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Most of the primary hepatocellular carcinoma (HCC) develops from Viral

Hepatitis including Hepatitis B virus, Hepatitis C Virus, and Nonalcoholic

Steatohepatitis. Herein, T cells play crucial roles combined with chronic

inflammation and chronic viral infection. However, T cells are gradually

exhausted under chronic antigenic stimulation, which leads to T cell

exhaustion in the tumor microenvironment, and the exhaustion is associated

with mitochondrial dysfunction in T cells. Meanwhile, mitochondria play a

crucial role in altering T cells’ metabolism modes to achieve desirable

immunological responses, wherein mitochondria maintain quality control

(MQC) and promote metabolism regulation in the microenvironment.

Although immune checkpoint inhibitors have been widely used in clinical

practice, there are some limitations in the therapeutic effect, thus combining

immune checkpoint inhibitors with targeting mitochondrial biogenesis may

enhance cellular metabolic adaptation and reverse the exhausted state. At

present, several studies on mitochondrial quality control in HCC have been

reported, however, there are gaps in the regulation of immune cell function by

mitochondrial metabolism, particularly the modulating of T cell immune

function. Hence, this review summarizes and discusses existing studies on

the effects of MQC on T cell populations in liver diseases induced by HCC, it

would be clued by mitochondrial quality control events.

KEYWORDS

mitochondria, immune cell, metabolism, T cells exhaustion, hepatocellular
carcinoma (HCC)
1 Introduction

Based on the epidemiology of Hepatocellular Carcinoma (HCC), the main risk

factors for HCC are increasingly associated with hepatitis C (HCV) post-sustained

virological response, suppressed hepatitis B virus (HBV) on treatment, and non-alcoholic

fatty liver disease (NAFLD) (1). One of the essential functions of the liver is metabolism,
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however, it also works as a lymphoid organ full of immune cells.

Once the inter-hepatic microenvironment is disturbed by acute

or chronic inflammatory conditions (e.g., HBV infection), the

number and localization of these lymphocytes in the liver would

be altered (2, 3). Thus, when immune tolerance is triggered,

hepatocytes become targets of viral and tumor-induced

immune-mediated destruction, thereby leading to autoimmune

processes that result in liver injury and even HCC (4, 5). In

addition, infection, tumor formation, and autoimmunity in the

liver are influenced by immunopathology, in which T cells often

play a key role. Immunosuppression predominates in chronic

infections (e.g, chronic HBV and chronic HCV infections) as

well as in liver cancer (e.g., HCC) (6).

Mitochondria are tremendously regulated to constantly satisfy

the energetic demands of the immune cells. The manipulation of

mitochondrial mass is a crucial determinant of energy metabolism

among the multiple regulatory strategies (7). In general, the events

of mitochondrial quality control include biogenesis, fusion, fission,

and mitophagy, but mitochondrial transfer also is described as a

means of quality control in this review. Herein, mitochondrial

biogenesis responds to the demands for the repair and regeneration

of defective mitochondria and cellular energy demand for normal

functions (8). In addition to controlling the mitochondrial shape,

mitochondrial fission and fusion regulate ROS production, calcium

homeostasis, and oxidative phosphorylation (9). Similarly,

mitophagy serves as the specific degradation mechanism of

cellular aged and/or damaged mitochondria (10). Moreover,

contrary to the previous description, mitochondrial transfer

happens from cell to cell. Recipient cells generally gain favorable

metabolism via intrinsic regulation of mitochondria (11). Targeting

mitochondrial quality control in T cells could be an important

perspective for exhausted T cells with dysfunctional mitochondria.

Diverse T cell subsets have distinct metabolism demands to

facilitate their effector function during the immune response

against the pathogen (12). Furthermore, various metabolic

processes happen in immune cells to produce adequate amounts

of energy for proliferation and create a variety of biosynthetic

intermediate. Mitochondria play a vital role in the metabolism

reprogramming of T cells for desired immune response. Although

there is some research on mitochondria function in immune cells,
Frontiers in Oncology 02
targeting mitochondrial quality control in T cells may still deserve

more attention.
2 T cells perform immune
functions in liver

Immunotherapy regimens broaden the range of options for

the therapy of HCC and other related liver diseases. In

particular, T cell-based immunotherapy, in combination with

other therapies, has achieved much better results than traditional

therapies alone (13). Mitochondria, as the central hub of

multiple metabolic pathways, integrate multiple metabolic

pathways and contribute to the metabolic reprogramming of T

cells. Herein, diverse immunometabolism has respective modes

whose precise transformation in metabolic pathways couples to

immune effector functions (see Table 1). Some studies have

demonstrated that senescence is associated with mitochondria in

T cells, damaged mitochondria induced by deficiency of

mitochondrial transcription factor A (TFAM) works as the

accelerator of senescence which causes T cells metabolic

disorder and then leads to chronic inflammation (23). The

liver consists of five distinct anatomical systems, including the

vascular system, hepatic lobule, hepatic sinusoids, the biliary

system, and the stroma (2, 23). Circulating T lymphocytes flow

through the hepatic sinuses, Naive T cells remain static without

stimulation and play corresponding roles with the “cruising” of

the blood system to recognize abnormal signals entering the

tissue. Wherein tissue-resident memory T lymphocytes enter

tissues through homing receptors and remain in a dynamic state.

The two mechanisms coordinated with each other active

immune monitoring (24). Most of the primary HCC is caused

by Virus Hepatitis including Hepatitis B virus (HBV), Hepatitis

C virus (HCV), and Nonalcoholic Steatohepatitis (NASH) (25).

Immune lymphocytes coexist with cancer cells in the tumor

micro-environment, however, cancer cells can better proliferate

and escape from immunological surveillance. In addition,

patients with HCC who have CD8+ T cell infiltration have a

reliable prognostic and predictive value, and the absence of

CD4+ T cell also exacerbates HCC progression (26–28). A
TABLE 1 Diverse T cell subset immunometabolism has distinct modes.

