoothness in the estimated

covariate functions βj(t). This can also be extended to a generalised functional linear model,

which again features a scalar output and functional covariates

gðmiÞ ¼ a0 þ
Xq

k¼1

akzi;k þ
Xp

j¼1

Z T

0

bjðtÞxi;jðtÞdt ð12Þ

where mi ¼ E½yi� and g(�) is some link function. These types of models are covered by [41, 42].

4.3 Variable-domain functional regression

An issue with the standard functional regression approach described above is that it requires

that the functional covariates are defined on a common interval, [0, T]. In our application

described above, it is very common for the total length of the growth process to differ by a few
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days, due to many reasons, which include differences in the compost specification and activity,

environmental conditions in the growing chambers as well as grower considerations (for

example, the growing process is more likely to finish midweek to ensure that a new crop is pre-

pared and set out for growing by Friday). It is obvious that the length of the growing process

will have an effect on the yield, and we incorporate this consideration through a technique

called variable-domain functional regression (VDFR), introduced by [12].

VDFR can now be introduced, which can be seen as an extension of Eq 11 that accounts for

the variable domains:

yi ¼ a0 þ
Xq

k¼1

akzi;k þ
Xp

j¼1

1

Ti

Z Ti

0

bjðt;TiÞxi;jðtÞdt þ �i ð13Þ

where �i � N ð0; s2Þ. Ti is the length of the i-th growing process and the coefficient function is

now bivariate. VDFR requires that the coefficient function βj(�) is smooth in both the t and T
direction. Intuitively, this means that:

• For a single growing process, the effect of the coefficient function on weighting the covariate

values will be similar within a short interval (say a couple of hours).

• If the growing process increases in length by a few hours, this should not have a large impact

on the overall shape.

We are thus trying to obtain a smooth coefficient surface for βj(t, Ti), for which we again

employ splines, however, this time the splines are defined on a non-rectangular domain.

Because of this, taking the generalization of B-splines to two dimensions will not be appropri-

ate, as B-splines in 2d are defined over a rectangular surface. In addition, there a number of

other issues relating to common spline bases, such as cubic splines and B-splines in this setting

as discussed in [43] (p.152):

• The subjectivity in the choice of knot locations

• The bases are only useful for representing smooths of one predictor variable

Similar to [12], we thus use a thin plate regression spline basis (see [44] for an outline) for

the domain of the coefficient function, which will be {t, Ti: mini Ti� t� Ti�maxi Ti}, i.e. a

trapezoidal domain, since mini Ti> 0. Thin plate regression splines are the equivalent of

smoothing splines in the multidimensional setting. In the 2d setting, we want to find f(x1, x2)

that minimizes

�
Pn

i¼1
lfyi; f ðx1; x2Þg þ l

Z Z
@2f
@u2

� �2

þ 2
@2f
@u@v

� �2

þ
@2f
@v2

� �2

dudv ð14Þ

where l is some loss function. [45] and [46] showed that the unique minimizer to this expres-

sion is the natural thin plate spline with knots at the unique values of x1, x2. However, there are

computational issues in employing this spline basis: for n data points it would require the esti-

mation of n parameters, as well as an additional smoothing parameter, requiring O(n3) opera-

tions. [44] proposes approximations to thin plate splines which alleviate the computational

obstacles to their use and removing the knot placement problem. The construction of these

splines is quite involved, see [44] for details.

[47] showed the relationship between penalised splines and mixed models. In particular,

they described how the ordinary nonparametric regression model

yi ¼ f ðxiÞ þ �i ð15Þ
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could be estimated by penalised splines, and they showed that this estimate could be written as

the best linear unbiased predictor of a mixed model

y ¼ Zα þ Xβþ �: ð16Þ

where Zα denote the fixed component and Xβ denotes the random component, which can

account for variability in one or more of the parameters.

