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ABSTRACT

Transcriptional regulation is mediated by the
collective binding of proteins called transcription
factors to cis-regulatory elements. A handful of fac-
tors are known to function at particular distances
from the transcription start site, although the
extent to which this occurs is not well understood.
Spatial dependencies can also exist between pairs
of binding motifs, facilitating factor-pair interac-
tions. We sought to determine to what extent spatial
preferences measured at high-scale resolution
could be utilized to predict cis-regulatory elements
as well as motif-pairs binding interacting proteins.
We introduce the ‘motif positional function’ model
which predicts spatial biases using regression
analysis, differentiating noise from true position-
specific overrepresentation at single-nucleotide
resolution. Our method predicts 48 consensus
motifs exhibiting positional enrichment within
human promoters, including fourteen motifs without
known binding partners. We then extend the model
to analyze distance preferences between pairs of
motifs. We find that motif-pairs binding interacting
factors often co-occur preferentially at multiple
distances, with intervals between preferred dis-
tances often corresponding to the turn of the DNA
double-helix. This offers a novel means by which to
predict sequence elements with a collective role
in gene regulation.

INTRODUCTION

Transcriptional initiation is a major point of control for
gene expression (1-3), and considerable effort has been

devoted to deciphering the code by which transcriptional
regulation occurs. Although this aspect of the genotype—
phenotype connection is central to many fundamental
biological processes, our understanding of how this
mechanism operates at the molecular level is far from
complete.

Understanding transcriptional regulation requires
knowledge about the individual cis-regulatory elements
that affect gene expression. Several methods have been
proposed to predict individual transcription factor-
binding sites by detecting statistically overrepresented
motifs within the promoter (4—15). In the absence of func-
tional data, however, overrepresentation of DNA
sequence elements is not a sufficient criterion for function-
ality for two basic reasons. First, binding sites are gener-
ally short (5-10 bp), which means that many instances are
present by chance rather than for functional reasons.
Second, many motifs occur at increased frequency as a
result of mutational bias or dinucleotide fluctuations
near the start of transcription. The widespread overrepre-
sentation of these motifs frequently dominates the subtle
indicators of regulatory function, thus limiting the efficacy
of these approaches.

Several recent studies have used spatial preferences
as a criterion to predict cis-regulatory elements (16-20).
With one notable exception (21), most previous studies
have taken the ‘sliding window’ approach, which mea-
sures position-specific overrepresentation within several
independent windows of pre-determined width (e.g.
20-25bp). Although low-resolution approaches have
been useful, an inherent limitation is that larger windows
fail to recover positional enrichment at very precise loca-
tions, while smaller windows overlook general trends and
are susceptible to random noise. The sliding window
approach cannot operate at high resolution while simulta-
neously detecting broadly distributed signals, which limits
the sensitivity of these methods. A second difficulty not
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addressed by previous studies is that the dinucleotide com-
position fluctuates dramatically near the start of transcrip-
tion (19). This can greatly affect the frequency of motif
occurrence in a position-specific manner, and raises the
concern that some of the motifs predicted to exhibit posi-
tional specificity are not true cis-regulatory elements.

As a result of the limitations described above, relatively
little information exists about positional biases in regula-
tory sequences. Important questions include whether such
biases are common, how they are distributed around
genes, which transcription factors (TFs) are involved,
and whether they are associated with functional classes
of genes. In this study, we report that a large number of
likely regulatory elements exhibit position-specific overre-
presentation relative to the transcription start site (TSS).
The model presented here predicts regulatory elements by
measuring positional enrichment at single base pair reso-
lution while considering the data collectively; this
approach allows us to detect both broad and narrow
ranges of positional enrichment. By using regression ana-
lysis and a likelihood ratio test, the model can differentiate
noise in the data from true position-specific overrepresen-
tation. The method also accounts for position-specific
dinucleotide fluctuations that exist within the promoter
by incorporating a non-uniformly distributed background
(null) model based upon the dinucleotide composition
across the regulatory region. We show that this method
can be used to predict novel potential cis-regulatory ele-
ments exhibiting previously unrecognized instances of
positional biases on a genome-wide scale.

Since the model provides a general measure for spatial
preferences, it is not limited to individual motif prediction
but can also be extended to predict pairs of motifs binding
interacting TFs using biases in separation distances.
Transcription is not driven by individual proteins working
in isolation, but is instead produced by cooperative inter-
actions between multiple protein factors (3,22-24).
Previous studies have shown that mutual relationships
exist between various motifs, such as paired co-occur-
rences and relative orientations to the TSS (25-28). Such
relationships have been effectively utilized in a variety of
applications, such as the study of condition-specific and
time-dependent gene expression patterns, gene network
analyses, and promoter region detection (25,29-31).
However, such studies are frequently limited to analyzing
sequence element relationships between either known
binding site motifs or those predicted using standard
motif overrepresentation methods. The study presented
here effectively circumvents this limitation by extending
our model to analyze spatial relationships comprehen-
sively across all motif-pairs. This allows us to predict
pairs of sequence elements that are putatively bound by
interacting TFs de novo, without any prior knowledge
about the sequences of the predicted motifs. We find
that binding sites of putatively interacting TFs frequently
co-occur preferentially at multiple distances, with the
interval between preferred distances corresponding
approximately to the number of nucleotides in one
turn of the DNA double-helix. This suggests a ten-
dency for certain factor-pair interactions to occur
in a particular orientation relative to the turn of the

PAGE2 oF 21

DNA molecule. We use the periodic phasing of inter-
motif distance preferences to predict motif-pairs bound
by interacting proteins, predicting functional binding site
relationships between both known and novel sequence
elements.

METHODS
The MPF model

Our goal is to predict regulatory motifs using spatial
enrichment as an indicator of functionality. The method
is an application of non-linear regression: given a set of
observed motif occurrences within a set of promoter
sequences, we collectively estimate the underlying fre-
quency of occurrence according to location. Spatial
biases are modeled using a continuous function which
we denote as a ‘motif-positional function’ (MPF). The
current study defines two types of MPFs. The first,
denoted as a “motif locational function’ (MLF), measures
position-specific overrepresentation of a given motif in
reference to a landmark such as the TSS. The second
model, denoted as a ‘motif-relational function’ (MRF),
measures spatial preferences between pairs of motifs.