Cell group Subsets Immunometabolism modes Reference

naïve T cell CD4+a/b T cell
CD8+a/b T cell

Fatty acid oxidation
Amino acid metabolism

(14, 15)

effector T cell Th1 Th2 Th9 CTL CD4+Treg CD8+Treg Glycolysis
Fatty acid synthesis
Amino acid metabolism

(16–20)

TCA cycle

memory T cell CD8+ memory T cell
Tissue-resident memory T cell

TCA cycle
Fatty acid oxidation

(21, 22)
fro
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poor prognosis was associated with Treg and a good prognosis

with CD8+ Tm in HCC. Meanwhile, the prognosis of HBV-

related HCC is poor because of immunosuppressive and more

exhausting than non-viral-related HCC (29). However, in the

early stage of hepatocarcinogenesis—chronic liver disease, the

excessive response of immune cells is also an important factor

that leads to host liver damage and eventually induces

hepatocellular carcinogenesis. When it comes to excessive

immunity, targeting and enhancing regulatory immune cells is

an effective treatment that can be considered. Moreover, the

antitumor effect of host CTL was not enough to eliminate HCC.

Therefore, immune cell therapy at present needs to enhance the

anti-tumor effect in proliferation and differentiation stages,

including intervening in the metabolic modes of immune cells

in the tumor microenvironment, thus reducing the progress of

depleted T cells, and thereby achieving sustained and efficient

immune response.
3 Mitochondrial quality control of T
cells on immune response

The host immune system defends against invading

pathogens and unfamiliar tumor antigens at any time. Once

recognized, immune cells rapidly respond, proliferate, and
Frontiers in Oncology 03
differentiate (30, 31). In general, T lymphocytes patrol in

peripheral blood and immediately rush to the “site” to fight

against tumors or pathogens after receiving signals, particularly

memory T lymphocytes have immune memory and respond

quickly. Mitochondria accumulate at the uropod of T cells and

promote phosphorylation and activation of the myosin light

chain (catalytic subunit of myosin II) during migration (32).

Furthermore, the function of immune cells is heavily dependent

on mitochondrial metabolism and is closely linked to

mitochondrial morphology, which is affected by events such as

mitochondrial biogenesis, fusion, fission, and mitochondrial

autophagy, meanwhile, mitochondrial transfer can alter

mitochondrial mass (33, 34). (Figure 1)
3.1 Mitochondrial biogenesis favors the
metabolic reprogramming in T cells

In general, T cells play a pivotal role in the antitumor

immune response and require a purposeful energy source to

raise their cellular functions. Therefore, T cells must have an

adequate supply of nutrients and an efficient mechanism to

generate ATP (35). As a powerhouse of the cell, mitochondria

also play a significant role in the immune responses of T cells. In

addition, T cells require enormous energy to synthesize
FIGURE 1

Mitochondrial quality control of T cells on immunometabolism. Immune cell differentiation and function are crucially dependent on specific
metabolic programs dictated by mitochondria and the specific processes that occur in mitochondria are intimately linked to their morphology
that is shaped by biogenesis, fusion and fission events, and mitophagy. In addition, mitochondria transfer also is regarded as a means of quality
control that happens from cell to cell. They receive different signals from external stimuli that dynamically maintain the quality of the
mitochondria in the cell to maintain normal energy metabolism. Mitochondrial transfer, in particular, occurs when mitochondria are damaged
and unable to maintain normal function, and inevitably affects the mass of intracellular mitochondria.
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inflammatory factors during the progression of liver diseases

such as HBV infection and HCC (36). Meanwhile,

mitochondrial biogenesis is a vital part of mitochondrial

quality control. T cells apply for an anabolic metabolism

phenotype upon engagement of the TCR, thus enabling rapid

shifts in resistance from quiescence to activation, and

proliferation, thereby increasing the mitochondrial mass for

energy demands (37). Fischer et al. verified that mitochondrial

biogenesis, proceeding rapidly in nascent activated CD8+ T cells,

was critical for supporting the production of cytokines by

human naïve CD8+ T cells in early immune response (38).

3.1.1 PGC-1a—a pivot in mitochondrial
biogenesis

It is PGC-1a that highly expressed in skeletal muscle and liver,

which belongs to the class of coactivators that can activate the

nuclear receptor peroxisome-proliferator-activated receptor g (39).
In addition, PGC-1a is positioned upstream of the mitochondrial

biogenesis system, which is the junction between exterior stimulus

indicators and the internal regulation of mitochondria. As proven in

the preceding work of Partha. S et al. proved that mitochondria

were activated by Bezafibrate, an agonist of PGC-1a/PPAR

complexes, which prompted the anti-tumor effects of PD-1

blockade. Moreover, it enhanced the proliferation of Naive T cells

and CTL function by activating mitochondria, increasing oxidative

phosphorylation, and glycolysis (40).

Repetitive antigenic stimulation and persistent infections of

cancer cells may cause T cell exhaustion, this nonfunctional state

with distinct epigenetic, transcriptomic, andmetabolic features (41).

