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LncRNAs elevate plant adaptation under low temperature by maintaining local 
chromatin landscape
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ABSTRACT
Epigenetic regulation is one of the most precise and subtle ways of gene regulation, including DNA 
modification, histone modification, RNA modification, histone variants, chromatin remodeling, and long 
non-coding RNAs (lncRNAs). Chromatin modification is the most basic type of epigenetic regulation, 
which plays a key role in a myriad of developmental and physiological processes that have been 
thoroughly studied. These modifications are usually completed by a series of conserved chromatin 
modification complexes in eukaryotes. In recent years, a series of lncRNAs in organisms also have been 
described as having irreplaceable functions in biological environment adaptation, especially in biotic and 
abiotic stresses. Moreover, these molecules form a sophisticated regulatory network through mutual 
cross-regulation to achieve quantitative expression of key environmental response genes to external 
signals. For instance, the function of lncRNAs will directly or indirectly depend on the function of the 
chromatin modification complex. In this review, we mainly focus on chromatin modification, lncRNA, and 
their coordination mechanism to achieve the high adaptability of plants in low-temperature environ
ments. We highlight recent findings and insights into lncRNA-mediated local chromatin environment 
changes during plant growth under low temperature via chromatin modification complexes, including 
target gene specificity for different lncRNA.
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Introduction

It is harder for terrestrial plants to escape from unexpected 
damage than animals. Therefore, the growth of plants is sus
ceptible to seasonal changes, among which temperature and 
light are the most important limiting factors.1 Generally speak
ing, the annual light and temperature change constantly, but in 
recent years, due to climate changes, there are frequent tem
perature fluctuations, which is a huge ordeal for the growth and 
development of plants. Principally in cold regions, plants are 
prone to cold stress, and their fitness is affected. Over the past 
two decades, the sophisticated mechanisms of plant resistance 
to cold temperature have been explored, including osmotic 
potential,2,3 proteins structural stability,4 ice crystal 
formation,5 cell membranes stability,6–9 and reactive oxygen 
species (ROS) scavenging.10 All those events are dependent on 
sophisticated gene regulation.

“Epigenetics” was proposed by Conrad Waddington in the 
1940s (REF) as an energy-effective way to adjust gene expres
sion, especially for terrestrial plants.11 Temperature is an impor
tant physical factor affecting the distribution of plants and their 
chromatin conformations by inducing chemical modification of 
biological macromolecules (DNA, proteins), thereby triggering 
biochemical and molecular reactions in each cell to respond to 
temperature changes. Post-translational histone modifications, 
such as histone acetylation, methylation, phosphorylation, ubi
quitination, SUMOylation, and myristoylation are associated 
with gene expression levels in plants withstanding cold 

environments.12 Besides chemical modifications of histones, 
low temperature can induce lncRNAs in plants. LncRNAS are 
transcribed by RNA polymerase II and are not translated to 
proteins. Increasing evidence prove that lncRNAs also have 
a critical role in stress responses.13–19 Nowadays, researchers 
have found many lncRNAs function in conjunction with the 
histone modification complex.20–23

In this review, we highlight recent findings in plant chro
matin modifications by lncRNAs at low temperatures, discuss 
the specificity of lncRNA mediated gene chromatin modifica
tion, and address questions that remain to be answered.

Histone modification provides the possibility of 
precise regulation to cold response in plants

Chromosome assembly is a multi-level highly ordered process. 
The most basic unit of the structure and function of eukaryotic 
chromosomes is the nucleosome. The nucleosome is 
a heterooctamer composed of H2A, H2B, H3, and H4, with 147 
bp DNA wrapped around.24,25 The N-terminal and core regions of 
histones are susceptible to modifications, such as methylation, 
acetylation, phosphorylation, and ubiquitination.26–28 Histone 
modifications are involved in all plant development stage, 
such as, seed germination, hypocotyl elongation, and flowering 
time.29–32 Moreover, these histone modifications also play 
a crucial role in cold stress response.33–35 During Arabidopsis 
cold acclimation, after transferring to 4°C, histone modifications 