For a given motif w, its MLF g,(x) represents the
underlying probability of occurrence according to its posi-
tion x. Suppose our data set s consists of N sequences each
of length L: s = {s1,5,...,5y}, where s; = s;(1)... s;(L).
We consider these sequences to be the observed outcome
of an underlying biological process, and define a random
variable S analogous to a single sequence in s,
where S = S(1)... S(L). We then define a random variable
Uw(j) to be the k-mer starting at position j in S:
U(j)=SG)SG+1)...S(j+k—1). Our model then
defines the MLF g, (x) to be

gw(x) = PI'( U/“, (X + t) - W) 1

where x represents the position of the motif, ¢ represents
the position of the TSS, and /,, represents the length of w.
Note that the position x is given relative to ¢, and thus the
location of the TSS is given by x = 0. The value of g,(x)
represents, for any individual position x, the underlying
probability of occurrence of w at this precise location. The
values of this function are not normalized across the
values of x, and therefore the sum of the values do not,
in general, equal 1 across the promoter.

In contrast to an MLF, an MRF provides a measure of
inter-motif distance preferences between two motifs. For
any pair of motifs w and v, we define an MRF f,,,(x)
to be the frequency of w to occur exactly x bp from v.
Thus we set:

Ju(x) = Pr(U, (x + 1) = wlU, (i) = v) 2

We note that the position of v, given by i, defines the
position x = 0. The function f,,,(x) is independent of i
i.e. MRFs are defined as a conditional, rather than joint,
probability.

Both MLFs and MRFs are modeled as the sum of a
‘background function’, C(x), and a ‘signal function’, H(x).
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Thus, for any MPF p(x) (i.e. y(x) can represent either g(x)
or f(x) as defined above), we have

y(x) = C(x) + H(x) 3

The background function C(x) represents the background
frequency of the motif, namely, the frequency without
explicit positional bias. This function is allowed to fluctu-
ate according to the dinucleotide makeup of the promoter,
and is modeled as a polynomial (see below). In contrast,
the signal function H(x) incorporates possible spatial
bias(es) into the model. The signal function of an MLF
is modeled as a single unnormalized Gaussian term times
a coeflicient a:
2
Hx)=a- exp[— u} 4
202

Thus, H(x) is designed to incorporate a ‘peak’ into the
function y(x). The parameters a, y, and o are free param-
eters, where a and p give the height and location of
the peak, respectively, while o reflects the width of the
peak.

Spatial biases are modeled using non-zero values for
H(x), while the model where H(x) = 0 (i.e. a = 0) assumes
no positional bias. Spatial preferences are predicted by
fitting each of these models to the data and comparing
log-likelihoods using a likelihood ratio test (see the
‘Model selection’ section below).

The signal function of an MRF is extended from that of
the MLF model in order to incorporate multiple peaks
into the model, as we have found that many motif-pairs
co-occur preferentially at multiple distances. The signal
function of each MRF is therefore modeled using a
linear combination of unnormalized Gaussian terms:

M 2
H(x) = Za,-exp{—%] 5
J=1 J

where M represents the number of Gaussian terms.
This model is similar to that of an MLF, as MRFs
for which H(x) = 0 (i.e. M = 0) assume no spatial prefer-
ences. In contrast, motif-pairs exhibiting spatial prefer-
ences are modeled using one or more Gaussian terms
(M > 0). For pairs of motifs exhibiting spatial preferences,
the value for M reflects the number of inter-motif
distances at which a pair of motifs tend to co-occur
preferentially.

Background functions

The background function C(x) represents the background
frequency at position x (i.e. the frequency of occurrence
without explicit spatial bias). C(x) is estimated using a
‘prototype background function’, ¢(x), which represents
the expected frequency of occurrence. This expected fre-
quency is determined according to the dinucleotide com-
position at each position within the promoters. We
distinguish between the background frequency C(x) and
the ‘expected’ frequency of occurrence ¢(x), since many
motifs are either over- or under-represented with respect
to their dinucleotide makeup.
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For MLFs, we model the underlying expected frequency
using a polynomial function:

K
cw(x) = thxk 6
k=0

This function is obtained by conducting linear regression
on the set of data points {{x,R,(x))}, where R,(x) repre-
sents the expected frequency of occurrence at position x.
The value R,(x) is determined independently at each
nucleotide site according to the observed dinuculeotide
frequencies at that particular location. The function
¢,(x) then gives the underlying probability of occurrence
after fitting a polynomial to this data set. The degree of
this polynomial K is unique to each motif, and reflects the
expected amount of fluctuation in occurrence frequency
according to changes in dinucleotide content across the
promoters.

Formally, R,(x) for a motif w of length /,, i.e.
w=w(l)...w(l,;), is given by a position-specific 1st order
Markov-dependency model as described in Karlin et al.
(32). The expected frequency R,(x) of w at position x is
given by

51_11 Ruiwirn(x +i—1)

25" Rup(x +i—1)

where Ru(i+1)(x) gives the observed frequency of the
dinucleotide w(i)w(i + 1) at position x; R,,;(x) represents
the analogous mono-nucleotide frequency.

Since the expected frequency of many motifs differs
from the actual frequency of occurrence, the background
frequency C,(x) of a k-mer w is allowed to deviate
from ¢,,(x). Namely, we allow for uniformly distributed
over- and under-representation. We therefore model
C,(x) as

Ry(x) = 1_[

Cyu(x) =b+d- c,(x) 8

where b and d are free parameters. Thus, the background
model is allowed to ‘shift’ and ‘stretch’ vertically using
parameters b and d, respectively; this allows for uniformly
distributed differences in the expected and observed occur-
rence frequencies.

The prototype background function c,,,(x) for an MRF
is a simple extension of that of the MLF model. In this
case, ¢,,(x) represents the expected probability for motif
w to occur x bp away from motif v. This expected fre-
quency is estimated according to the background func-
tions of each individual motif. We assume the two
motifs will occur randomly with respect to each other,
and estimate c,,,(x) using the conditional probability pro-
vided by Equation 2:

Pr(U, (x+i)=w,U,(i)=v) _ [;Colx+DC\(i)di
Pr(U,,(i) = v) N [;C(ddi

Cwlv(x) =

9

The C(-) functions on the right-most part of the equation
represent those of the estimated background functions
for each corresponding motif. The background function
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C,,,(x) of the MRF is then derived similarly to that of an
MLF; ie, Cyp(x) = b +d - cpp(x).