Meanwhile, telomere erosion and mitochondrial disruption are

prominent features of senescent cells as cellular functions

progressively decline, including T cells with anti-tumor immune

responses. Impaired mitochondria are the important trigger of T

cell exhaustion induced by prolonged antigenic stimulation in

chronic infections (42). Schank et al. showed that disruption of

telomere integrity leads to T cell senility and apoptosis via the

telomeric DNA damage response (DDR). The p53-PGC-1a-NRF-1
axis contributed to mitochondrial disorder in the setting of

telomeric DDR (43). This study also suggested that focusing on

this axis, might offer an alternative and novel strategy to block

damaged telomeres from regulating mitochondria and thus causing

T cell dysfunction. In addition, adverse signals are produced by

metabolic stress in immune cells, particularly persistent antigenic

stimulation. Insistent stimulation accelerated Blimp-1-mediated

repression of PGC1a-dependent mitochondrial reprogramming,

thus triggering cells to poorly respond to hypoxia. Impaired

mitochondria produced unbearable levels of ROS, enough to

promote exhausted-like status (41). Malinee et al. recently

reported that an epigenetic modulator termed EnPGC-1 (BI-PIP)

was designed which could enhance the expression of PGC-1 a/b in

murine primary CD8+ T cells (44). They illustrated that enPGC-1

induced PGC-1a to promote mitochondrial biogenesis and
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combined with PD-1 blockade enhances the antitumor response

and immune metabolism of effector CD8+ T cells, thereby

suggesting that targeting mitochondrial biogenesis combined with

immune checkpoint inhibitors may improve the efficacy

of immunotherapy.

Meanwhile, in terms of T effector memory (Tem) cells, T

effector responses of CD4+Tem cells could be enhanced by platelet

factor 4 through Akt-PGC1a-TFAM signals. Mass spectrometric

analysis indicates that PF4 regulates CD4+ T cell responses by

modulating cellular metabolism. Herein, the mechanism by which

PF4 acts is through the PF4 receptor CXCR3, which attenuates Akt

activity, decreases PGC-1a phosphorylation, elevates PGC-1a
function, and increases mitochondrial transcription factor A

(TFAM) expression. Whereby TFAM increased mitochondrial

biogenesis and subsequently enhanced Th1 and Treg responses

(140). CD8+ T cells are resistant to viral, bacterial infections, and

even cell carcinogenesis (141), and CD8+ Tm cells maintain long-

term antitumor activity through enhanced proliferative capacity,

metabolic remodeling, and self-renewal capacity. Tm cells depend

on the interaction of OXPHOS and FAO to meet their metabolic

demands. (142) Overexpression of PGC-1a favors the formation of

central memory in CD8 T cells but is no longer a resident memory.

The overexpression of PGC-1a in CD8 T cells consistentlymediates

immune responses in the setting of a bacterial infection or peptide

vaccination, and CD8+ T cells with elevated PGC-1a expression

have been observed in mouse cancer models to provide stronger

antitumor immunity. In addition, PGC-1a- overexpressing in TILs

were able to retain stronger immune function and exhibited

significant proliferation when the host faced the pathogen again

(143). Meanwhile, Tregs play a central role in maintaining immune

homeostasis so as not to “injure the innocent”, and fatty acid

oxidation (FAO) acts as a major energy supply for T cells,

which leads to a stronger Treg response (45). There may

be a close connection between mitochondria and lipid

metabolism in regulating Treg functions, thereby suggesting that

immunosuppressive therapeutic strategies that regulate metabolic

pathways are likely to be the future direction of autoimmune disease

or cancer treatment. Although there is still a large gap in

mitochondrial biogenesis on the immune function of regulatory

immune cells, recent related research on Treg focuses on

peroxisome proliferator-activated receptor g (PPARg) and its

agonists. This transcription factor has long been regarded as a

target protein of thiazolidinediones, and studies have found that it

can enhance the immune response function of Treg by regulating

fatty acid oxidation (46).

Enhancing mitochondrial biogenesis is beneficial to reinforce

the immune response of relevant T cell subsets. The associated

immune metabolism is affected because of defective mitochondrial

biogenesis in T cells, which leads to the damage of the immune

function. Meanwhile, combined immune checkpoint inhibitors

could be a new strategy to address immune exhaustion in

tumor microenvironments.
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3.1.2 Mitochondrial biogenesis and inhibitory
receptor on T cells

Immune cells are regulated by several molecules that act as

security brakes at desired stages of the immune responses, however,

cancer cells take advantage of inhibitory immune checkpoints

(ICPs) to evade tumor-specific immune responses. Recently,

cytotoxic T lymphocyte-associated protein-4 (CTLA-4, CD152),

programmed death-1 (PD-1, CD279) and its ligand PD-L1 (CD274,

B7-H1), lymphocyte activating gene-3 (LAG-3, CD233), T cell

immunoglobulin and mucin-domain containing-3 (TIM-3,

CD366) have been identified as crucial targets in cancer

treatment (47). Numerous studies have shown that inhibitory

receptors co-expressing PD-1 and TIM-3 or PD-1 and LAG-3 on

TILs are more exhausted than other TIL subsets functionally (48,

49). Analogous to chronically stimulated T cells during chronic viral

infection, T cells display exhausted characteristics in the TME, such

as decreased proliferation, cytokine production, and metabolic

dysregulation. Whether or not T cell exhaustion can be reversed

by mitochondrial biogenesis may be a new strategy for the

development of immunotherapy in the future. In addition, naive

T cells in lymphocytic hosts exhibit better proliferative capacity as a

potential to rebuild the host immune system (50). Previte et al.

investigated the role of LAG-3 in adjusting naive CD4+ T cell

metabolism and found that defective LAG-3 adversely affected

mitochondrial biogenesis and then altered Naive CD4+ T cell

metabolism. Moreover, cells lacking the LAG3 -/-CD4+ T cell

display higher STAT5 activity and thus resistance to IL-7

deficiency, which may be considered an inhibitory pathway (51).

Apart from that, it has been shown that LAG -3 is highly expressed

in exhausted CD8+ T cells (Tex), thus leading to progressive loss of

effector-effector function and memory loss after T differentiation

(52). Hence, it was suggested that the recovery or reversal of the

exhausted state of T cells may be associated with the combination of

mitochondrial biogenesis and immune checkpoint inhibitors or

costimulatory molecules highly expressed on exhausted T cells (e.g,

4-1BB) (53), the exhausted state is solved by changing the

mitochondrial state to affect the metabolic function in T cell.