Because of this connection, one can estimate penalized spline models (such as the VDFR

model presented here) using mixed regression model estimation packages, such as the mgcv
package in R [48]. In particular, the Generalized Additive Model (GAM) framework imple-

mented in this package with the function gamwill allow the response variable to depend on

linear functions of smooth terms

yi ¼ . . .þ
Xn

k¼1

Likf ðxi;kÞ þ . . . ð17Þ

where the Lij are fixed weights. The right hand side of the expression above then can represent

the weighted sum of the same smooth function evaluated at different covariate values. In this

way, one can have the response depend on the integral of a smooth function, and one can see

that this is appropriate for the estimation of Eq 13, which contains the expression
R Ti

0
bjðt;TiÞxi;jðtÞdt. [12] provides an example for the estimation of a similar model, and the

estimation in this paper is based on this example.

5 Method and analysis of results

In order to determine the relative importance of the scalar covariates listed in Table 2, we use

them in a simple linear regression to determine their effect on the yield. Of these covariates,

only Compostfilledkgsqm was found to be significant at the 5% level. In the interests of model

parsimony, since we will have a potentially large number of spline parameters to estimate, fur-

ther analysis considers only this scalar covariate.

We now start this section with a presentation of the raw functional covariate data, which we

will be using as regressors in the VDFR. Figs 5 and 6 show for 92 growing processes, the evolu-

tion of the growing room air temperature and oxygen level from aeration to the last day of

mushroom harvest. These schedules are fairly consistent across different growing processes

and for the different types of compost, so we will treat this as a homogeneous sample.

As in standard functional regression, we can demean the covariate function, but we now

face an issue in that the (bivariate) mean function is not clearly defined. However, the condi-

tional mean of Xi(t) given Ti, denoted μXi|T(t), can be estimated using a GAM as follows:

XiðtÞ ¼ mXi jT
ðtÞ þ �tðt;TiÞ

gðmXi jT
ðtÞÞ ¼ f ðt;TiÞ ðidentity linkÞ

where �t(t, Ti) * N(0, σ2I) and f is a smooth function. The mean function will fall on the same

trapezoidal domain {t, Ti: mini Ti� t� Ti�maxi Ti} described above. We recall that for a

thin-plate regression spline, we do not need to select the location of the knot points, but we do

need to select their number (K). Figs 7 and 8 show, the fitted mean curves for the oxygen and

air temperature covariates.

5.1 Single functional covariate VDFR

The next step is to then fit the model (Eq 13) using the demeaned covariates, ie. the covariates

haveing removed the average level. For clarity of explanation, we first report the results for
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Fig 6. Raw temperature data. Blue lines come from growing processes in group G1 and red lines from group G2. Note the x-axis reflects the

time index for each 30min observation interval.

https://doi.org/10.1371/journal.pone.0181921.g006

Fig 5. Raw oxygen data. Blue lines come from growing processes in group G1 and red lines from group G2. Note the x-axis reflects the time

index for each 30min observation interval.

https://doi.org/10.1371/journal.pone.0181921.g005
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Fig 7. Mean oxygen data. Spline was fit with K = 15 knot points. Note the x-axis reflects the time index for each 30min observation interval.

https://doi.org/10.1371/journal.pone.0181921.g007

Fig 8. Mean temperature data. Spline was fit with K = 20 knot points. Note the x-axis reflects the time index for each 30min observation

interval.

https://doi.org/10.1371/journal.pone.0181921.g008

Precision agriculture case study: Optimal environmental schedules via variable domain functional regression

PLOS ONE | https://doi.org/10.1371/journal.pone.0181921 September 29, 2017 17 / 34

https://doi.org/10.1371/journal.pone.0181921.g007
https://doi.org/10.1371/journal.pone.0181921.g008
https://doi.org/10.1371/journal.pone.0181921


VDFR with a single functional regressor and a single scalar covariate (Compostfilledkgsqm).

Fig 9 presents the estimated coefficient surface across the t, T dimensions for the VDFR with

the oxygen functional covariate. The first thing to note is that the estimated coefficient func-

tion is almost constant across the T dimension as we move to different values of t. This means

that if we have growing processes of varying length Ti, i 2 1 . . . n, the effect of the oxygen

covariate at a point t< min(Ti) will be similar across all growing processes.