Parameter estimation and statistical significance
determination

As noted briefly above, parameter estimates (i.e. b, d, a,
W, o) are obtained using likelihood-maximization. For the
model assuming no positional specificity (i.e. H(x) = 0),
only the parameters » and d must be estimated. In this
case, since both » and d are linear parameters within the
model, the likelihood can be maximized directly using
linear regression. For models incorporating positional
specificity, however, the parameters must be obtained
through non-linear regression analysis. This is done by
optimizing the log-likelihood L(D; 6,) of the data D
given the model y, where 6, is the parameter vector
of model y. Here, the data set D 1is given by:
D = {(x1.,21),...,{x,2,)}, wWhere z; represents the number
of motif occurrences at position x;. As each MPF y(x)
represents the probability of motif occurrence at x, the
log-likelihood of a single data point L((x,-,z[); 9},) reflects
the outcome of multiple Bernoulli trials with a ‘success’
being an occurrence of the motif at position x;. Thus, the
log-likelihood of this data point is given by the binomial
distribution:

L((X,‘,Z{); 9);) =7z log[y(x,)] + (N, — Z,') . 10g[1 — y(x,)]
10

where N; is the number of ‘trials’; i.e. the maximum pos-
sible value for z;. The total log-likelihood L(D;6,) of the
data is given by the sum of the log-likelihoods across all
data points (x;,z;). This value is maximized using an itera-
tive method called ‘Broyden’s method’ (33) given an initial
parameter estimate 6y; interested readers are referred to
(33-36). Several initial parameter vectors are used during
ecach MPF estimation; the final parameter estimates are
taken to be those producing the highest log-likelihood.
The method by which the initial parameter vectors are
determined as well as the high level of robustness for
the parameter estimates is discussed in Supplementary
Data S1.

MODEL SELECTION

Model selection for any given MPF involves determining
both the degree K of the prototype background function
as well as the number of Gaussian terms within the signal
function (either 0 or 1 for MLFs, or any non-negative
number M for MRFs). These are determined in the
same manner; namely, we use a likelihood ratio test
(F-test) to compare the log-likelihoods of the data given
two possible models. To determine the presence or
absence of positional enrichment using the MLF
method, we compare the log-likelihood derived from the
(null) model, where H(x) is identically zero [i.e. @ = 0 in
Equation 4], to that of the (alternative) model where
H(x) takes on non-zero values (a#0). Model selection
involves comparing the log-likelihoods L(D; 6,4) and
L(D; 6,9), where the MPF y, allows for positional
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specificity, while its nested null model y, assumes no
positional enrichment. The ‘scaled deviance’ Z(6,,.6,,)
given by

Z(G}’A’eyo) =2 [L(D’ 9}’4) - L(D; 9}’0)] 11

follows a x? distribution with |0y,,] — 10),| degrees of free-
dom (35); see Supplementary Data S2 for discussion.
Our final statistic is

_ Z(0y,-0y) - (n = 10,)
Z(0s5,6y,) - (10,1 — 10,1)

where 7 is the number of data points and model S is
the ‘saturated model’, i.e. the model optimizing the log-
likelihood at each data point without limits on the number
of parameters. The value F follows the F-distribution
with 10,,| —16,,| and n —10,,| degrees of freedom (35);
P-values reflecting the significance of spatial enrichment
are derived using this statistic.

The number of Gaussian terms M within an MRF are
determined similarly. However, as the number of
Gaussian terms can be larger than 1, the value of M is
determined in an iterative fashion. Namely, we begin by
comparing the model where M = 0 to the model where
M =1 and conduct the F-test in a similar manner as
described above. Note that this is equivalent to the
single model comparison for an MLF, as we are determin-
ing the presence or absence of a single Gaussian term. For
motif-pairs producing significant P-values, we proceed
to increment the value of M (i.e. comparing models for
which M =1 to that where M = 2, then M = 2 versus
M = 3, etc.) until the P-value produced from the F-test
is no longer significant. The final value of M is taken
to be the last value of M that has produced a significant
P-value.

Determining the order K of the polynomial ¢(x) is also
determined using an F-test in an incremental fashion. As
the function ¢(x) is derived using linear regression, the F
statistic is obtained by comparing the sum of the squares
for each of two (consecutive) models. Namely, if SS,
represents the sum of the squares produced from fitting
model y to the data points, the F statistic is given by

(SSy, = 58,,) - (1= K4 — 1)
SS)’A

12

F= 13

where the degree of polynomial y 4 is K4, and the degree of
the nested polynomial y, is K, — 1. This value also follows
the F-distribution with 1 and n— K, — 1 degrees of free-
dom (35). In a manner similar to the estimation of M,
we increase the value of K incrementally until the compar-
ison no longer produces a significant P-value; the final
value of K is then taken to be the last value of K that
produces a significant P-value.

Motif clustering procedure (MLFs)

For MLF clustering analyses, 6-mer motifs are clustered
for redundancy according to both sequence similarity as
well as the position and width of enrichment. Clustering is
conducted by considering motifs in rank order; at each
step, an individual 6-mer motif is either placed in an
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existing cluster or else a new cluster is created. 6-mers
matching at five of the six sites (i.e. containing only one
mismatch, or no mismatches with a single bp offset) are
clustered if their signal functions are similar according to
their KL divergence (37). The KL divergence between two
signal functions is calculated by converting each function
into a discrete probability distribution p(x) across each
position within the promoter:

14

where the values for x are shifted according to any off-
set between the two motif sequences. Values of H(x)
are buffered by a minimum value of le—45 to prevent
extreme KL divergence values (i.e. 0 or infinity). The
KL divergence V for two distributions, p, (x) and
Pwa(x), 1s calculated to be

V=3 pu()-log [;’—8] 15

The V-value threshold was set to 0.2 during our analysis;
motif-pairs with similar sequences were clustered if their
KL divergence fell below this threshold.

Consensus sequence determination and known
cis-regulatory motif comparisons

Motif clusters are condensed into a single consensus
sequence according to the criteria derived from (38) and
(39). Namely, each aligned site is assigned a single residue
consensus if it comprises 50% of the aligned k-mers and
occurs at least twice as frequently as every other nucleo-
tide type. Double nucleotide degeneracy is applied to sites
for which the two residues comprise 75% of the cases,
with neither residue matching the criteria for a single
site consensus. Sites not matching the criteria for either
single or double nucleotide degeneracy are considered
completely degenerate; triple degeneracy is not considered.
During our analyses, comparisons to known regulatory
elements in TRANSFAC v11.3 (39) were conducted
using STAMP (40); only binding motifs found in
humans were considered.

Data preparation

DNA sequences used during our analyses were taken from
the UCSC Table Browser (http://genome.ucsc.edu) (41).
Human analyses were conducted using the promoter
sequences from the hgl8, Build 36.1 assembly (42);
mouse promoter data was taken from the mm9, NCBI
Build 37 (43). Both data sets contained sequences compris-
ing 500-bp upstream and 100-bp downstream of a known
TSS in RefSeq (44.45). Sequence-pairs with at least 500
matching sites were filtered from the data sets. Genes with-
out 5 UTR annotations were excluded in order to elimi-
nate TSS annotations caused by incomplete mRNA
transcripts. The final data sets comprised a total of
20609 non-redundant human promoters and 18354
mouse promoters.
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Program availability

The analyses presented here were conducted using the
‘Functional Region Evaluation Engine’ (FREE).
Implementation of the program involves an initial format-
ting step; any number of subsequent analyses can be con-
ducted after the formatting step is completed. The
executable file is freely available at (http://www.biology.
duke.edu/wraylab/); instructions for usage as well as an
overview of user-defined parameters are included.