Mitochondria biogenesis is an important step in mitochondrial

quality control. When T cells are externally stimulated,

mitochondria respond rapidly, activating and proliferating, and

the cells differentiate into cell populations with various functions to

execute the immunological effect. However, chronic pathogen

stimulation can lead to T cell exhaustion. These current studies

provide us with a feasible research approach to combine immune

checkpoint inhibitors with co-stimulatory molecules or epigenetic

modulators targeting mitochondrial biogenesis to reverse the

exhausted state. Furthermore, if mitochondrial biogenesis is the

“producer” in mitochondrial quality control, then fusion and fission

are the “balancers” in this process.
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3.2 Mitochondrial fusion and fission
prompt T cell differentiation

Mitochondrial fission and fusion play essential roles in

preserving functional mitochondria when cells experience

metabolic or environmental stresses. Fusion reduces stress by

mixing with part ia l ly damaged mitochondria as a

complementary structure. Meanwhile, fission generates new

mitochondria, contributes to efficient management with the

aid of enabling the elimination of impaired mitochondria, and

prompts apoptosis through excessive cellular stress (54). During

T cell activation, the function of mitochondrial dynamics has

gained attention, metabolic reprogramming, and differentiation.

This part will describe the involvement of mitochondrial

dynamics in the T cell immune response using the major

proteins of mitochondrial fission and fusion as hints.

Mitochondrial biogenesis is essential for energy

requirements and metabolism in tissues and is mainly

coordinated through the PGC-1 family of coactivators (major

regulators of mitochondrial biogenesis). These activators

integrate gene expression in the nucleus and mitochondria

through cascade regulation, involving the sequential activation

of transcriptional regulatory proteins (55). Furthermore, these

mitochondrial forming proteins that control mitochondrial

fusion and fission dynamics, such as mitofusin 1 (MFN1),

mitofusin 2 (MFN2), and optic nerve atrophy 1 (OPA1),

enhance mitochondrial fusion and promote cellular energy

production. Conversely, mitochondrial fission factor (MFF)

and dynamin-related protein 1 (DRP1) are the predominant

factors in mitochondrial fission (56, 57).

3.2.1 OPA1—mitochondrial inner
membrane fusion

Outer mitochondrial membrane fusion is induced by Mfn1

and Mfn2, meanwhile, inner membrane fusion is controlled by

Opa1 (57). Each T cell subset is characterized by metabolic

pathways, thus requiring precise nutrients and intracellular

enzymes. Transporters of these enzymes or nutrients affect the

differentiation and characterization of T cells during

autoimmune responses (37). Unlike effector T cells which are

more dependent on glycolysis to promote proliferation

differentiation, Tm cells and T n cells rely on mitochondrial

fatty acid oxidation and oxidative phosphorylation for survival

and activation (21). In addition, protease Yme1L is responsible

for constitutively cleaving OPA1 to form desired cristae

construction (58). Moreover, SENP1 acts as an inducer of

Sirt3 deacetylase activity in T cells’ mitochondria, thus

resulting in a reduction in YME1L1 acetylation. Deacetylation

of YME1L1 inhibits OPA1 cleavage and leads to mitochondrial
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fusion, thereby enhancing T cell survival and T memory cell

formation (59). In addition, mitochondrial dysfunction further

dampens mitochondrial fusion through inducting the OPA1

cleavage by protease OMA1 (60). Similarly, the T cell

intracellular antigen (TIA1b/TIARb) and Hu antigen R (HuR)

play inverse roles in modulating the expression of mitochondria-

forming proteins. Mitochondrial fission and clustering are

enhanced by TIA1b/TIARb, which alters the mitochondrial

dynamic network and is accompanied by reduced

mitochondrial respiration. In contrast, HuR activates fusion

and remodel of mitochondrial cr istae to augment

mitochondrial respiratory activity. As a result of switching the

splicing patterns of OPA1 to facilitate the production of OPA1

variant 5, TIA proteins suppress the expression of optic atrophy

1 (OPA1) protein (61). Opa1-dependent mitochondrial fusion

maintains the structure of the mitochondrial cristae to promote

differentiation and proliferation of T cells.

Collectively, Opa1 maintains the basic mitochondrial

function and fusion morphology of T cells. Effector T (Te)

cells enhance the memory properties of cells, and the anti-

tumor properties of Tm cells after infection require a gradual

increase in mitochondrial fusion and activation of mitochondria.

Mitochondrial cristae in Tm cells are altered by mitochondrial

fusion, which favors the complex association of the electron

transport chain (OXPHOS) and FAO (62). In contrast, the event

of the fission in Te cells makes cristae fragmented, then weakens

oxidative phosphorylation efficiency and facilitates aerobic

glycolysis. Hence, it is an important strategy that targets

mitochondrial fusion and fission events based on the

metabolic demands of T cell differentiation

3.2.2 DRP1—a crucial role in metabolism
reprogramming and migration

As mitochondrial fission is mediated by dynamin-related

protein 1 (DRP1), a cytosolic GTPase, specific adaptor proteins

are required to anchor this receptor in the mitochondrial outer

membrane (MOM). Herein, self-assembling DRP1 forms a

ringlike structure around mitochondria by recruiting adaptor

proteins to the MOM (63, 64). The activation of Drp1 regulates

the fragmentation of organelles but this protein is inactive in the

cytosol, whereby it is phosphorylated on serine637 which is a

suppressed phosphorylation site. In addition, its excitation

signals need each the dephosphorylation of serine637 which

orients Drp1 closer to the OMM, and the phosphorylation of

serine616, which prompts Drp1 to implement fragmented

mitochondria (65). Moreover, although the exact mechanism

is unclear, Drp1 regulates the shape of mitochondrial cristae and

thus mitochondrial fragmentation in an opa1-independent

manner (66). Mitochondrial dynamics are not only the

powerhouses of normal cells but also work as significant roles

in metabolism reprogramming, migration, and clearance of

damaged mitochondria, as well as in T cells and cancer cells

(67, 68).
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Furthermore, Drp1 is a key factor for T cell migration and

