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Abstract: A new procedure for the automatic measurement of the secondary dendrite arm spacing
(SDAS) from microscopic images is presented. The individual primary and secondary dendrite
arms are identified through suitable segmentation techniques and clustered in such a way that
dendritic structures are obtained suitable for SDAS measurement. The algorithms are applied to
two different hypoeutectic aluminum cast alloys, and the quality of the measurements obtained is
assessed through a comparison to manually measured SDAS values. A good agreement between
the automated measurements and the distribution of manual measurements is found for both cast
structures considered. In addition, a decrease in computation time is observed which allows for an
increase in measurement density that is used to characterize the microstructures.
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1. Introduction

The significance of lightweight engineering increases continuously, particularly in
the fields of automotive and rail vehicle industry. Reducing vehicle mass is becoming an
increasingly important factor, especially for hybrid- and electro vehicles, to increase their
range. Hence, the market for aluminum casting alloys is growing. In particular, AlSi alloys
are used for automotive cast products because of their good castabillity.

Hypoeutectic AlSi cast alloys solidify usually in dendritic structures. The resulting
structures of the grown dendrites are mainly influenced by the cooling rate of the solidifi-
cation process [1–5]. In order to quantify those dendritic structures, the secondary dendrite
arm spacing (SDAS) is commonly used. This SDAS value is known to correlate to a variety
of different solid state properties of the cast, as for example the solid solution and age
hardening, as well as the shrinkage or gas porosity. A reduction in hot tearing tendency
and a better castability were observed at low SDAS values [6,7], and a decrease in fatigue
life with increasing SDAS values is reported [8]. Also, the corrosion properties were shown
to be related to the SDAS [6,9,10].

The SDAS quantification is performed either manually or semi-automatically by
means of a prepared micrograph of the microstructure. The determination of the SDAS
requires an expert operator to examine each field of interest to quantify the measurand.
The operator has to draw a line through the elements under investigation, which is very
time-consuming. As a consequence, mostly only a few sections can be investigated. Hence,
it is desirable to automate the measurement of the SDAS to obtain an overall view of the
microstructure with appropriate expense [11].

Despite this demand for algorithms to automatically measure the SDAS, only a few
examples of successful realizations can be found in the current literature. It has been
suggested to measure the dendrite cell size (DCS) on the basis of a circular method [12].
A DCS estimate is obtained in this approach by determining the dendrite-eutectic inter-
sections along a set of given circles on the micrograph that is to be measured. However,
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the applicability of this approach to non-uniform structures has been questioned [13]. In-
stead, the authors suggest measuring the SDAS on the basis of a spacing transform, which
allows for obtaining appropriate measurements within a 2D slice originating from a 3D
microstructure. Both approaches avoid the explicit identification of dendritic structures
that are suitable for SDAS measurements. This necessitates a post-processing step for both
approaches, in which either the measured DSC value are regressed to manually measured
SDAS values with a suitable approach [12] or in which only a certain part of the spacing
distribution obtained is considered for SDAS measurement [13].

The algorithms of this work aim to complement the previous approaches in this
respect. We present a method by which the individual dendrite arms can be detected,
scored and grouped in such a way that dendritic structures can be identified that are
suitable for the direct SDAS measurement. The algorithms developed for this purpose
are presented and illustrated in Section 2 of this manuscript along with a procedure for
the binarization of the micrograph. The resulting SDAS measurements are presented in
Section 3 for the example of two qualitatively different cast structures. The results are
assessed and discussed on the basis of a set of manual measurements that were obtained
for the same microstructures. Finally, Section 4 concludes this article.

2. Materials and Methods

This section aims at introducing and illustrating the algorithms that are developed and
employed in this work for measuring the secondary dendrite arm spacing. The algorithms
are sub-divided into three major parts, namely: binarization, object segmentation and object
clustering, which are presented in Sections 2.1–2.3. The individual processing steps that
are presented in these sections require typically a set of parameters, which are compiled in
Table 1, given at the end of Section 2.