RESULTS

Motif Locational Functions (MLFs) provide a measure of
positional enrichment

The MLF model presented here provides a measure of the
amount of position-specific enrichment for any given
motif. In contrast to previous models, our methodology
is conducted at single-site resolution using regression ana-
lysis, allowing the data to be considered collectively across
each position. MLFs are modeled using a continuous
function g(x), whose values represent the underlying prob-
ability of occurrence according to position x. This func-
tion is given as the sum of the background frequency C(x)
and a contribution of position-specific overrepresentation
H(x); thus g(x) = C(x) + H(x). Positional bias, repre-
sented by H(x), is modeled using a Gaussian term, incor-
porating a ‘peak’ into the MLF (Equation 4). The mean
(n) of the Gaussian term represents the central location of
enrichment, while the standard deviation (o) reflects the
‘width’ of this enrichment. This model is illustrated in
Figure la which shows the MLFs of the TBP and
SP1-binding motifs (TATA-box and GC box). These
motifs are found overrepresented 30 and 65bp prior to
the TSS, respectively (= —29.6 and p = —65.3). The
TATA-box is found overrepresented only at a few sites
within the promoter, thus producing a small o-value
(o = 1.9), while the GC box is enriched across a much
broader range upstream of the promoter (o = 52.2).

For a given motif, we predict spatial preferences using a
likelihood ratio test (F-test). Namely, we compare the
model assuming no positional specificity to that allowing
for spatial enrichment. The former is modeled by setting
H(x) to zero, and thus the underlying frequency of occur-
rence g(x) simply equals the background frequency C(x).
We compare this model to the one where H(x) takes on
non-zero values, allowing for position-specific overrepre-
sentation. Comparing the log-likelihoods given each of
these two models produces a P-value reflecting the signif-
icance of positional enrichment. Positional specificity is
then predicted for motifs for which this P-value falls
below a given threshold.

Our model accounts for fluctuations in dinucleotide
frequencies across the promoter by allowing the values of
the background frequency C(x) to vary according to posi-
tion. For instance, as GC content rises near to the start of
transcription, the background frequency C(x) of GC-rich
motifs likewise increases close to the TSS. In order to
determine the background frequency, we first estimate
each motif’s expected frequency across the sequences.
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Figure 1. Raw data and MLFs of four example motifs. x-axis values
denote the position within the promoter, where x = 0 represents the
location of the TSS. The y-axis represents the frequency of occurrence.
Solid plots represent the resulting MLFs (g(x)), long dashes show the
background frequency of occurrence C(x), and short dashes indicate
the expected frequencies derived from dinucleotide composition (¢(x)).
(a) MLFs of the SP1 (gray) and TBP (black)-binding sites; significant
amounts of positional enrichment are predicted for both. (b) Expected
frequencies of the TBP-binding site. Each data point is derived
according to the dinucleotide composition at each position. Note
that ¢(x) was designed to not incorporate sharp increases observed
in the dinucleotide data, as such rises are often a byproduct of the
overrepresentation of the motif itself. (¢) Two motifs (GGGCGC,
gray; TGCTTC, black) without positional enrichment. Note that with-
out positional enrichment (H(x) = 0), the MLF g(x) is the same as the
background frequency C(x). A comparison between C(x) and c(x)
illustrates the ability of the background model to account for uni-
formly distributed over- and under-representation with respect to the
expected frequency (according to dinucleotide composition). The gray
plot shows a high amount of fluctuation in the promoter, although
this is attributed to the dinucleotide makeup of the promoter [note
c(x)]; this motif is therefore not predicted to exhibit positional
enrichment.
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This expected frequency is denoted as ¢(x). The values
of ¢(x) are allowed to vary by position according to the
dinucleotide makeup of the regulatory region, thus
accounting for position-specific changes in dinucleotide
composition. However, we distinguish between the ‘back-
ground’ and ‘expected’ frequency of occurrence [given by
C(x) and ¢(x), respectively], as many motifs are either over-
or under-represented with respect to their dinucleotide
composition. Thus, the background frequency C(x)
allows for uniformly distributed over- or under-representa-
tion. Both ¢(x) and C(x) are important components of our
model. Namely, we must allow for differences between the
expected and observed frequency of occurrence while still
incorporating dinucleotide fluctuations into the back-
ground frequency of occurrence. Thus, although the back-
ground frequency is allowed to deviate from the expected
frequency, C(x) is restrained to mimic the ‘shape’ of ¢(x)
in order to preserve the expected fluctuations according
to dinucleotide composition. For instance, for motifs
whose frequencies are expected to vary according to posi-
tion, rises and drops in C(x) are restricted to conform to
those of ¢(x). In contrast, motifs expected to occur at a
constant frequency across the region [i.e. the values of
¢(x) are uniform across all positions] likewise have a con-
stant value for C(x).

We model ¢(x) in a continuous fashion (Equation 6).
This function is determined by conducting linear regres-
sion on the set of data points representing the expected
frequency of occurrence at each site. Fitting the function
c¢(x) to these data points then gives the underlying
(expected) frequency of occurrence. An example is illu-
strated in Figure 1b, which shows the raw data and result-
ing function ¢(x) for the TATA-box. We note that sharp
rises in the observed dinucleotide frequencies at a partic-
ular location are not directly incorporated into ¢(x), but
instead remain outlier points after fitting this function to
the data. This is an important aspect of our model, as
overrepresentation of a motif can itself cause rises in dinu-
cleotide frequency. Incorporation of such rises into ¢(x)
would therefore obscure the distinction between the signal
and the background frequency at this location; this is
discussed later in the Results section.

The ability of the background model to incorporate
uniformly distributed over- and under-representation is
illustrated in Figure lc. Here, we show the MLFs for
two motifs that do not exhibit positional enrichment.
We note that although the gray plot fluctuates according
to position, this would be expected according to the dinu-
cleotide frequencies within the promoter [note the fluctua-
tions in ¢(x)]. Thus, this motif is not predicted to exhibit
biologically relevant positional specificity using our
model.