proliferation. Once Drp1 is defective, defects in cell proliferation

and migration are observed in developing thymocytes (69, 70). A

key site for mature T cells is the T cell receptor (TCR-calcineurin

signaling pathway) which triggers T cell activation (71). Calcium

is an important second messenger during T cell activation at

sites linked to antigen-presenting cells (APCs), whereby

mitochondria shift below the plasma membrane of the

immune synapse (IS). Thus, mitochondrial calcium uptake

prevents calcium-dependent CRAC channel inactivation,

maintains low calcium influx in the cytoplasm, and maintains

an optimal T cell activation state (72) Meanwhile, calcium-

dependent dephosphorylation of serine637 enhances Drp1

excitation (73). In addition, Drp1-dependent fragmented

mitochondria trigger mitochondria recruitment toward the IS

through the movement of fragmented mitochondria in these

microtubules (70).

Meanwhile, Tn (Naive T) cells respond to antigens by

activating and converting into T effector (Te) cells. Once the

immune response is terminated, most Te cells will disappear, but

some will remain as T memory cells, which will continue to exist

for a long time. When Tm cells recognize the identical antigen,

they are rapidly reactivated and proliferated into Te cells. T cells

have different metabolic requirements depending on their

metabolic activity, and inhibit overactivation and block

inappropriate immune responses (74). Different immune

phases have different metabolic demands in T cells. However,

in addition to regulating mitochondrial fragmentation, the

precise mechanism by which Drp1 regulates mitochondrial

cristae is unclear. Moreover, the mitochondrial network is

closely related to cellular metabolism. Mitochondrial fragments

are always found in cells that rely on glycolytic metabolism,

whereby mitochondrial fragments facilitate the breakdown of

electron transport chain (ETC) complexes, thus reducing the

rate of OXPHOS and more favorable to glycolysis. However, a

richer network of efficiently assembled corpuscles is observed in

cells with OXPHOS-based metabolism (75, 76). Drp1 decreases

OXPHOS efficiency in mitochondrial debris-mediated T cells,

thereby leading to the formation of ineffective mitochondrial

cristae. In response to TCR stimulation, transcriptional

upregulation of genes encoding glycolytic enzymes and Drp1-

dependent calcium influx maintain excitation of the mTOR/

cMyc pathway (62, 70). As for the Tm, the OXPHOS-based

metabolism of Drp1 KO T cells affects the generation of

memory-like T cells in vivo. Furthermore, the Drp1 deficiency-

driven change in Tm was associated with increased levels of

exhausted T cells in vivo, exhausted CD8 T cells arise from the

memory precursor rather than the terminally differentiated

effector CD8 T cells (77). Moreover, an important feature of T

cell exhaustion is increased expression of inhibitory receptors,

combined PD-1 and its ligand in activated T cells suppresses

antitumor immunity by blocking stimulatory signals to T cells

(78). Herein, PD-1 regulates both mTOR and ERK pathways,
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which are modulator of Drp1-dependent mitochondrial fission

(79, 80). In addition, Drp1 and the MAPK-ERK pathway are

important regulators of proper T cell migration in mitochondrial

dynamic homeostasis. PD1+ exhausted T cells with chronic viral

infection exhibit reduced mobility and lower level of ERK (80).

Then, whether or not enhancing Drp1 expression effectively

restore the migratory ability of PD-1-expressing exhausted T

cells (77), thereby rescuing the exhausted state of Te and

promoting its normal differentiation to a memory phenotype.

Moreover, Drp1-mediated mitochondrial fragmentation serves

as a substrate for mitochondrial autophagy. Herein, mitophagy

clears the fragmented mitochondria to maintain the normal

function of mitochondria in T cells.
3.3 Mitophagy maintains
T cells homeostasis

The integrity of mitochondria is a determinant factor in cell

apoptosis and necrosis (81). Cytoplasmic reactive oxygen species

(ROS) activity is enhanced under antigen contact and T cell

receptor (TCR) signaling is activated. However, uncontrolled

ROS leads to cell necrosis, thus affecting immune cell function.

On the one hand, mitochondria are the main source of ROS, and

on the other hand, mitophagy eliminates ROS to main the

integrity of mitochondria (82). Moreover, mitophagy plays an

important role in keeping homeostasis in T cells (83).

Dysfunctional mitochondria are usually accompanied by a

decrease in ETC efficiency, and then cause a reduction in ATP

production (84). Damaged mitochondria or accumulation of

depolarized mitochondria are associated with inflammation, and

cancer progression, and are the major sources of oxidants

causing oxidative damage (85, 86). Meanwhile, TILs with

mitochondrial defects are prone to exhaustion (87).

Mitochondrial autophagy is regulated by the PTEN-induced

kinase 1 (PINK)/parkin-dependent pathway, which is the main

pathway that induces mitochondrial autophagy (88). Parkin

promotes the degradation of MOM proteins through

ubiquitination and the formation of autophagic vesicles,

thereby clearing disordered mitochondria in cells.

Therefore, it is suggested that the ablation of FAM73b, a

MOM protein, may trigger mitochondrial autophagy-related

signaling and promote macrophage-derived IL-12 production,

thereby enhancing the antitumor effects of T cells (89). T

lymphocyte chemotaxis is regulated by mitochondria, and

mitochondrial morphology affects T cell activation-induced

cell death (AICD), where the loss of mitochondrial membrane

potential drives the release of cytochrome C from mitochondrial

fragments and promotes PARK2/PARKIN recruitment (90). In

addition, the denitrosylase S-nitrosoglutathione reductase

(GSNOR) binds to S-nitrosylation in cellular senescence and

clears damaged mitochondria through autophagy (mitophagy)

while regulating T cell excitation (91). Primitive T cells are
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forced into quiescence through secondary lymphoid organs

during maturation. Moreover, CD4+ recent thymic emigrants

(RTEs) and naive T cells had to reduce mitochondrial mass and

mitochondrial reactive oxygen species via mitophagy (14).