Table 1. Parameter values that are employed within the individual processing steps of the algorithms.

Symbol Value Function

Nsub 10 × 10 Number of sub-images into which the original image is divided

T1 0 Threshold value for initial binarization

MG 5 × 5 Size of the averaging mask for filtering of the binary image

σG 5 Standard deviation of the Gaussian filter

T2 0.6 Threshold value for final binarization

Lerode 3/0 * Size of the structuring element (disk) used to erode the final binary image

Amin 50 Minimal number of pixels of a valid object

Smin 0.85 Minimal solidity value at which two neighboring segments are merged to a
single one

Ldilate 10 Size of the structuring element (square) used to dilate the centroid mask

∆θ 1 Grid size of the angular coordinate used in the Hough transform

∆ρ 1 Grid size of the radial coordinate used in the Hough transform

Npeaks 3500 Number of identified Hough peaks

Hmin 0.1 * max(H) Minimal intensity value at which a line is detected by the Hough transform

Lmin 50 Minimal length of a line detected via Hough transform

∆L 100/40 ** Maximal gap width between two pixels that are associated by one line

Nmin 6 Minimal number of segments considered for cluster scoring

Nmax 10 Maximal number of segments considered for cluster scoring

wb 80 Weight penalizing non-homogeneous dendrite distance distributions

wc 10 Weight penalizing average SDAS that are above dmax
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Table 1. Cont.

Symbol Value Function

wd 15 Weight penalizing an average cluster orientation that is not perpendicular to
the line orientation

we 10 Weight penalizing an average cluster orientation that is not perpendicular to
the line orientation

wf −5 Factor weighting the average aspect ratio for cluster scoring

µd,max 40/25 ** Maximal average dendrite arm spacing

Ncommon 2 Maximal allowable number of common segments between two unique clusters

* In case of the AlSi11-alloy discussed in Section 3, the dendrite density within the image is sufficiently low, so that an erosion operation on
the binary image is not necessary. The size of the structuring element was therefore set to zero, which is equivalent to not performing
any erosion operation. ** The maximum value for the dendrite arm spacing as well as the maximal gap width between two pixels are
dependent on the image resolution as well as on the size of the dendritic structures that are to be expected. A general definition of both
values is not possible, and hence, both values have to be provided by the user.

2.1. Binarization

The aim of a binarization procedure is to identify all objects of interest in a given image
and to separate them from the image background. This is equivalent to providing a logical
(or binary) image mask in which all pixels belonging to the objects of interest are labeled as
true, whereas all background pixels are labeled as false. Developing such a binarization
procedure is particularly challenging in the context of identifying dendritic structures
from microscopic images. This is because these dendrites appear typically as unstructured
objects whose grayscale level deviate only slightly from the grayscale values of the eutectic
background. Furthermore, the average grayscale level of the background is not constant as
low-frequency noise arises in horizontal and vertical direction from a non-homogeneous
illumination of the image. Hence, binarization through simple global thresholding is not
feasible in this application. Instead, a four-step (steps (a) to (d)) binarization procedure is
developed and illustrated in Figure 1.

All pixels belonging to the cast structure are identified in a preliminary processing
step through a global thresholding procedure. The threshold that is required for this
operation can be determined simply through Otsu´s algorithm [14] as the grayscale levels
of all metal-pixels differ substantially from the dark image background. As illustrated in
Figure 1b, essentially all metal-pixels are correctly labeled as true and, hence, the resulting
binary image is used without any further changes in the remainder in this algorithm.