The MLF method predicts position-specific over-
representation for many motifs within human promoters

In order to determine which motifs exhibit positional
enrichment within human promoters, we analyzed spatial
enrichment for all 6-mers on a set of non-redundant
RefSeq human promoters (44,45) collected from the
UCSC Genome Browser (http://genome.ucsc.edu)
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Figure 2. Results from the comprehensive MLF analysis. Histograms show the cumulative number of 6-mers with positional enrichment according to
their P-values in human promoters. The plots give the number of 6-mers producing Pg;,-values under the given thresholds during simulation analyses,
where Py, represents the most significant P-value for each individual 6-mer across 100 simulated data sets. Solid plots refer to simulations conducted
according to the dinucleotide frequencies across each position within the promoter, while the dotted lines represent those generated using mono-
nucleotide frequencies. P-value thresholds above 1e—20 are shown in (a), while the contrast between the results of the human and simulated analyses
for which P < le — 20 is illustrated in (b). Note that the dinucleotide-generated simulated data sets produced a significantly larger number of predictions
than the mono-nucleotide-generated simulated data, while the real human promoters produce more predictions than either of the control data sets.

(41,42). The data set consisted of 20609 sequences,
each comprising the region 500-bp upstream and 100-bp
downstream of a known TSS. As expected, the vast major-
ity of the motifs did not exhibit positional enrichment
within the promoter data set. However, a few motifs
showed highly significant position-specific overrepresenta-
tion, with 106 6-mers exhibiting spatial bias at a signifi-
cance level of P < 1e-25.

To compare these results to those of a control data set,
we repeated the analysis on a set of intergenic sequences,
each comprising the 600-bp interval starting 2-kb
upstream of a known TSS. Very few motifs were predicted
to exhibit positional enrichment in this control data set,
with less than 1% producing P-values under le-5. We
then tested our model on two types of simulated data
sets. The first was generated by considering the observed
mono-nucleotide frequencies at each site, while the second
was produced using dinucleotide frequencies at each posi-
tion. One hundred data sets of both the mono- and
di-nucleotide simulations were generated, with each indi-
vidual data set comprising the same number of sequences
as the human promoter data. For each type of simulation,
we scanned for positional enrichment across all 100 data
sets, recording the most significant P-value for each indi-
vidual 6-mer. This P-value, denoted as P,;,, was thus
unique to each 6-mer. Results of these analyses, as well
as those for the human promoter analysis, are shown in
Figure 2. Significantly more predictions were made during
the human promoter analysis than either of the simulation
analyses. We also note that the dinucleotide-generated
data sets produced more predictions than those produced
using only mono-nucleotide frequencies, suggesting that
our use of a dinucleotide-based background model leads
to a more conservative significance criteria.

We used the results of both the intergenic sequence
analysis as well as those of the simulated data sets to set
the prediction criteria for positional specificity within
human promoters. The lowest P-value produced from
the intergenic sequence analysis was found slightly under
le—15; motifs above this threshold were excluded from
the list of predictions. The remaining motifs producing
P-values under their Pg,-value times a stringent multiple
hypothesis correction factor of le—5 were then predicted
to exhibit positional enrichment in the human RefSeq
promoters. Thus, the prediction criteria (p < Py, X 1e=5)
was unique to each 6-mer, subjecting motifs with lower
P-values within the simulated data sets to a more stringent
threshold.

The final list of predictions contained 166 6-mer motifs,
representing 4% of the total number of possible 6-mers.
Despite our stringent prediction criteria, the majority of
the top-ranked motifs from the RefSeq promoter analysis
were not filtered due to the simulation analysis. Out
of the 50 top-ranked motifs exhibiting spatial bias
within the real promoters, only one motif did not pass
the P-value threshold determined as above.

Motif clustering predicts locational overrepresentation for
both known and putatively novel cis-regulatory elements

We used the list of positionally enriched 6-mers to gener-
ate consensus motifs with degenerate sites and flexible
lengths. Motifs were clustered computationally according
to sequence similarity as well as the location and width of
their positional enrichment. We then condensed each clus-
ter into a single consensus sequence, generating a total of
48 consensus motifs exhibiting position-specific enrich-
ment within human promoters. In order to test whether
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Table 1. Positionally enriched motifs in human promoters
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Location-specific motif clusters
Human RefSeq data Mouse RefSeq data Previous studies
Rank P TF Consensus In (o) Consensus H (o) Fitz Xi Xie Vard
1 Te-179 SP1(+) AGGGGGCGGGG -68.3 (52.2) GRGGGGGGCGKG -69.6 (42.8) * * * *
2 2e-106 | NFY(-) CTSATTGGCT -78.8 (42.7) ATTGGC -100.0 (16.1) * * * *
3 le-102 CREB CGTGACGTC -49.1 (39.0) GTGACG -44.5 (34.86) * * * *
4 3e-102 ZEB1 (=) CAGGTAAG 72.5 (31.6) GGTARG 71.6 (33.9) * -— - *
5 S5e-96 YY1l GATGGCGG 31.9 (22.1) TGGCGG 23.8 (16.7) * * - *
6 6a-94 NFY (+) AGCCAATCAG =-76.7 (40.7) GCCAAT -91.0 (21.9) * * * *
7 Se-91 dl GTGAGTG 69.2 (36.4) GTGAGTG 70.1 (32.6) * -— - *
8 3e-90 NHLH1 CAGCGGCKGC 33.0 (40.9) RGCGGCG 32.6 (44.4) - - - *
9 3e-87 SP1(-) cGceee *35.0 (32.2) Gceeee -66.3 (33.7) * * - *
10 2e-83 ETS (+) ACCGGAAGTG -25.9 (32.3) GCCGGAAGTG -33.5 (37.0) * * * *
11 9e-83 TEP ATATAAAWR -30.6 (1.9) ATATAAARGC -30.9 (1.7) * * * -
12 4e-T74 SP1(-) GCCCCECCCC -76.2 (45.0) SCYCCKCCCC -78.7 (51.7) * * * *
13 Te-65 REST CRCCATGGA 52.8 (38.0) CGCCATGGCY 50.4 (34.9) * -— - *
14 2e-58 ETS (=) CACTTCCGGT -24.3 (32.2) CTTCCGG -16.5 (16.0) * * * *
15 le-54 HBP1 RCGTCAC -47.0 (37.4) CGTCAC -53.2 (39.5) - - * *
16 3e-53 ZFP161 GCGCGC -51.8 (95.0) CGCGCGC -32.6 (97.1) - - - -
17 le-50 d2 TCTGCTGCT 51.0 (33.5) CTGCTGCY 53.1 (37.0) * - - -
18 2e-48 YY1l CAAGATGG 22.9 (17.1) CAAGATGG 14.5 (10.7) * * - -
19 3e-46 d3 TTTTTT -12.7 (11.3) - - - - -— - -
20 3e-45 TBP TWTATA -29.9 (2.0) ATATAW -27.9 (1.8) * * * -
21 Se-44 NRF1 RTGCGCA -53.7 (59.8) TGCGCA -57.8 (46.8) - * - *
22 Se-40 NRF1 GCGCATGC -46.9 (38.0) - -— - - * * *
23 9e-39 Inr GCTCAGTCC -4.0 (0.2) TCAGTC -2.2 (0.5) - - - -
24 S5e-37 MYC CACGTG -51.0 (50.7) CACGTG -53.3 (46.1) * -= * *
25 Je-35 ZIC2 cccaccc -131.0 (70.2) Teecccee  -117.6 (99.9) - - - -
26 le-32 dd TCCTCCT =71.4 (82.9) Teceree -61.9 (32.8) - - - -
27 Be-32 ds GTGTGT -325.6 {234.4) TGTGTGT -435.8 {212.5) — ——— - -
28 le-25 TBP ARAAGG -27.3 (1.3) - - - * - - -
29 2e-25 SRF ATGGCC 53.6 (33.9) GATGGC 26.9 (20.1) - - - -
30 S5e-23 SOX9 CAATGG -80.1 (23.9) WCCAATGR -85.7 (40.1) —— —— - -
31 2e-21 dé GGCGTG -62.5 (34.1) - - - - - * -
32 2e-21 GTF2IRD1 crcccre -111.0 {100.6) Teeeree -61.9 (32.8) — —= - -
33 3e-21 d7 AARARAR  -165.0 (10.2) - - - - -— - -
34 2e-20 MEF2 AARARAT 77.3 (23.1) ARRAATA 202.3 (78.0) - - - -
35 4e-20 d8 GCGCTC  -120.6 (174.9) - - - - - - -
36 Te-20 d9 GCAGCA 47.5 (36.0) GCAGCA 28.6 (15.4) * -— - -
37 le-18 Inr CAGTTG -1.2 (0.5) Treacre -2.2 (0.5) - - - -
38 2e-18 Inr GTCACT -3.0 (0.1) - - - - - - -
39 2e-18 dlo ACACACA -12.6 (23.7) - - - - - - -
40 3e-18 TEP TAARAARR -27.8 (0.9) TraRATAG -28.8 (1.7} - - - -
41 6e-18 dll AAGAAG 96.5 (55.5) TeanceT 54.4 (38.3) — —— - -
42 2e-17 TRIM63 TCACTT -1.9 (0.5) CACTTC -1.0 (0.3) - - - -
43 3e-17 dl2 AGTGCT -529.4 {165.1) - - - - -— - -
44 8e-17 TBP AARAAGC -26.9 (0.9) ATATAAARGC -29.9 (1.7) - - - .
45 le-16 Inr CAGTGC =-1.0 (0.2) - - - - - - -
46 2e-16 di3 GGACCC 78.7 (27.8) GGACCC 102.1 (46.4) - - - -
47 3e-16 dl4 GAGCCG 37.7 (36.2) - - - -— -— - -
48 6e-16 PDX1 GTCATT -3.0 (0.5) - - - - -— - -