For a concrete example, we look at Fig 10, which is formed by taking cuts in the T direction

through the surface in Fig 9. We note the different coefficient curves, each of which is now a

function of t only. The shortest line corresponds to a cut through a surface for the lowest value

of T� 1720. The longest line corresponds to a cut through a surface for the highest value of

T� 2050. If we look at the value of the coefficient function at t = 800, for example, this is very

similar across the different curves, which means that the effect of the oxygen covariate at this

point in the growing process is similar for both the shortest and longest growing processes.

Interpreting these curves now in terms of their effects on the yield, the portion of the coeffi-

cient curve which is negative indicates that an increase in the level of the covariate during

these times is associated with a decrease in the average yield. Where the coefficient curve is

positive, an increase in the level of the covariate during these times is associated with an

increase in the average yield. Concretely, in the case of the oxygen covariate, the coefficient

surface is below zero for values of t< 1200, and above zero for t> 1200. Under the model

Fig 9. The estimated coefficient surface from the VDFR with a single functional regressor (oxygen). Note the t-axis reflects the time

index for each 30min observation interval. The T-axis reflects the index of the number of days for which the production process was

performed before harvesting for the given experiment.

https://doi.org/10.1371/journal.pone.0181921.g009
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then, a modification of the oxygen schedule so that the oxygen level from the beginning of the

growing process until t� 1200 is decreased, followed by an increase after this point, will be

associated with an increase in the average yield—for all values T of the growing process

duration.

We present the results for the adjusted R2, deviance and REsidual Maximun Likelihood

(REML) in Section 5.1.1. These measures of model performance are standard in regression

contexts to assess the quality of the fit obtained, for a given model, see discussion in [11]. The

analysis can be interpreted to demonstrate that Compostfilledkgsqm is generally found to be

significant in the regression, as are the Oxygen and HumDeficitinletgkg functional covariates.

The regression with the Oxygen functional covariate has a high adjusted R2 of over 20%, and

we have seen from the explanation above that its effect on yield is interpretable throughout the

growing process.

We should note that in choosing the number of knot points K, we aimed to maximize the

explanatory power of the model, with a dual objective of keeping the model parsimonious.

Our approach was to thus fit every VDFR single-covariate model (without considering the sca-

lar covariate) multiple times (with K 2 {5, 10, . . ., 50} and aimed to maximise the adjusted R2

metric (which penalises less parsimonious models) to determine the appropriate choice for K.

These results, along with the respective deviance and REML values are presented in detail in

the section 5.1.1.

5.1.1 Results for knot number choice. We fit the VDFR model and estimate both the

coefficient function and smoothing parameters via restricted likelihood (REML), see details in

[44]. The results of this analysis are presented in Tables 4, 5, 6, 7 and 8. Furthermore, they are

displayed visually in Figs 11, 12, 13,14, 15 and 16.

Table 9 provides the results for the fitting performance results for the VDFR models with a

single functional covariate and a single scalar covariate (Compostfilledkgsqm). Then in

Table 10 summarises the optimal choices for K for each functional covariate. We do not

Fig 10. Cuts through the surface in Fig 9. Note the x-axis reflects the time index for each 30min observation interval.

https://doi.org/10.1371/journal.pone.0181921.g010
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consider the evaporation covariate further as it was not found to have explanatory power for

the yield.

Furthermore, we present in Figs 17 and 18 the model fitted residuals for two key covariate

functional inputs corresponding to air temperature and Oxygen content. We note that these

residual plots demonstrate that the model assumptions are suitably satisfied, since the residuals

Table 4. Results for VDFR with a single functional regressor (air temperature) for different choices of

K.