As stated earlier, low-frequency noise in the grayscale levels of the background
pixels prohibit the application of a global thresholding procedure to identify the dendrite
structures. To remedy this issue, the image is divided into a set of 10 × 10 sub-images
in order to reduce the influence of the noise on the individual sub-images. An average
grayscale value of these sub-images can be obtained on the basis of the intensity values of
the metal pixels labeled as true in step a) of Figure 1. As the grayscale levels of the dendrite
pixels are typically higher than the grayscale values of the background, the identification
of the dendrite pixels can be achieved by the help of the average intensity level. In this
work, all pixels satisfying the condition:

Ix,y ≥ Imean + T1 (1)

are considered as background pixels. In this condition, Imean denotes the average grayscale
value whereas T1 is a threshold value, which is set to five in this work. The application of
Equation (1) leads to binary images as shown in Figure 1c. It can be seen that this procedure
leads to rather good results as most of the pixels are labeled correctly. However, some
smaller artifact in both, the background as well as in the dendrite regions can be identified
in which the binarization leads to false results. This issue is resolved in a subsequent
filtering step described in the following paragraph.
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Figure 1. Illustration of the binarization procedure; (a) original grayscale image; (b) labeling of all alloy pixels through
Otsu’s algorithm; (c) initial binary image obtained through Equation (1); (d) filtered image; (e) final binary image; (f) eroded
binary image.

In order to correct for the false artifacts resulting from the procedure of Equation (1),
the initial binary image is smoothened by a Gaussian filter with an averaging mask of 5 × 5
pixels and a standard deviation of 5. This operation serves to reduce the intensity values
of the falsely labeled pixels in the background region, whereas the intensity values of the
pixels that belong to the dendrites but were labeled as false are increased (see Figure 1d).
On the basis of this filtered image, a second thresholding is performed by labeling all pixels
as either true or false depending on the fulfillment of the condition:

Ix,y ≥ T2 (2)

The threshold value T2 that appears in this condition is set to 0.6, which leads to binary
images as shown in Figure 1e. The number of falsely labeled pixels is significantly reduced
(compared to the results of Figure 1c) by this approach and hence, this binary image is
used as a basis for the subsequent processing steps.

As can be seen from the exemplary micrograph of the AlSi10Cu alloy shown in
Figure 1, the dendrite density is rather high and only few pixels do actually belong to the
eutectic background. As these background pixels separate the individual dendrites and
dendrite arms, the distinguishability of the individual dendrite arms is hindered by this
high dendrite density. In order to improve this situation, a morphological erosion operation
with a disk-shaped structuring element with a size of 3 pixels is applied to the binary image
resulting from Equation (2). Morphological erosion generally removes the outmost pixels of
an object which conversely leads to an enlargement of the areas considered as background
in a binary image. In the case of Figure 1, this enlargement of the background region leads
to an improved separation between the individual dendrite arms. Therefore, the resulting
binary image is used as input for the subsequent object segmentation and clustering steps
of this algorithm, which are described in the next sections of this work.
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2.2. Object Segmentation

Once a binary image is obtained from the procedure described above, all connected
components of this image are identified on the basis of eight-connectivitiy, and all objects
with an area above 50 pixels are passed to the subsequent processing steps. The objects
that are extracted from the binary image are at this point in general not individual sec-
ondary dendrite arms. Instead, more complex structures consisting of several connected
primary and secondary dendrite branches, as for example shown in Figure 2, have to be
expected. Hence, it is necessary to decompose these complex objects in such a manner
that the individual secondary dendrite arms can be identified from the individual con-
nected components. For this purpose, a distance transform is applied on the inverted
image (shown in Figure 2b) of the connected component. The image obtained through this
distance transform (illustrated in Figure 2c) is afterwards passed to a watershed transform
which segments the entire object into smaller, essentially convex, regions (see Figure 2d).

Figure 2. Procedure for decomposing of complex objects; (a) crop of the original micrograph showing a complex dendritic
scheme. (b,c) Binarization of the dendritic scheme. (d) this approach shows a tendency for over-segmentation of the image.
(e) In order to resolve this issue, a post-processing step is required that merges the individual watershed regions in such a
way that the individual dendrite arms can be identified. To this end, neighborhood relations are defined for all watershed
regions on the basis of a 4/8-connected neighborhood. (f) Afterwards, a procedure is initiated that aims at merging two
neighboring watershed regions to a single one.