Decreased mitochondria l membrane potentia l and

mitochondrial autophagy in Treg cells are associated with

inhibition of Treg proliferative function, and the autophagy

agonist Rapa increases the level of Treg proliferation (92).

Herein, autophagy is an intracellular degradation system that

plays an important role in the survival of T cells, meanwhile,

mitophagy is a specific mechanism to maintain normal cellular

function. Furthermore, autophagy regulates various elements of

the immune system, such as pathogen clearance, antigen

presentation, cytokine production, antibody response, and

lymphocyte homeostasis (93). Previously, several studies

reported that a lack of ATG genes (ATG5, ATG7, or ATG3)

increased mitochondrial volume and reactive oxygen species

(ROS) levels, whereas ATG7 is required for the survival of

mature T lymphocytes (83, 94). As observed by researchers,

the upregulation of autophagy adapts CD8+ T cells to eliminate

mitochondrial depolarization, utilize functionality, and gather

tissue residence, then tight MQC is imperative for T cellular

homeostasis in the liver and this is offered by heightening

autophagy stages. Researchers also observed that upregulation

of autophagy adapts CD8+ T cells to eliminate depolarized

mitochondria and that MQC is essential for maintaining

hepatic T cell homeostasis, while this state is sustained by

increasing autophagy (95). In addition, inhibition of

mitophagy leads to the accumulation of ROS in cells,

subsequently initiating a mitochondrial transfer to introduce

healthy mitochondria to rescue cellular homeostasis may be a

feasible strategy.
3.4 Mitochondrial transfer as a double-
edged sword in T cells

Mitochondrial Transfer is a crucial way of intercellular

communication. Herein, related studies have shown the

importance of mitochondrial transfer for the regeneration of

injured or infected cells and tissues (96). Functional

mitochondria are transferred from the donor cells to the

recipient cells with defective mitochondria, thus increasing

mitochondrial mass (97–99). Moreover, there were four major

transfer modes, including extracellular vehicles (EVs), tunneling

nanotubes (TNTs), cell fusion, and gap junction (34). Among all

transfer modes, TNTs are the main way of mitochondrial

transfer, Miro 1 and 2 are two types of Rho-GTPases that

connect mitochondria with other accessory proteins and move

along the TNT that connects the two cells (100). (Figure 2)

Furthermore, tumor necrosis factor a (TNFa) and NF-kB
promote the formation of TNTs, which maintain cellular

energy metabolism and cell survival through apoptosis, a
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process regulated by mitochondria (101, 102). Meanwhile,

transcellular mitochondria transfer plays an important role in

mitochondrial quality control. When cellular mitochondria are

damaged or senescent, damaged mitochondria trigger

mitochondrial fusion, fission, mitophagy, or mitochondrial

biogenesis, which maintain intracellular mitochondrial

homeostasis by donating normal mitochondria to surrounding

cells with damaged mitochondria via TNTs or EVs (103, 104).

Herein, mitochondria play a major role in the progression of

HCC, and both the progression and metastasis of HCC are

closely related to mitochondrial mass (105). According to Otto

Warburg’s hypothesis, cancer cells depend on the upregulation

of glycolysis, however, inhibition of functional mitochondria

induces excessive ROS accumulation and leads to apoptosis in

cancer cells (25). Moreover, evading the immune system is an

important strategy in tumor progression. According to Saha et

al, cancer cells could hijack mitochondria from immune cells

through physical nanotubes-TNTs (106). This means exhaustion

of immune cells and enhancing the aggressiveness and metabolic

efficiency of the tumor. Although this mitochondrial hijacking is

unilateral, it has also been demonstrated that T cells additionally

obtain mitochondria from other donor cells to promote cell

proliferation and differentiation. Currently, mitochondrial

transfer of T lymphocytes is mainly studied in autoimmune
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diseases, such as acute lymphoblastic leukemia (107) and graft-

versus-host disease (108). Meanwhile, mesenchymal stem cells

(MSCs) have significant advantages in technical extraction and

efficacy and are often used as donors for mitochondrial transfer.

MSCs play a key role in mitochondrial transfer by directly

donating mitochondria to damaged cells and rescuing tissue

degeneration caused by mitochondrial damage (109). Yuan et al.

found that MSCs induced macrophages to form an anti-

inflammatory phenotype and attenuated kidney injury in

diabetic nephropathy (DN) mice by mitochondrial transfer

(110). Furthermore, MSCs- Mito transfer activated PGC-1a-
mediated mitochondrial biogenesis to resist inflammatory

responses (111). Moreover, mitochondria transfer causes

chemoresistance in T-ALL cells transfer mitochondria to

MSCs, which would protect leukemic cells from chemotherapy

(107). MSCs have important immunosuppressive properties

(112). Herein, Th17 cells take up mitochondria from BM-

MSCs after co-culture with BM-MSCs and reduce IL-17

production by Th17 cells, which could provide a new strategy

for the treatment of chronic inflammation (113).