The location (p) and width (o) of enrichment are given to the right of each cluster. P-values given on the left pertain to the most significant 6-mer
within the cluster. The third column shows factor names-binding to the known regulatory elements in TRANSFAC (39); putatively novel motifs are
labeled d1-d14. Motifs found spatially enriched in mouse promoters are given to the right of the human analysis results. The right columns show
comparisons to previous studies using the ‘sliding window method’ (18,19,47,48). Asterisks denote matches to non-redundant consensus
motifs produced by these studies after k-mer clustering; only motifs predicted to be enriched at approximately the same location were considered
matches. All sequence matches to TRANSFAC, mouse motif predictions, and those of previous studies were conducted using STAMP (40) (E-value

threshold: 1e-6).
"Denotes a weak match.

the predicted motifs overlapped with known regulatory
elements, we compared our results to known TF-binding
sites in the TRANSFAC database (39) using STAMP (40).
Thirty-four of the motif clusters matched known cis-
regulatory elements, comprising a total of twenty known
binding sites within TRANSFAC as well as the Inr

sequence element (Table 1). Several of the motifs predicted
were previously known to exhibit position-specific over--
representation, including the TBP, SP1, NFY, CREB,
ETS, NRF1 and MYC factor-binding sites (19,46-48).
We also predicted several additional motifs whose posi-
tional enrichment had not been previously documented,
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Figure 3. Location of enrichment for the 48 MLF motif predictions within human promoters.

including fourteen novel regulatory motif candidates,
denoted as d1-d14. The location of enrichment for each
of the predicted motif clusters is illustrated in Figure 3.
Most of these motifs were found to be enriched close to
the TSS, although a few were found farther upstream of
the promoter. Motifs enriched far from the promoter were
frequently found to be overrepresented over a large range
of the regulatory region as shown in Table 1. This is to be
expected, as it is unlikely that a regulatory element enriched
far from the promoter would be constrained to a highly
specific location. We note the precision of the method to
predict related clusters at the same location, such as the
TBP-binding site as well as the Inr sequence clusters.
Figure 4 shows the MLFs for six motifs with positional
enrichment within the promoter. The MLFs of the GC-
rich NHLH1 and ZFP161-binding sites are shown at the
top of the figure. We note that the rise of GC content
centers directly across the TSS, as indicated by the simu-
lated data plots. However, the positional enrichment for
each motif is found at other locations (p = +33 and
—51, respectively), indicating that the positional bias of
these motifs is not due to dinucleotide fluctuations
within the promoter. The putatively novel d3 motif com-
prises a homopolymeric thymine tract. Such poly(T)
sequences are known to alter DNA conformation, thereby
affecting transcriptional regulation by displacing the
nucleosome from the DNA molecule (49-51). Similarly,
the novel d10 motif, comprising a CA-dinucleotide
repeat, promotes left-handed Z-DNA conformations
(52-54). The positional biases of these motifs may there-
fore reflect a functional role for each motif at these loca-
tions. The MLFs of the novel reverse complement motifs
d2 and d9 are shown at the bottom of Figure 4; each

orientation of this putatively novel regulatory element
show positional enrichment at the same location down-
stream of the TSS.

Many positionally biased motifs are shared between
human and mouse

We tested whether spatially biased motifs found in human
promoters would also show positional enrichment within
mouse promoters. We conducted a second comprehensive
MLF analysis using a sequence data set of 18354
non-redundant mouse promoters in RefSeq (43—45). We
then compared the motif predictions between the two
species according to sequence similarity as well as the loca-
tion of positional overrepresentation.