In this procedure, a candidate region i is selected, and all neighboring regions j are
considered for the merging procedure. Based on the observation that the individual
dendrite arms are objects that are approximately convex, the solidity Si,j is defined as
the ration between the area of both regions and the area of the joint convex hull of the
candidate–neighbor combination:

Si,j =
Ai + Aj

ACH,i,j
(3)

This is calculated for all candidate-neighbor combinations. The neighbor region
with the maximal solidity value is the merged with the candidate region provided that
the solidity value exceeds a threshold value of S ≥ 0.85. In this case, the neighborhood
relations of all regions are redefined, a new candidate is selected, and the neighbor selection
procedure is re-initiated. If no candidate was found to fulfill the solidity threshold, the next
candidate region is selected and all its neighbors are tested again. This iterative procedure
is repeated until none of the remaining candidate regions has any neighbor which could be
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merged to this region. The result of this procedure is shown in Figure 2e. As can be seen, a
significant reduction of the number of regions is achieved (compared to Figure 2d) and the
individual dendrite arms can be identified as single segmented regions.

2.3. Object Grouping and Cluster Scoring

The algorithm presented so far allows for the recognition of dendritic structures as
well as for the identification of individual primary and secondary dendrite arms. However,
in order to measure the SDAS, the individual objects need to be clustered in an appropriate
manner in order to facilitate a reliable SDAS measurement.

To this end, the centroid coordinates of all segmented objects are calculated and
transferred into a binary mask. A dilation operation is afterwards performed on this
centroid mask with a square-shapes structuring element having a size of 10 pixels. This
dilation is performed in order to improve the performance of the subsequent clustering
step, which is based on a Hough transform. This Hough transform detects straight lines
in the centroid mask which intersect with a maximal number of pixels within the mask,
as shown in Figure 3b. An initial clustering of the segmented objects is achieved by this
approach by considering the set of all segmented objects that intersect with an individual
line as one cluster. Since the only information employed for the objects clustering are the
positions of the object centroids, it has to be expected that the majority of the detected
clusters contain dendrite arms belonging to more than just one dendrite branch (see for
example Figure 3c. Therefore, these clusters cannot be considered as suitable for measuring
the SDAS. However, as the number of detected lines—and thus object clusters—is relatively
large (about 4000 for typical image sizes of 1 megapixel), it can be safely assumed that
a sufficiently large number of object clusters is in fact suitable for SDAS measurement.
Therefore, the remainder of this algorithm is dedicated to the identification of these suitable
object clusters from the set of all object clusters. This identification is based on the following
requirements and observations:

1. A suitable cluster should be composed of a minimal number of objects.
2. The distributions of distances between the individual objects should be as homoge-

neous as possible for a suitable object cluster.
3. The average distance between the individual objects should not exceed a maximal

value.
4. Secondary dendrite arms appear typically with an elliptical shapes and the orientation

of the major axis lengths of an equivalent ellipse is preferably perpendicular to the
primary dendrite branch–and hence to the detected line.

5. The average ellipse orientation should be perpendicular to the orientation of the
detected line.

6. High aspect ratios (measured by the ratio of major and minor axis length) indicate
well-segmented secondary dendrite arms. Consequently, clusters with objects having
higher aspect ratios are considered as better suited for SDAS measurement.

The first criterion of this list is rather easy to check, and hence all clusters consisting
of fewer objects that the minimal number Nmin (set to 6 in this work) are not further
considered for SDAS measurement. In addition to this constraint on the minimal number
of segments, also a maximal number Nmax is defined and set to 10. Consequently, all
segment clusters that consist of 6 to 10 subsequent segments of a specific line are tested for
their suitability for SDAS measurement in the further processing steps.
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Figure 3. Segment clustering through Hough transform; (a) original micrograph; (b) dilated centroid mask (black/white)
with a selection of detected lines (green); (c) line selection within the original micrograph together with the segment-
centroids; (d) clustering of segments that intersect with a detected line.