K R-squared (adj) Deviance explained REML

5 0.017 0.062 179.0

10 0.065 0.123 178.2

15 0.107 0.178 177.9

20 0.101 0.173 178.0

25 0.095 0.166 178.0

30 0.098 0.170 178.0

35 0.101 0.174 178.0

40 0.099 0.172 178.0

45 0.099 0.172 178.0

50 0.099 0.172 178.0

https://doi.org/10.1371/journal.pone.0181921.t004

Table 5. Results for VDFR with a single functional regressor (evaporation) for different choices of K.

R-squared (adj) Deviance explained REML

5 -0.030 0.004 190.3

10 -0.030 0.004 190.3

15 -0.030 0.004 190.3

20 -0.030 0.004 190.3

25 -0.030 0.004 190.3

30 -0.030 0.004 190.3

35 -0.030 0.004 190.3

40 -0.030 0.004 190.3

45 -0.030 0.004 190.3

50 -0.030 0.004 190.3

https://doi.org/10.1371/journal.pone.0181921.t005

Table 6. Results for VDFR with a single functional regressor (co2 production) for different choices of

K.

R-squared (adj) Deviance explained REML

5 0.086 0.128 182.9

10 0.084 0.129 183.2

15 0.085 0.131 183.2

20 0.090 0.139 183.1

25 0.091 0.141 183.1

30 0.091 0.141 183.1

35 0.091 0.141 183.1

40 0.091 0.141 183.1

45 0.091 0.142 183.1

50 0.091 0.142 183.1

https://doi.org/10.1371/journal.pone.0181921.t006
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have sample properties that one would expect from a well performing regression model. For

instance, there is no residual evident trend structure and there is no evident serial correlations.

5.2 Multiple covariate VDFR and model selection

We can generalise Eq 13 so that we can consider multiple functional covariates as follows:

gðmiÞ ¼ b0 þ Zai þ Sp
j¼1

1

Ti

Z Ti

0

Xi;jðtÞbjðt;TiÞdt ð18Þ

We consider the model with j = 2, 3, 4, i.e. with combinations of the 4 functional covariates

(air temperature, oxygen, humidity deficit and CO2 production), omitting the evaporation

covariate which was not found to be informative. Since this application only requires a small

number of covariates, we perform an exhaustive search across the model space, i.e. the total

number of models we consider is
4

2

 !

þ
4

3

 !

þ
4

4

 !

¼ 11 models. We note that in the

following, we will use the optimal choices for K identified in the univariate VDFR in the previ-

ous section.

We present the results for the bivariate VDFR model in Tables 10 and 11, for the trivariate

model in Table 12. We also fit the full (4-covariate) model, for which the adjusted R2 value was

Table 7. Results for VDFR with a single functional regressor (oxygen) for different choices of K.

R-squared (adj) Deviance explained REML

5 0.114 0.156 167.3

10 0.126 0.176 167.1

15 0.138 0.192 166.9

20 0.137 0.192 167.0

25 0.136 0.192 167.0

30 0.136 0.192 167.0

35 0.137 0.193 167.0

40 0.136 0.193 167.0

45 0.136 0.192 167.0

50 0.136 0.192 167.0

https://doi.org/10.1371/journal.pone.0181921.t007

Table 8. Results for VDFR with a single functional regressor (HumDeficitinletgkg) for different choices

of K.

R-squared (adj) Deviance explained REML

5 0.126 0.155 175.7

10 0.126 0.155 175.7

15 0.126 0.155 175.7

20 0.126 0.155 175.7

25 0.126 0.155 175.7

30 0.126 0.155 175.7

35 0.126 0.155 175.7

40 0.126 0.155 175.7

45 0.126 0.155 175.7

50 0.126 0.155 175.7

https://doi.org/10.1371/journal.pone.0181921.t008
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0.276, but none of the functional or scalar covariates found to be significant. The highest

explanatory power was found to be in the model with CO2 production, Oxygen and HumDefi-

citinletgkg as the functional covariates. Interestingly, when CO2 production and Oxygen are

both part of the regression model, only one of the two is found to be significant. This has a

physical interpretation, as Oxygen displaces CO2 in the growing room.