Our analysis predicted a total of 49 consensus motifs to
exhibit positional enrichment within mouse promoters
(Supplementary Data S4). Comparisons of these results
to those of the human promoter analysis showed a very
significant amount of overlap between motif predictions
across the two species. We found that 36 (75%) of the
motif clusters identified in the human data set matched
spatially biased motifs detected within the mouse pro-
moters (Table 1). Such a significant overlap provides con-
fidence in our new motif predictions, as these motifs were
predicted during independent analyses using data from
two highly diverged species. In addition, the location of
enrichment for our motif predictions was often found to
be highly conserved between the two lineages. Many
motifs with well-documented positional enrichment were
found overrepresented at very similar locations across the
two species, particularly the TBP, SP1, NRF1 and CREB-
binding sites. This was also found to be the case for many
of our novel motif predictions. For instance, the novel d1
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Figure 4. MLFs of six motifs exhibiting positional enrichment. Top: MLFs for the GC-rich NHLH-binding site and the ZFP161-binding site. Each
plot shows results for both human (black) and simulated (gray) data sets. Dashed lines denote the background functions C(x). Middle: MLFs of the
novel poly(T) 5-mer d3 and (AC); motif d10. Bottom: MLFs for the GCT-repeat motif d2 and its reverse complement d9. Each shows significant

amounts of positional enrichment ~50 bp after the TSS.

and d2 motifs exhibited overrepresentation peaks whose
position differed by only 1 bp across the two lineages.

Study comparisons highlight differences in methodologies
to previous studies

Several previous studies have analyzed spatial preferences
of potential regulatory motifs within the promoter
(17-21,47,48). Most previous analyses, with one exception
(21), have used the ‘sliding window’ approach. In this
approach, the promoter region is divided into several dis-
crete bins of pre-determined width (e.g. 20-25bp), and
positional bias is then predicted by comparing the
number of motif occurrences in each window to a

background frequency of occurrence. A previous study
conducted by FitzGerald et al. (19) used the sliding
window approach, considering motif occurrences within
separate windows of 20 bp. FitzGerald et al. predicted a
total of 156 8-mers to exhibit positional bias prior to clus-
tering. A direct comparison of our results to those of
FitzGerald et al. showed that 97% of the 8-mers predicted
by FitzGerald et al. matched one of our predicted 6-mers
(Table 2). We also found that 85% of our individual
6-mers matched a 8-mer prediction made by FitzGerald
et al. However, the vast majority of these matches were to
redundant motifs that had been grouped according to
sequence similarity during the clustering analysis. There
were also cases in which distinct 6-mers found within
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different cluster groups matched a single 8-mer predicted
by FitzGerald ef al. For instance, one of the G-rich 8-mers
predicted by FitzGerald et al. matched eight of our pre-
dicted 6-mers, although this group of 6-mers included
representatives from three different motif clusters. These
6-mers clearly represented distinct regulatory elements,
as their enrichment was found at significantly different
locations within the regulatory region.

Thus, we looked to compare the non-redundant consen-
sus sequences produced by both studies after clustering.

Table 2. Between-studies comparisons of positionally enriched kmer
predictions

Fitz Thara Vard MPF

Positionally enriched motifs: study comparisons

Predictions Number 156 1226 168 166
kmer length 8 8 7 6
GC content Fraction 63%  69% 60%  60%
GC rich Number 28 387 19 48
Expected 6 43 11 18
(Numb/Exp) 4.7 9.0 1.7 2.7
AT rich Number 3 39 0 16
Expected 6 43 11 18

(Numb/Exp) 0.5 0.9 00 09

FitzGerald et al. Matches 521 60 141
Fraction 42% 36% 85%
Tharakaraman et al.  Matches 149 — 101 156
Fraction 95% 60% 94%
Vardhanabhuti ef al.  Matches 125 507 — 103
Fraction 80%  41% 62%
MPF Matches 151 1004 84 —
Fraction 97%  82% 50%

Spatially enriched k-mers are compared between studies conducted by
FitzGerald et al. (19), Tharakaraman et al. (21) and Vardhanabhuti
et al. (18) as well as the MPF model. The total number of (unclustered)
k-mer predictions are shown in the top row. The number of GC and
AT rich motif predictions (those composed of G/C or A/T consensus
sites at all but one site) are shown below, along with the expected
number and the ratio of actual/expected. Here, the ‘expected’ number
of predictions was determined by assuming a random collection of
k-mers identical in size to the set of predictions. Bottom rows show
the amount of overlap between predictions across the four studies.
Overlapping predictions were determined by considering all consensus
sites of the predicted motifs, allowing for any offset such that at most
one consensus site of the smaller motif was not aligned to the larger
k-mer. For instance, 149 (95%) of the 156 motif predictions made
by FitzGerald et al. matched a prediction made by Tharakaraman
et al. Note that the number of matches is not symmetrical, since a
single k-mer may match more than one other motif prediction.
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Motif clustering conducted by FitzGerald et al. resulted in
nine non-redundant motif clusters. Eight of these clusters
overlapped with one of our consensus motif cluster pre-
dictions, while our model attributed the putative spatial
bias of the remaining cluster to dinucleotide fluctuations
within the promoter. In contrast, less than half of our
consensus sequences were detected by FitzGerald et al.
Table 1 contains comparisons between our regulatory
motif predictions to those of FitzGerald et al. as well as
three other studies providing non-redundant motifs with
spatial enrichment (18,47,48). We found that many of our
motifs predicted with wider ranges of positional enrich-
ment could not be detected using the sliding window
approach. Our approach was also found to increase sen-
sitivity to spatial biases occurring at very precise locations.
For instance, FitzGerald et al., in addition to the three
other studies included in Table 1, could not easily detect
the well-known Inr sequence element. The Inr sequence
has been previously characterized by the consensus motif
YYAnWYY (55). This element is known to function spe-
cifically at a single nucleotide site at the start of transcrip-
tion (55,56), and therefore it is difficult to detect using low
resolution approaches. Out of 156 8-mer predictions made
by FitzGerald et al. none included the YYAnW 5-mer
with enrichment at the TSS. In contrast, our model iden-
tified seven 5-mers matching this consensus with signifi-
cant enrichment at the start of transcription (P < le—15).
The most common version of this motif was TCAGT,
which was found overrepresented at the TSS more than
seven and a half times over the background frequency
(P = 6¢—48). Despite the highly significant amount of
positional overrepresentation exhibited by this motif,
none of the studies using the sliding window approach
detected any motifs containing this 5-mer (18,19,47,48).
Figure 5 shows the occurrence data of this motif using
20 bp windows and using single-site resolution; we note
the significant decrease of the signal when considering
the data using windows of 20 bp.