The later criteria (b) to (f) are not as well-defined as criterion (a). It is furthermore
possible (and has to be expected) that some suitable object clusters fulfill one or more of
these conditions only partially while they perfectly fulfill other criteria of this list. The
decision whether an object cluster can be considered suitable for SDAS measurement is
hence deemed unreliable if only one of these criteria is considered. Instead, we develop
measures for the fulfillment of every criterion and derive a scoring value Sc which serves
to assess the suitability of an object cluster for SDAS measurement. This scoring value is
chosen to be a linear combination of the individual fulfillment measures according to:

Sc = wbTb + wcTc + wdTd + weTe + w f Tf (4)

where wb to w f are linear factors (specified in Table 1) weighting the influence of the
individual fulfillment measures on the scoring value Sc. In order to derive the measures
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related to the distance distribution among the individual dendrite arms, the average
intersection point P =

(
Px, Py

)
is defined as:

Px =
Pa,x + Pb,x

2
(5)

Py =
Pa,y + Pb,y

2
(6)

Here, Pa and Pb denote the coordinates of the first and last pixel of the current segment
that intersect with the line that is to be scored. With the definition of Equations (5) and
(6), the distance di between two neighboring segments (index i and i + 1, respectively) is
obtained by:

di =
√
(Pi,x − Pi+1,x)

2 +
(

Pi,y − Pi+1,y
)2 (7)

Calculating the distances for all segments of the considered cluster yields a distance
distribution, which is described by its mean value µd and its standard deviation σd in the
remainder of this work. Using µd and σd, the fulfillment measures for conditions (b) and (c)
are calculated by:

Tb =
σd
µd

(8)

and
Tc = max

{
0,µd −µd,max

}
, (9)

respectively.
In order to derive fulfillment measures for conditions (d) to (f), the segmented regions

that are associated to the current line are approximated by ellipses having the same central
moments as the segmented regions (see [15] for more details). These ellipses are quantified
by their major axis lengths Amaj,i, their minor axis lengths Amin,i and their orientations θi.
Using these values, the measure Tdd is calculated by:

Td =

nSeg

∑
i=1

Amaj,i

Amin,i
(cos∆θi + 1). (10)

Note that the orientation deviations ∆θi are scaled with the individual aspect ratios to
account for the fact that the accuracy—and thus the reliability—with which the orientation
can be determined is dependent on the aspect ratio. Similarly to Equation (10), the average
orientation of the segment cluster considered is accounted for by:

Te = cos

(
1

nSeg

nSeg

∑
i=1

∆θi + 1

)
. (11)

Finally, the mean aspect ratio of the segments is taken as a measure for the fulfillment
of condition (f) according to:

Tf =
1

nSeg

nSeg

∑
i=1

Amaj,i

Amin,i
. (12)

Having defined the measures Tb to Tf , the scoring value Sc can be calculated for every
segment cluster, or subset thereof with subsequent segments, that contain Nmin to Nmax
segments. With the weight wb to w f having the same signs as in Table 1, low scoring values
Sc indicate segment clusters that are suitable for SDAS measurement whereas clusters
with high scoring values are not suitable for this purpose. Hence, all considered segment
clusters are ranked according to their scoring value.

Due to the comparably large number of object clusters that is processed through the
methods described above, it is possible that segment clusters or parts of it are processed
and scored multiple times. Therefore, a final check is performed that deletes all segment
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clusters which have at least 3 segments in common with a cluster having a lower scoring
value than the cluster that is to be deleted. This procedure ensures that only unique clusters
are considered for the results of the SDAS measurement, which is presented and discussed
in the next section of this manuscript.

3. Results and Discussion

This section aims at assessing and discussing the performance of the routines for
SDAS measurement presented in the previous section. For this purpose, the algorithm
is applied to two different AlSi standard cast alloys, and the results are compared with
manual measurements for both cases in Sections 3.1 and 3.2. In addition to this comparison,
the computational performance of the algorithm is also analyzed in Section 3.3.