CONTACT Yuan Song songyuan@lzu.edu.cn Lanzhou University, The South of Tianshui Road 222#, Lanzhou, Gansu, China
†These authors have contributed equally to this work

PLANT SIGNALING & BEHAVIOR                        
2022, VOL. 17, NO. 1, e2014677 (6 pages) 
https://doi.org/10.1080/15592324.2021.2014677

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits 
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/15592324.2021.2014677&domain=pdf&date_stamp=2022-03-29


are associated with induction the transcription of CBF genes, 
which in turn activate the COR gene.36 In maize, histone deacety
lases were significantly up-regulated during the cold acclimation, 
genome-wide H3 and H4 deacetylation, and local histone acetyla
tion level of ZmDREB1 and ZmCOR413 were observed in cold- 
response.37 Also, a similar phenomenon was found in rice.38 

Besides histone acetylation, histone methylation is also a tool for 
adjusting plant fitness through gene expression primarily when 
plants undergo cold stress. At low temperatures, H3K27me3 at 
COR15A and AtGolS3 were decreased.39

Since histone modifications are altered in cold stress, studies 
have identified the chromatin modification enzymes involved 
in the cold stress response. In Arabidopsis, long-term low 
temperature induces HDA6 transcription, changing histone 
acetylation levels.40 HOS1 (high expression of osmotically 
responsive gene 1), a RING finger E3 ligase, negatively regu
lates cold-responsive genes.41 Moreover, HOS1 helps HDA6 
dissociate from the FLC locus to change chromatin status.42,43 

HOS15, a WD40-repeat protein, can be induced by abiotic 
stresses such as freezing, deacetylating histone H4 and enhan
cing plants’ cold tolerance.44

Vernalization is a relatively precise adaptation mechanism 
produced by plants as a long-term evolutionary process 
responding to environmental seasonal temperature 
changes.45,46 This process is also a representative cold toler
ance mechanism, that plants synchronizing flowering with 
spring and pollinators undergoing long-term cold tempera
tures, also helps plants complete their reproductive cycle as 
quickly as possible by shortening the growth cycle and 
sacrificing an amount of plant biomass to some extent. 
During vernalization, long-term cold conditions reduced 
the FLOWERING LOCUS C (FLC) gene expression, thereby 
promoting the early flowering of the plant. FLC encodes 
a MADS Box domain-containing protein, a key suppressor 
gene in the flowering regulatory network.47 FLC transcrip
tion level is mainly promoted by FRIGIDIA (FRI). FRI forms 
an FRI complex with FRL1, FES1, FLX and SUF4 to promote 
the FLC expression, thereby inhibiting flowering.48 

Compared with Col-0 plants without FRI function, plants 
with functional FRI showed a clear late-flowering phenotype. 
In the initial stages of FLC transcription, the FRI complex 
forms a transcription activation super complex with SWR1, 
COMPASS, PAF1 (RNA polymerase II-associated complex) 
complexes, and EFS, and maintains the transcription activa
tion markers H3K4me3 and H3K36me3 and the level and 
stability of the gene-loop at FLC site.49 After the vernaliza
tion, the recruitment of the PHD-PRC2 complex completes 
the histone H3 methylation at the 27th lysine (H3K27) at 
FLC locus, thereby inhibiting the FLC expression.50 When 
the cold signal ends, the stable inhibition of FLC in plants 
requires recognition of the cold memory element (CME) on 
the first intron of the FLC gene through VAL1 and VAL2 
proteins and then recruits the PRC1 and PRC2 complex, 
thus the level of modification and expression of H3K27me3 
at this site is stable.51

Dynamic histone modification as well as gene activation and 
genetic memory have become hot topics in plant responses to 
abiotic stress. However, the complete network of relationships 
between abiotic stress responses and epigenetic information, 

such as, stress-responsive histone-modifying enzymes, target 
stress-responsive genes, and specific histone-modification sites 
remains unclear.