6 Cost optimisation analysis for controling growing environment to

maximize expected yield

In this section we consider how to adjust a farmer’s particular environmental condition sched-

ule, in order to maximize the yield obtained when harvesting the mushroom crop. The optimal

schedule will be obtained based on the model developed from the variable domain functional

regression. We will focus only on optimizing the production considering the functional

Fig 11. Raw residuals—Co2.

https://doi.org/10.1371/journal.pone.0181921.g011
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covariates. This is reasonable, since for a commercial grower, the scalar covariates would typi-

cally be compost-related and may include those listed in Table 2. The grower would have no

control over these covariates, unless they produced their own compost. Of course, the results

presented would be of research interest to companies specialised in compost preparation also.

In presenting this framework we assume that the grower has a precision agriculture environ-

ment with sensors monitoring the growing process and the ability to alter the growing environ-

ment variables such as: air temperature, oxygen and CO2 levels, and the evaporation conditions

for moisture through the humidity deficit. For this purpose, however, we also need to rely on

commercial grower experience in setting out constraints for the maximum deviations from

existing schedules for the growing environment. If we consider the example of the air tempera-

ture, increasing or decreasing temperatures at particular points in the growing process may

have adverse effects on mushroom quality, and the mushroom may even die in excessively high

temperatures, therefore limits on the available range of covariates should be applied.

Fig 12. Raw residuals—Humidity deficit.

https://doi.org/10.1371/journal.pone.0181921.g012
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We present the results in the context where we assume the growing period is known. Note,

if the actual growing period is unknown a priori the procedure to be specified can be trivially

adapted. We assume that the grower has p variables that are important in determining the

growing conditions and therefore also the ultimate yield of product obtained in a growing

period [0, T]. Furthermore, we assume that based on previous historical realizations of grow-

ing environment, that one has obtained a calibration of the variable domain functional regres-

sion model which is estimated using these historical records in order to obtain the best fitting

model with p functional covariates. This provides a model for the expected yield at time T

Fig 13. The estimated coefficient surface from the VDFR with a single functional regressor (air temperature). Note the t-axis reflects

the time index for each 30min observation interval. The T-axis reflects the length of time before harvest for the given growing trial.

https://doi.org/10.1371/journal.pone.0181921.g013
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Fig 14. Cuts through this surface of the estimated coefficient surface from the VDFR with a single functional regressor (air

temperature). Note the t-axis reflects the time index for each 30min observation interval. The T-axis reflects the length of time before

harvest for the given growing trial.

https://doi.org/10.1371/journal.pone.0181921.g014

Fig 15. Cuts through the estimated coefficient surface for airtemperature from the VDFR with two functional regressors

(airtemperature and oxygen). Adjusted r-squared for this regression is 0.175. Note the x-axis reflects the time index for each 30min

observation interval.

https://doi.org/10.1371/journal.pone.0181921.g015
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given by the fitted VDFR as follows:

ŷ ¼ â0 þ
Xq

k¼1

âkzi;k þ
Xp

j¼1

1

T

Z T

0

b̂ jðt;TÞxi;jðtÞdt: ð19Þ

We also assume that a grower has a particular current preference for the schedule at which the

covariates (environmental control variables {xT, j(t)}j=1: p,t2[0,T]) are typically set for a growing

period of length [0, T], however these are not designed to optimize the expected yield and

instead typically based on practical experience.

In this section we will therefore define a new schedule for each environmental factor that

will be obtained to maximize the expected yield for growing period [0, T]. We define the new

schedule of these environmental factors according to process f~xT;jðtÞgj¼1:p;t2½0;T�
and we assume

that the new schedule can be represented for each environmental control factor according to

piecewise constant levels. We believe this is practically meaningful as typically it will not pro-

duce good environmental growing conditions if growing conditions are constantly changing

in time, instead in practice it is better to have stable conditions for fixed periods of time, which

Fig 16. Cuts through the estimated coefficient surface for oxygen from the VDFR with two functional regressors (airtemperature

and oxygen). Adjusted r-squared for this regression is 0.175. Note the x-axis reflects the time index for each 30min observation interval.

https://doi.org/10.1371/journal.pone.0181921.g016

Table 9. The results for the VDFR models with a single functional covariate (in the table) and a single scalar covariate (Compostfilledkgsqm), for

which the estimated coefficient value is provided in the table. Asterisks indicate that the covariate was found to be significant at the 5% level in the

model, while the symbol † that it was significant at the 10% level. Deviance column stands for the explained deviance.