In brief, mitochondrial transfer is a double-edged sword. On the

one hand, tumor cells deprive T cells of mitochondria through

mitochondrial transfer. On the other hand, mitochondrial transfer

can be used as a therapeutic target for tumors by changing the
FIGURE 2

Intercellular mitochondrial transfer modes. There are four major transfer modes, such as extracellular vehicles (EVs), cell fusion, gap junction
connections (GJCs), tunneling nanotube (TNTs)under the stimulation of stress reaction, inflammation response, DNA damage, and increased
interstitial ROS levels. TNTs are the common type of cellular community which could transform the metabolism and functional features of the
recipient cells, and the initial increase in mitochondrial mass could reveal between the donor and recipient cells. A high level of ROS in
mitochondrial recipient cells can trigger activation of p53 and the downstream Akt/PI3K/mTOR axis, resulting in an overexpression of M-sec,
which could enhance TNT formation.
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metabolic status of donors and recipients through changes

in mitochondrial mass between donors and recipients (e.g,

delivery of healthy mitochondria through donor cells to

exhausted T cells by damaged mitochondria to compensate for

impaired cellular functions).
4 Targeting mitochondria of T cell in
hepatocellular carcinoma genesis
and progression

At present, there are various clinical treatments for HCCs, such

as surgical resection, liver transplantation, radiofrequency ablation,

chemotherapy, and molecular targeting, however, the treatment

effect on progressive HCC is still unsatisfactory (114, 115). Immune

cells play a crucial role in the recognition and focus on cancer cells

in immunotherapy, and immunometabolism may be an important

therapeutic target by regulating mitochondria which work as a hub

of the metabolism pathway. (Figure 3)
4.1 Nonalcoholic Fatty Liver Disease
induced HCC

Nonalcoholic Fatty Liver Disease (NAFLD) partially evolves

into NASH and eventually develops into cirrhosis and/or HCC,

which is considered to be a metabolic tendency to liver cancer

(116). The histological presentation ranges from the

accumulation of triglycerides within the fatty liver to NASH

(117). In general, the accumulation of inflammatory cells in the
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liver is higher in NASH than in steatosis, thereby suggesting that

excitation of the immune system may contribute to the

progression of fatty liver and even to HCC (118). The accruing

exhausted and singularly activated CD8+PD1+ T cells in NASH-

HCC has been demonstrated. However, targeting programmed

death-1 (PD1)-amplified activation of intra-tumor CD8+PD1+ T

cells did not result in tumor regression, thereby suggesting

tumor immune surveillance was damaged and possibly

because of the aberrant NASH-induced T cell activation (119).

Although the absolute number of CD4+ T cells is lower in

NASH, there is a selective increase in Treg subpopulations (25).

Herein, Treg plays an immunosuppressive role and promotes

the development of tumors in the tumor microenvironment.

However, Th22 and Treg cells have regulatory roles in NASH-

associated HCC (NAFLD-HCC) (120). Wang et al. found

neutrophil extracellular traps (NETs) were rich in the liver

affected by NASH, and then verified that NETs interact with

Tregs in the progression of NASH-HCC, and NETs promoted

Treg differentiation by facilitating mitochondrial respiration

(121). Moreover, an overactive immune response may lead to

cell damage in the early stages of the disease, similar to the

intense immune attack caused by HBV-HCC in earlier acute

infections (122). This might be a strategy to enhance the

activation of Treg NETs during NASH to HCC by increasing

mitochondrial mass. Therefore, appropriately targeting of

mitochondrial biogenesis in the early stages of hyper-

immunity, based on the metabolic pattern on which Treg

depends, enhances the immunosuppressive function of

regulatory immune cells. Meanwhile, dysregulation of lipid

metabolism and accumulation of lipids in the liver are

important reasons for NAFLD (123). Numerous studies have
FIGURE 3

Exhausted T cell with depleted mitochondria in hepatocellular carcinoma genesis and progression. When the tumor or viral antigen is correctly
recognized, the T cell immune response rapidly expands and differentiates to perform the corresponding immune function. However, under
chronic antigenic stimulation, such as after HBV infection, a dysfunctional phenomenon called “exhaustion” limits the antiviral response and
affects the subsequent antitumor response, which happens in immune cells with dysfunctional mitochondria. Damaged mitochondria are unable
to maintain the demands of continuous immune metabolism, resulting in T cell exhaustion - loss of self-renewal and continuous differentiation.
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reported that delaying lipid aggregation in immune cells was

important for normal immune function, particularly in

antitumor surveillance (124). Meanwhile, Chi et al. showed

that mitochondria-induced apoptosis of CD4+ T lymphocytes

in the liver with extensive lipid accumulation lipids free from

lipid-laden hepatocytes were ingested by CD4+ T lymphocytes

and selectively triggered cell death (125). Apart from that,

excessive linoleic acid disrupts the mitochondrial function in

hepatocytes and causes more oxidative damage. According to Fu

et al., mitochondria isolated from HCC cells could be used to

treat mice with high-fat diet-induced fatty liver. In this way,

damaged mitochondria could be replaced by exogenous

mitochondria, liver lipid metabolism is restored (126).

Collectively, targeting mitochondrial transfer to regulate lipid

uptake by CD4+ T cells may be a novel strategy for the treatment

of NAFLD. Hence, further research is needed on how to target

immune cell function at different stages of disease progression.
4.2 Hepatitis virus-induced HCC

The major risk factors for HCC are becoming increasingly

related to post-sustained virological response hepatitis, active

hepatitis C and B continue to drive most of the progression of

HCC (116, 127). In particular, HBV causes HCC in the absence

of cirrhosis similar to NASH. The transformation of HBV or

HCV infection to HCC is mainly the result of long-term

interaction between hepatitis virus and host hepatocytes, such

as DNA integration or epigenetic dysregulation of tumor

suppressor genes (128–130). The changes in the host immune

system response to persistent CHB infection can be divided into

five phases: immune tolerance, active, inactive, immune reactive,

and HCC (131–133). During the period of hepatocarcinogenesis,

CD8 T cells play the dual roles of adaptive immunity in patients

with HBV-related HCC in each of the stages.