LncRNA helps plants overcome the annual cold 
conditions

Besides chemical modifications on histones, lncRNAs are also 
a pivotal gene regulation level induce by low temperature in 
plants. Although lncRNAs related to mRNA and transcribed by 
RNA polymerase II, lncRNAs do not code for proteins.52,53 

lncRNAs are more than 200 nt in length, and classified into 
natural antisense transcripts (NATs), overlapping lncRNAs 
(OT-lncRNAs), long intergenic non-coding RNAs 
(lincRNAs), and intronic non-coding RNAs (incRNAs).54,55 

With the development of high-throughput sequencing tech
nology, an increasing number of lncRNAs have been identified. 
Recently, lncRNAs have emerged as key epigenetic regulators 
of diverse cellular processes in mammals and plants. In the 
nucleus, lncRNAs can serve as transcription regulators or 
enhancers RNA, change chromosome construction, help spli
ceosome formation, and recruit the chromatin-modifying 
complex to target genes.56 While in the cytoplasm, lncRNA 
usually promotes mRNA stability, mRNA translation, and 
small peptides production.56 lncRNAs have a critical role in 
cold responses, and more importantly, function together with 
histone modifiers.57

In Medicago truncatula, 24,368 unique lncRNAs were iden
tified, among which 983 and 1288 were responsive to cold 
treatment in the leaves and roots.58 The observations that 
transcript levels of the lncRNA MtCIR1 increased within 2 h 
of exposure to low temperature, followed by MtCBFs accumu
lation at 5 h may suggest a regulatory network between 
MtCBFs and MtCIR1.59 In wheat, the lncRNAs LncR9A, 
lncR117, and lncR616 indirectly regulate the CSD1 expression 
by competitively binding miR398, affecting the resistance of 
Dn1 (Dongnongdongmai 1) against cold.60

In Arabidopsis cold response, the SVALKA-asCBF1 cascade 
provides a CBF1 expression control mechanism that could be 
exploited to maximize freezing tolerance with mitigated fitness 
costs.61 Recently, the lncRNA AUXIN REGULATED 
PROMOTER LOOP (APOLO) was reported to directly identify 
multiple independent loci in the Arabidopsis genome and reg
ulate its three-dimensional chromatin conformation, leading 
to transcriptional shift. After cold treatment, the APOLO gene 
transcriptional activity is higher in roots. The novel APOLO 
and WRKY42 ribonucleoprotein complex form a regulatory 
center. APOLO lncRNA directly regulates the RHD6 transcrip
tional activity by fine-tuning the epigenetic environment, such 
as local chromatin 3D conformation. The RHD6 activation 
further triggers the expression of RSL2 and RSL4, and it inte
grates signals that control the growth and development of root 
hairs.62 Analysis of the molecular mechanism of vernalization, 
three types of lncRNAs, including COOLAIR, COLDWRAP, 
and COLDAIR, were detected in FLC, a key gene of 
vernalization.63–66 In 2011, Jae Bok Heo and Sibum Sung 
reported the long intronic non-coding RNA COLDAIR 
(COLD ASSISTED INTRONIC NONCODING RNA), required 
the vernalization-mediated epigenetic repression of FLC. 
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COLDAIR is in the sense direction relative to FLC mRNA 
transcription, and it physically associates with subunit of 
PRC2 and targets PRC2 to FLC.67 Also, Dong-Hwan Kim 
identified another lncRNA can be bound by PRC2, 
COLDWRAP. COLDWRAP is derived from the repressed pro
moter of FLC and is necessary for establishing the stable 
repressed state of FLC by vernalization.65 Both COLDAIR and 
COLDWRAP are required to form a repressive intragenic 
chromatin loop at the FLC locus by vernalization.65 

COOLAIR is another FLC antisense transcript with alternative 
polyadenylation and multiple splice variants linked to different 

FLC expression states. FCA directly binds to long and short 
COOLAIR transcripts, as well as it interacts with the PRC2 
subunit CLF. Defects in COOLAIR and FCA result in reducing 
H3K27me3 and decreasing CLF enrichment at FLC.68 Fang 
et.al captured interactions between FLL2, FCA, the polymerase 
and nuclease modules of the RNA 3′-end processing machin
ery, this work provided an evidence that phase separation is 
involved in lncRNAs COOLAIR target chromatin 
modifications.69 Besides PRC2 recruitment, there are some 
examples of transcription activation complex recruitment. 
MAS, positively regulates the transcription of its cognate 