R-squared (adj) Deviance REML Compostfilledkgsqm

AirtemperatureC 0.148 0.223 177.1 0.14*

Co2productionghm2 0.090 0.148 184.5 0.06

Oxygen* 0.213 0.272 164.4 0.17*

HumDeficitinletgkg* 0.148 0.186 176.0 0.10†

https://doi.org/10.1371/journal.pone.0181921.t009
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in general may be irregularly spaced, and delineated by adjustment times 0< t1 < t2 < . . .<

tn< T. This produces the new schedule of the environmental factor, that we parametrize, for

the j-th covariate, by the piecewise representation

~xT;jðtÞ ¼
Xn

i¼1

gi;jIt2½ti ;tiþ1Þ
ðtÞ ð20Þ

Table 10. Optimal choices for the number of knots K for the VDFR with a single functional regressor.

Covariate K

Air temperature 15

Oxygen 15

Humidity deficit 5

CO2 production 25

https://doi.org/10.1371/journal.pone.0181921.t010

Fig 17. Raw residuals—Airtemperature.

https://doi.org/10.1371/journal.pone.0181921.g017
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Fig 18. Raw residuals—Oxygen.

https://doi.org/10.1371/journal.pone.0181921.g018

Table 11. The results for the bivariate VDFR models. Asterisks indicate that the covariate was found to be significant at the 5% level, whereas the daggers

indicate significance at the 10% level.

Covariate 1 Covariate 2 Adjusted R2 Compostfilledkgsqm

AirtemperatureC* Co2productionghm2 0.295 0.107†

AirtemperatureC Oxygen* 0.214 0.146*

AirtemperatureC HumDeficitinletgkg* 0.249 0.121*

Co2productionghm2 Oxygen* 0.241 0.127*

Co2productionghm2† HumDeficitinletgkg* 0.237 0.06

Oxygen* HumDeficitinletgkg* 0.287 0.122*

https://doi.org/10.1371/journal.pone.0181921.t011

Precision agriculture case study: Optimal environmental schedules via variable domain functional regression

PLOS ONE | https://doi.org/10.1371/journal.pone.0181921 September 29, 2017 28 / 34

https://doi.org/10.1371/journal.pone.0181921.g018
https://doi.org/10.1371/journal.pone.0181921.t011
https://doi.org/10.1371/journal.pone.0181921


for g1;j; . . . ; gn;j 2 R
n. For convenience, we will assume that all environmental variables are

altered on the same time schedules, it is trivial to relax this assumption.

Furthermore, we define a piece-wise cost function that measures the costs associate with

deviation, in intervals {[ti, ti+1)}i=1:n, from the current farming environmental schedule. We

denote the cost for altering the current schedule in time [ti, ti+1) for the j-th covariate from

xT,j(t) to the new value γi,j as quantified by a function Ci;jð~xT;jðtÞ; xT;jðtÞÞ, where xT,j(t) is the

current practice of the farmer. In practice, this cost function is some mapping for instance of

the additional consumed energy, labor, wear and tear of device etc. required to change the

physical environment to the new environmental condition, such quantities can be quantified

in dollars in practice. Then the total cost of altering all p covariates in the n schedule intervals

in which adjustments may be considered to p different environmental controls is given by:

CTotal
T ðpÞ ¼

Xn

i¼1

Xp

j¼1

Ci;jð~xT;jðtÞ; xT;jðtÞÞ: ð21Þ

Furthermore, we will assume that the grower has specifications based on experience that they

would never allow the growing environment conditions to enter, these are grower specific con-

straints which will depend on the specific country’s climate. Climate affects energy consump-

tion, production and the growing environment, and the resulting constraints manifest as

maximal ranges of deviation for ~xT;jðtÞ relative to xT,j(t), given by constraint piece-wise enve-

lopes ~xT;jðtÞ 2 ½xT;jðtÞ � xminðtÞ; xT;jðtÞ þ xmaxðtÞ�, for each time segment [ti, ti+1). To encode

these specifications we assume that the cost of exceeding these user specified constraints on

the environmental conditions is infinite i.e. for any i, j one has that Ci;jð~xT;jðtÞ; xT;jðtÞÞ ¼ 1 if

~xT;jðtÞ =2 ½xT;jðtÞ � xminðtÞ; xT;jðtÞ þ xmaxðtÞ�
Now the goal of this section is to consider the optimal selection of sequences {γi,j}i=1:n,j=1:p

subject to a given total budget specified by constraint CTotal
T ðpÞ � Cmax. This allows us to there-

fore form the following optimization problem to determine the optimal deviations of schedule

from current growing practices, to maximize expected yield, based on the VDFR model.

Select the optimal environmental condition controls, denoted by fg
opt
i;j gi¼1:n;j¼1:p, subject to

the solution given by

fg
opt
i;j gi¼1:n;j¼1:p ¼ arg max

fgi;jgi¼1:n;j¼1:p

â0 þ
Xq

k¼1

âkzi;k þ
1

T

Xp

j¼1

Xn

i¼1

gi;j

Z tiþ1

ti

b̂ jðt;TÞdt:

s:t: CTotal
T ðpÞ ¼ Cmax:

ð22Þ

6.1 Example: Single covariate VFDR controlled environment to

maximize expected yield

To illustrate an example of solving this objective function we will make the following model

where we consider a single covariate VFDR structure such that p = 1 (allowing us to drop the j

Table 12. The results for the trivariate VDFR models. Note, CF is corresponding to Compostfilledkgsqm which is in units of kg per sqm. Asterisks indicate

that the covariate was found to be significant at the 5% level in the model, while the symbol † that it was significant at the 10% level.

Cov. 1 Cov. 2 Cov. 3 Adjusted R2 CF

AirtemperatureC Co2productionghm2 Oxygen* 0.26 0.15*

AirtemperatureC Co2productionghm2 HumDeficitinletgkg* 0.23 0.10†

AirtemperatureC Oxygen* HumDeficitinletgkg* 0.30 0.14*

Co2productionghm2 Oxygen* HumDeficitinletgkg* 0.31 0.13*

https://doi.org/10.1371/journal.pone.0181921.t012
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subindex in the example) and the removal of the non-functional covariates can be performed

without loss of generality as explained previously, at least for the applications of interest to this

manuscript.

We consider a cost of adjustment in each segment given by a quadratic function of the dif-

ference between the growers current schedule and the new target schedule at time ti, therefore

taking the form

Cið~xTðtÞ; xTðtÞÞ ¼ ð~xTðtÞ � xTðtÞÞ
2
; 8i 2 f1; . . . ; ng; ð23Þ

when ~xTðtiÞ 2 ½xTðtiÞ � xminðtiÞ; xTðtiÞ þ xmaxðtiÞ�, such that the total cost is then given by

CTotal
T ¼

Xn

i¼1

Cið~xTðtÞ; xTðtÞÞ: ð24Þ

Furthermore, we will consider a slightly modified version in which the total cost at each time

point is constrained, so as to ensure a controlled effort over the whole growing period where

we consider the modified constraint that Cið~xTðtÞ; xTðtÞÞ ¼ ~Ci for each time ti such that
Pn

i¼1
~Ci ¼ Cmax.