In order to evaluate the algorithms of the previous section, we choose two different
hypoeutectic AlSi cast alloys with different microstructures. Both differ mainly by the
fraction of the eutectic solid solution. The first microstructure consists of an AlSi10Cu
cast alloy and contains a relative low fraction of eutectic solid solution. The α-aluminum
dendrite structure is significantly denser, as compared to the second microstructure of this
work., consisting of an AlSi11Mg cast alloy. In further explanation they will described as
“structure 1” and “structure 2”, and their chemical compositions are given in Table 2.

Table 2. Chemical composition (wt. %) of the cast alloys used in this work.

Si Fe Cu Mn Mg Ni Zn Pb Ti Al

AlSi10Mg(Cu)
[EN AC-43200] 9–11 0.65 0.35 0.55 0.2–0.45 0.15 0.35 0.1 0.2 Balance

AlSi11
[EN AC-44000] 10–11.8 0.15 0.02 0.05 0.1–0.45 - 0.07 - 0.15 Balance

The aim of assessing the quality of the SDAS measurements obtained by the proce-
dures presented above necessitates the availability of a reliable standard against which
the results can be compared. This standard is obtained from manual measurements from
six different experts for both cast structures used in this work. Each individual manual
measurement consists of 10 dendritic structures which are used to obtain an average SDAS
value for the image considered. Hence, a distribution of manually measured SDAS values is
obtained when all six results are considered. The quality of the automated SDAS measure-
ments is assessed on the basis of this distribution which is quantified by its mean value and
its standard deviation. The results of this assessment are presented in Sections 3.1 and 3.2,
where both microstructures are considered.

3.1. Secondary Dendrite Arm Spacing (SDAS) Measurements of Structure 1

The micrograph of structure 1 considered in this work has a size of 15,177 × 11,783 pixels,
depicting a size of 14.72 mm × 11.43 mm. In order to obtain SDAS measurements of
the core as well as of the exterior of this structure, the entire image is subdivided into
6 × 6 sub-images, and the diagonal of this array of sub-images is further analyzed. The
dendrite structures measured for one of these sub-images are exemplarily shown in Figure 4
depicting one manual as well as the automated measurements. Obviously, the selection of
dendrite structures is not identical between both measurements (as this is typically also
the case among the individual manual measurements). This can in part be attributed to
the large image size that results in a rather high number of dendrites within this image. In
fact, most of the automatically selected structures are indeed dendrites that can be used for
the determination of the SDAS. However, structure choices can also be found that would
not have been chosen by a human expert. Hence, the quality of the SDAS measurements
obtained needs to be assessed in a more quantitative manner.
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Figure 4. Comparison of manual (left) and automated (right) dendrite measurements exemplified for the 5th/6th sub-image
of structure 1.

The results of this assessment are given in Figure 5, where the performance of the
automated SDAS measurements is compared to all results that were obtained manually.
The left panel of this figure illustrates the distributions of the manually measured SDAS
values. The mean values of these distributions are indicated by a thick solid line, and the
regions spanned by the corresponding standard deviations are indicated by the shaded
area. Two general trends can be seen from this sub-figure. The distributions of the manual
measurements are rather broad, having a standard deviation of about two to three pixels,
which corresponds roughly to 10% of the average SDAS values. This might be seen as
an indication that a manual SDAS measurement is somewhat influenced by the dendrite
selection of the human expert. This observation is even more apparent in the right panel
of Figure 5, where the average SDAS measurements of the individual experts are shown
as thin colored lines. Apart from the deviations among these measurements, already
indicated in the left sub-figure, it can be observed that the SDAS measurements of most of
the human experts are consistently either higher or lower than the average SDAS value.
Also, intersections among the individual experts are comparably rare. This might be
interpreted as an indication for a certain bias of the measured SDAS values, which is
induced by the intuition of the individual human experts.