In addition, CD8 T cells are critical for HBV clearance,

possibly provided by direct cytotoxicity through interferon

(IFN)g-mediated non-cytopathic lesions. Conversely, T cells

are chronically exposed to antigenic stimulation during

persistent chronic HBV infection (CHB), and antiviral CD8 T

cells are absent, failing to mature protective T memory cells and

exhaustion of HBV-specific T cells (42, 131). Considering that

the effector HBV-specific CD8+ T cells are gradually depleted

during long-term HBV infection, eventually weakening the

tumor surveillance of the adaptive immune system and thus

leading to immune evasion by cancer cells, thereby promoting

the progression of tumorigenesis. Similarly, upregulation of

transcript levels of glycolysis-related genes and impaired

mitochondrial function in HCV-specific CD8+ T cells leads to

HCV-specific T cell exhaustion (129). Schurich et al. reported

mitochondrial dysfunction in hepatitis B virus-specific T cells,

such as non-functional giant mitochondria and lower potential

mitochondria, which inhibit chemo-oxidative phosphorylation
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and energy production and limit metabolic remodeling of

exhausted T cells (134). Therefore, mitochondria play an

important role in process of HCC. Moreover, according to

Fisicaro et al, recovery of mitochondrial and antiviral CD8

functions was triggered by mitochondrion-targeted

antioxidants (135). IL-12 and IL-15 can replenish exhausted T

cells’ energy dependence on glycolysis and optimize cell

performance by targeting mitochondrial metabolic regulation

in T cells, using oxidative phosphorylation (134, 136, 137).

Therefore, targeting the central role of mitochondria in

metabolic reprogramming in immune cells may be a way to

improve or restore effect-specific exhausted T cells in the

suppressive immune environment of HCC. Mitochondria are

promising therapeutic targets for chronic HBV infection by

enhancing the mitochondrial feature of exhausted virus-

specific CD8+ T cells through MQC, thereby preventing

functional exhaustion.

Recent evidence suggests that despite the critical role of

HBV-specific CD8+ T cells in the antitumor immune response,

chronic inflammation mediated by overactivated CD8+ T cells

promotes hepatocarcinogenesis (138). Hao et al. reported that

inappropriate attack by CD8+ T cells plays a key role in HBsAg-

driven inflammatory response and HCC tumorigenesis (139).

Consequently, focusing on the different stages of disease

progression and keeping the balance of the immune system

are significant aspects of the treatment of HBV-related HCC.
5 Conclusion

Mitochondria, as important regulators of T cell physiology, play

a crucial role in migration, proliferation, differentiation, and

immune surveillance. Mitochondrial quality control accompanies

changes in mitochondrial morphology and affects the metabolic

reprogramming of cells. In addition, mitochondrial plasticity events

include mitochondrial biogenesis, fusion and fission, mitophagy,

and mitochondrial transfer between cells, which enable

mitochondria to effectively respond to external stimulation and

maintain dynamic stability in mitochondrial mass. The effector T

cell (Te) metabolic mode is mainly glycolysis, however, enhanced

mitochondrial biogenesis promotes metabolic adaptation and

sustains immune function. Moreover, mitochondrial fission leads

to the expansion of mitochondrial cristae, reducing oxidative

phosphorylation efficiency and promoting aerobic glycolysis in Te

cells. Te cells need to maintain the glycolytic energy supply

efficiency. Furthermore, enhanced Te fusion could prompt the

memory properties and anti-tumor ability of the subsequently

differentiated Tm cells. Herein, the metabolic mode of Tm is

mainly oxidative phosphorylation and FAO, which can effectively

promote immune memory and metabolic adaptation by enhancing

mitochondrial biogenesis. Apart from that, Tregs improve

mitochondrial biogenesis and mitophagy, regulate FAO

metabolism and prompt the immunosuppressive effect. However,
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in some autoimmune diseases, it is an important key point of

treatment. In addition, targeting mitochondrial biogenesis may be

an important approach for T cell exhaustion. The combination of

immune checkpoint inhibitors and reversal of T cell exhaustion can

achieve better anticancer effects, which may be applied in CAR-T

and ACI. Meanwhile, in the early period of raging inflammation, it

may be an effective treatment to enhance the function of Treg by

targetingmitochondria. However, in the later stage, when T cells are

in a state of exhaustion under long-term virus or tumor antigen

stimulation, targeting mitochondria may be able to rescue the

exhaustion or restore anti-tumor ability. In brief, immunotherapy

for liver cancer has rapidly developed, and mitochondrial quality

control of T cells may become a new research target in HCC.

With the update of immune strategies, the regulation of

immune metabolism in the tumor microenvironment has become

an important part. Exhausted T cells can be renewed and the anti-

tumor effects were enhanced by targeting mitochondria. At present,

T cell-based immunotherapy for HCC has made great progress,

however, it still faces various research gaps. Herein, a few questions

we might explore are whether or not liver cancer cells can also

enhance their cell viability and invasiveness, and weaken the

lethality and memory of T cells in the tumor microenvironment

through mitochondrial hijacking. Exhausted T cells in tumor

microenvironments are often accompanied by mitochondrial

depletion, whether it can be delivered through healthy

mitochondria in vitro (which can be derived from homogenous

mesenchymal stem cells) to reverse the exhausted state and enhance

immune efficacy. In addition, there are specific and dependent

metabolic patterns in each subtype of T cell. Combining agonists or

other relevant factors of mitochondrial biogenesis with immune

checkpoint inhibitors (PD-1/LAG-3/TIM-3) should be considered

to rescue T cells from exhaustion. Based on the stage of HCC, the

mitochondria of T cells can be targeted to modulate the immune

response, thereby avoiding “over-immunity” and “depletion of

immunity”. Hence, gene epigenetic modulators including
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EnPGC-1 may be able to directly regulate mitochondrial quality

control by targeting mitochondria to regulate immune metabolism

is of extensive significance for T cell-centered HCC therapy.
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