Solving this problem can be achieved under a Lagrange multiplier framework with a

Lagrangian function given by

Lðl1; . . . ; ln; g1; . . . ; gnÞ ¼
1

T

Xn

i¼1

gi

Z tiþ1

ti

b̂ðt;TÞdt þ
Xn

i¼1

liCiðx~TðtÞ; xTðtÞÞ

¼
1

T

Xn

i¼1

gi

Z tiþ1

ti

b̂ðt;TÞdt þ
Xn

i¼1

li½ðgi � xTðtiÞÞ
2
� Ci�

ð25Þ

where λ1, . . ., λn are the Lagrangian multipliers. We then solve the problem given byrγ,λ = 0.

In this case we find the system of equations given by

@Lðl; gÞ
@gi

¼
1

T

Z tiþ1

ti

b̂ðt;TÞdt þ 2liðgi � xTðtiÞÞ ¼ 0; 8i 2 f1; 2; . . . ; ng

@Lðl; gÞ
@li

¼ ðgi � xTðtiÞÞ
2
� ~Ci ¼ 0; 8i 2 f1; 2; . . . ; ng:

ð26Þ

Via substitution it is then trivial to solve this system of equations to produce optimal solutions

given by

gi ¼ �

ffiffiffiffiffi
~Ci

q

þ xTðtiÞ:

li ¼ �

R tiþ1

ti
b̂ðt;TÞdt

2T �

ffiffiffiffiffi
~Ci

q

þ xTðtiÞ � xTðtiÞ
� �

ð27Þ

One then just selects the combination of solutions that will maximize the objective function to

obtain the required schedule in closed form. In future works we will seek additional optimality

considerations such as shelf life of the resultant harvested crop and quality of the harvested

crop, rather than just yield. This will require additional experimental studies to be performed

and is beyond the scope of the current paper.
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7 Conclusion

Commercial mushroom cultivation is a complex process, with many factors playing a role in

determining yields, from compost composition and quality to environmental factors through-

out the growing process. Thus far, guidance regarding determining environmental schedules

(including e.g. temperature, humidity, oxygen and CO2 levels) has been relatively ad-hoc and

has a limited quantitative basis. This is partly because of the difficulty in ascertaining the effect

of these time-series variables on the growing process.

In this paper we applied the recently introduced Variable-Domain Functional Regression

(VDFR) technique [12] to the domain of Agaricus Bisporus (button mushroom) yield model-

ling. This is particularly innovative, because it enabled us to understand the effect of the differ-

ent functional variables on the yield, even when the growing process itself varied in length. We

showed that a grower can obtain meaningful interpretations from the estimated coefficient

functions, and we found that, in the case of the growing process used at Kyriakides Mush-

rooms Ltd., higher oxygen levels contribute negatively in the first two-thirds of the growing

process, but they improve yields in the final third.

VDFR has previously only been used for modelling the condition of patients in a hospital,

but we would argue that it would be particularly useful for the modelling of yields in crops that

are, similar to mushrooms, grown in controlled conditions (e.g. tomatoes, strawberries etc.).

While increasing yields is indeed vital for many growers, there are certainly extensions we are

keen to consider, such as extending shelf-life and improving quality. This would be interesting

from a statistical perspective also, as we can now consider how to extend VDFR to a multi-var-

iate setting.

In concluding this section, we note that this research project undertaken with our industry

partner was deemed a success from a practical perspective. Consequently, we are currently in

the process of planning a larger scale project. The implementation of our framework in the

commercial setting has been partially adopted by the industry partner so far, they have indi-

cated that this has indeed improved performance and yield of their crops. In the follow up

study we are aiming to take into account further details in addition to the yield considerations

which include: quality ratings of the crop realized, early phased harvesting, and size/weight of

each individual unit. In practice, from a commercial perspective, these are important consider-

ations to make when selling such products in the market.

We note that when scaling up this study, we would also like to consider further the influence

of the fertilizer type and its constituent attributes, which include the rate at which the soil is

defrosted from its frozen state, when delivered. Furthermore, the thickness of the soil cover is

deemed to be important to the growing surface area. We wish to consider these aspects in scaled

up studies to determine the influence such features may have on the yield and crop quality.

The original data utilised to perform this anlaysis is available in the supporting information

file.

Supporting information

S1 Data. This is the data used for the project.
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