Figure 5. Comparison between the automated and manual SDAS measurements for the low eutectic structure; (left):
comparison of the automated (red, dashed)–and manually measures (black, thick) SDAS values to the standard deviation
(gray shaded region) of the distribution of manually measured SDAS values; (right): comparison of the automated (red,
dashed)–and manually measures (black, thick) SDAS values to the individual manual SDAS measurements (thin, color).
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The automated SDAS measurements are shown as thick dashed lines in both sub-
figures. It is apparent, that some deviations to the average manual SDAS values occur.
Nevertheless, these deviations are about the same order of magnitude as the standard
deviation of the distribution of the manual measurements. In fact, only the automated
SDAS measurement of the first sub-image is slightly outside of the region spanned by
these standard deviations, while all other SDAS values lie within this region. From a
statistical point of view, this observation indicates that the hypothesis that the automated
SDAS measurements differ significantly from the manual ones needs to be rejected. This
conclusion appears also to hold if systematic deviations between automated and manual
measurements are considered, as no significant bias towards higher of lower SDAS values
is apparent from Figure 5.

The statistical significance of the test described above could clearly be further im-
proved by considering additional manual measurements to provide better estimates for
the mean SDAS value and the standard deviations of the SDAS measurement distribution.
However, more importantly, it needs to be checked whether the example of structure 1
considered here constitutes an ideal case in which the automated SDAS measurement
procedure lead to satisfactory results. In order to elucidate this question, the next section
considers an AlSi cast structure, denoted as structure 2, which differ significantly in terms
of shape, size and density of the individual dendrite arms from structure 1 studied so far.

3.2. SDAS Measurements of Structure 2

The assessment of the measurements of structure 2 is similar as compared to the
Section 3.1. The micrograph of the second microstructure used in this work, denoted by
structure 2, has a size of 4328 × 9465 pixels, or 4.2 mm × 9.18 mm. Since the depicting
size of structure 2 is smaller as compared to structure 1, this image is sub-divided into
4 × 4 sub-images in order to obtain images sizes comparable to structure 1. As in the case
of Section 3.1, one diagonal of this set of sub-images is used for the further testing of the
algorithms. A selection of the SDAS measurements for one of these sub-images is shown
in Figure 6, depicting one set of manual as well as the automated measurements. As in
the case of structure 1, there are dendritic structures, identified automatically from the
algorithm, that would not have been chosen by a human expert.

Figure 6. Comparison of manual (left)–and automated (right) dendrite measurements exemplified for structure 2.
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By means of a comparison with the mean value of the manual measurements, the
automated measurement is evaluated regarding the reproducibility. The results of this
evaluation for structure 2 are shown in Figure 7. The comparison between the automated
SDAS measurements and the manually measurements of the six experts, is performed
similar to the evaluation of structure 1. The distributions of the manual measurements
having a standard deviation of about two pixels, which corresponds roughly to 12% of
the average SDAS values. The SDAS measurements of most of the human experts are
consistently either higher or lower than the average SDAS value, as we also observed
for structure 1 in Figure 5. Intersections among the individual experts are comparative
rare. Furthermore, another point becomes apparent from the comparison of the individual
colored lines between Figures 5 and 7.

Figure 7. Comparison between the automated and manual SDAS measurements for the high eutectic cast; left: comparison
of the automated (red, dashed) and manually measured (black, thick) SDAS values to the standard deviation (gray shaded
region) of the distribution of manually measured SDAS values; right: comparison of the automated (red, dashed)–and
manually measured (black, thick) SDAS values to the individual manual SDAS measurements (thin, color).

When comparing each individual colored line, the experts seem to repeat their role
for the measurement of the SDAS for both different microstructures. They perform for
most of the sub-images very similar measurements for both microstructures. This might
corroborate the assumption that a manual SDAS measurement is somewhat influenced
by the dendrite selection of the human expert. For the manual measurements made
for the purposes of this work, a certain bias of the measured SDAS values is observed.
Furthermore, this individual bias seems induced by the intuition of the individual human
experts. The automated measured SDAS values from all sub-images lie within the standard
deviations.