Figure 1. Possible work model for lncRNAs recruit chromatin modifiers. A. histone modifiers bind lncRNA directly. B. lncRNAs is found by a bridge protein (such as 
RNA-binding protein), which interacts with chromatin modifiers, then they form a super-complex maintain local chromatin landscape. C. Stress condition (as cold) 
prompt lncRNAs and chromatin modifiers form phase separation system, then they can easily maintain local chromatin landscape.
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sense gene MAF4 through interacting with WDR5a, a core 
component of the COMPASS-like complexes, to MAF4.23 All 
above examples tell us lncRNAs play irrefutable role in helping 
plants overcome the cold conditions.

Perspectives and concluding remarks

LncRNAs have been proven to have a critical role in cold 
responses. This review examined the functions of histone 
modifications, lncRNAs, and lncRNA-assisted chromatin 
modification complex to target gene directly or indirectly. 
LncRNAs are key to local chromatin landscapes, especially 
under stress conditions. This has led to the hypothesis that 
the crop species may have more lncRNAs due to the selec
tive pressures for stress tolerance. How are the enzymatic 
complexes guided to target these marks at a specific com
bination of sites under different cellular contexts? Many cis- 
elements recruit histone modification complexes to the 
modified target gene containing those elements. Short 
genomic fragments, such as GA repeats and telobox, 
known as Polycomb response elements, direct the 
Polycomb repressive complex 2 (PRC2) placement at devel
opmental genes regulated by silencing in Arabidopsis 
thaliana.70,71 For example, PRC2 recruitment in 
Arabidopsis relies mainly on trans-acting binding factors 
to cis-localized DNA sequence motifs. Some works have 
identified transcription factor families that bind to these 
PREs, colocalize with PRC2 on chromatin, physically inter
act with and recruit PRC2, and are required for PRC2- 
mediated gene silencing in vivo.

Besides histone modifiers via specific cis-elements (as 
shown in Figure 1a), lncRNAs represent a key layer of 
epigenetic control, as non-coding RNA molecules may 
guide chromatin modification complexes to specific sites. 
LncRNAs can be primarily bound by RNA binding proteins 
containing one or more RNA recognition motifs, which may 
lead to the formation of “lncRNAs- RNA binding proteins- 
others chromatin modification factors” super-complex (as 
shown in Figure 1b). Studies in animals have shown similar 
results in the contribution of lncRNAs to changes in chro
matin modification status in vivo. One is the function of 
XIST in X chromosome silencing. Xist adheres to a strip of 
X chromatin and spreads along with it, recruiting chromatin 
modification complexes to catalyze H3K27me3 modification 
to specifically silence a strip of X chromatin;72 Another 
example is HOTAIR. The 5ʹend of lncRNA directly binds 
to the catalytic subunit EZH2 of PRC2, thereby recruiting 
the PRC2 complex to the target gene site, silencing the target 
gene expression. However, when HOTAIR RNA was over
expressed in breast cancer cells, regardless of the presence of 
PRC2, few transcriptomic changes were detected, and the 
interaction of PRC2 with RNA in vitro and cultured cells 
lack specificity.73 Nowadays, phase separation is found to be 
another way for lncRNAs to maintain the local chromatin 
landscape (as shown in Figure 1c). In phase separation 
system, lots of lncRNAs and histone modifiers may be pulled 
together, thus this system promotes local epigenetic environ
ment establish.

Although the current work in lncRNA has yielded some 
results, there are still many problems. For example, the 
biological functions of some lncRNA are not clarified, and 
it remains difficult to determine whether non-coding tran
scripts are functional. The mechanism of IncRNA is com
plex and diverse, and the results cannot be referred to each 
other. With the gradual maturity of research technology, 
the function of lncRNA in plants will be more thorough, 
which is of great significance to explore its role in plant life.
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