3.3. Computational Performance

The following section is written with the purpose of presenting the computational per-
formance of the algorithm explained in Section 2 and to investigate the time requirements
for the manual and the automated measurement procedure of the SDAS.

In Section 2.2, the procedure of the object segmentation is clarified. The microstructure
from structure 1 consist of a relative high fraction of α-aluminium dendrite structure.
Hence, the branches, consisting of several connected primary and secondary dendrites
or fragments, are quite rarely interrupted by the solid solution. This results in complex
and relatively big branches, which have to be processed by the algorithm. A contrary
manner occurs for structure 2, with a relative low fraction of α-aluminium dendrites and a
reasonably higher fraction of eutectic solid solution compared to structure 1. As a result,
the objects, processed by the algorithm, are not as complex as those from structure 1. In
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Figure 8 we present the time requirements for the two different microstructures, using
both measurement procedures. The filled bars in this chart illustrate the average values
from the six manual measurements. Furthermore, the average values of the algorithm are
represented by the dashed bars. Comparing structure 1 with structure 2, measured by
means of the algorithm, it is apparent that not as much as time is required for structure 2
than for structure 1.

Figure 8. Mean time requirements per sub-image; mean manual–structure 1 (grey), algorithm–structure 1 (grey, dashed),
mean manual–structure 2 (black), algorithm–structure 1 (black, dashed).

Hence, there seems to be a tendency, that there is an influence of the object size on
the time requirement. As explained above, the size of the objects that are extracted from
the binary image seems to influence the computational performance for the automated
SDAS measurement. For the two microstructures investigated for the purpose of this
work, the difference in time requirement between the manual and automated measurement
procedures is more pronounced for structure 1 than for structure 2. Thus, we assess that
there is a pronounced influence due to the fraction of the eutectic solid solution on the
computational performance. The decreasing fraction of eutectic solid solution decreases
the time required for it to be processed by the algorithm. Measuring the SDAS manually,
the operator has to draw a line through the secondary dendrite arms, which is very time
consuming. The assessment of the values in Figure 8, in consideration of the standard
deviation bars, reveals that the automated measure procedure seems to be faster than
a manual operator. The difference between a manual and an automated measurement
of the SDAS is influenced depending on the fraction of eutectic solid solution of the
microstructure. Independently of this time requirement advantage, the automated measure
procedure requires less human resources compared to a manual measure procedure.

There are guidelines, that specify the measurement procedure of the SDAS, exemplary
“P220” [16]. To the best of our knowledge, the measurement density of the SDAS has
not been further specified or considered previously according to these guidelines. The
automated measurement procedure explained in this work allows the measure density to
be increased, with appropriate expense.

4. Conclusions

The following conclusions can be drawn from the present evaluation of the algorithm:

1. The detected dendrite arms were grouped through Hough transformation. The
individual groups were scored based on a set of scalar measurements that can easily
be assigned to the individual groups. This allowed for the identification of individual
secondary dendrite structures that are suitable for SDAS measurement.

2. Evaluating the automated measurement procedure against the manual values of six
operators, the results were in good agreement.
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3. The algorithms were tested against six sets of manual SDAS measurements for two
different AlSi cast alloys. A good agreement between manual and automated measure-
ments was found in all cases, indicating the effectiveness of the developed algorithms
in measuring the SDAS.

4. The algorithms always decided uniformly within its possibilities, which is why the
measured value can be interpreted more uniformly.

5. An analysis of the required computation times revealed the algorithm was on average
faster at measuring the SDAS than a human operator. Thus, the developed algorithms
allowed for an increase in the measurement density that is used to characterize the
cast microstructures.

6. An increased measurement density will decrease the selection bias of the results.
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