Tharakaraman et al. (21,57) also scanned for positional
biases within human promoters. However, their method-
ology allowed for varying window sizes, improving sensi-
tivity of spatial enrichment considerably. Tharakaraman
et al. predicted 1226 unclustered 8-mers to exhibit posi-
tional enrichment within the promoter. Despite such a
large number of predictions made by Tharakaraman
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Figure 5. Occurrence frequency of the functional Inr sequence S-mer TCAGT. The contrast is shown between occurrence data using (a) 20 bp

windows and (b) single-site resolution.
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et al., we found that 82% of their predicted motifs over-
lapped with our results (Table 2). However, their model
assumed a uniform background frequency of occurrence
across the promoter. Since GC mono- and di-nucleotide
composition rises substantially near the start of tran-
scription (19), about a third of the 8-mers predicted by
Tharakaraman ez al. were highly GC-rich, containing at
least seven out of eight G/C consensus sites. This is nine
times more than what would be expected from a random
selection of 8-mers. In contrast, the number of GC rich
motifs predicted during our analysis is only 2.7 times
higher than would be expected by chance. As many GC-
rich motifs do play functional roles in gene regulation,
we looked to determine whether these GC-rich 8-mers
do, in fact, comprise true regulatory elements. To assess
the validity of these GC-rich predictions, we compared
the predictions made by Tharakaraman et al. to known
protein-binding sites found in humans. We found that,
among the GC-rich predictions overlapping our results,
over half matched human-binding elements found in
the TRANSFAC database. This represents a significant
enrichment of known regulatory elements, as only about
a third of all GC-rich 8-mers match human binding sites
in TRANSFAC. However, among the GC-rich predic-
tions that did not overlap our results, only 19% matched
known human binding sites. This is significantly less than
would be expected by chance given a random selection of
8-mers. Although this evidence is not necessarily conclu-
sive, we would still expect some amount of enrichment for
known regulatory elements in this list of predictions.
Thus, it is likely that a number of these predictions are
simply the result of the rise of GC content near the TSS,
rather than true regulatory elements.

In contrast to the analysis of Tharakaraman ez al.,
Vardhanabhuti ef al. (18) controlled for changes in base-
pair composition across the promoter. In this analysis, the
observed number of occurrences of a given motif was
compared to an expected number of occurrences in each
window of 20 bp. The expected frequency was estimated
separately within each individual window by considering
occurrence data of other motifs with identical basepair
composition. That is, occurrence data was obtained for
motifs whose columns were ‘permuted’ from the original
motif, thus conserving base composition. The observed
occurrences of these permuted motifs were then used to
determine the expected frequency of occurrence in
each individual window; both the ‘observed’ and
‘expected’ frequencies were thus unique to each window.
Vardhanabhuti et al. first scanned for positional biases
using known TF-binding sites in TRANSFAC, and sub-
sequent analyses predicted spatial overrepresentation
across all (novel) 7-mer motifs filtered for known binding
sites in TRANSFAC. Although these latter predictions
were presented as novel motifs, we found that a third of
these 7-mers matched known regulatory elements. For
example, the second and sixth highest-ranking motifs
(ATTGGCT and AGCCAAT) match the NFY-binding
site, each with a STAMP E-value under E <le-7
(Supplementary Data S3).

Between-studies comparisons showed consistently less
overlap between the results of Vardhanabhuti et a/. and
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those of other studies, including the one presented here
(Table 2). It is likely that these differences can be explained
by the methodology used to estimate the background
frequency of occurrences. For instance, the occurrence
frequency of a motif rich in a single nucleotide type will
not be significantly different after permuting its columns,
as the motif consensus itself will not be changed consider-
ably. In particular, mono-nucleotide repeats are impossi-
ble to detect. As a result, sensitivity to many biologically
relevant signals is decreased significantly. Vardhanabhuti
et al. note within their study that their methodology
predicts enrichment of the well-known TBP-binding ele-
ment (TATA-box) at a location that differs from where
it is known to function. This motif was predicted by
Vardhanabhuti ez al. to be enriched 45bp prior to the
TSS, although it is known to function at a very specific
location 30-bp upstream of the TSS (55,56,58—60). The
authors attribute this discrepancy to an increase of A/T
nucleotide composition at this location, increasing the
‘expected” number of occurrences within this window
and therefore decreasing the observed/expected ratio.
However, the increase of A/T nucleotide composition at
this location is simply a result of the overrepresentation of
the A/T rich TBP-binding site itself. This raises the con-
cern that correcting for basepair composition in a posi-
tion-specific manner can cause failure to detect real
biological signals, as the signal itself can be incorporated
into the background (expected) frequency. The method
presented here effectively circumvents this problem, as
the background frequency is modeled in a continuous
fashion. Significant changes in the expected frequency
caused by real biological signals remain outlier points
after fitting the background model to the data
(Figure 1b). We note that in the case of the TATA-box,
the MLF model predicted enrichment at the correct loca-
tion 30 bp prior to the TSS at a high level of confidence.

Motif relational functions (MRFs) detect spatial biases
between motif-pairs

Transcription is driven by multiple regulatory elements
acting in coordination, and knowledge of regulatory ele-
ment interactions is essential to understand the mecha-
nisms driving gene regulation. Since protein-protein
interactions are inherently structure-specific, it is logical
to expect that regulatory motifs binding interacting TF
proteins preferentially co-occur non-randomly with
respect to each other. Since the MPF model is designed
to detect spatial biases of motif occurrence, we expanded
the previous model in order to predict motif-pairs binding
interacting TFs de novo according to their spatial relation-
ships. The extended model measures inter-motif distance
preferences between pairs of motifs; we denote this mea-
sure as a ‘motif relational function’” (MRF).

The MRF model represents a simple extension of the
previous MLF model. In this new model, we are able
to determine multiple instances of spatial biases for
each individual motif-pair. This aspect of the model was
designed to capture the phasing of inter-motif distance
preferences, which would be expected according to the
results of previous studies. Periodic distributions have
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been associated with DNA sequence features attributed to
the structural conformations of the nucleosome (61), and
TF-pair interactions are often known to occur at phased
intervals around the histone complex or the winding of the
DNA double-helix (3,62,63). This scheme is shown in
Figure 6, which illustrates a potential preference for pro-
tein—protein interactions to occur in a specific orientation
in relation to the turn of the double-helix. As explained in
the methods section, the number of overrepresentation
peaks (i.e. individual instances of spatial preferences) is
not pre-defined but is instead estimated separately for
each individual motif-pair. Specifically, the model is
designed to detect each instance of spatial bias on an indi-
vidual basis, continuing to add overrepresentation peaks
until all statistically significant peaks have been incorpo-
rated into the model.

Figure 7 shows two MRFs which were both generated
by motif-pairs that bind TFs with known interactions
(64,65), namely, the NFY-NFY and NFY-SP1-binding
motif pairs. Motif-pairs were often found to co-occur pre-
ferentially at multiple distances, with intervals separating
preferred distances corresponding approximately to the
turn of the DNA double-helix.

Figure 6. Functional motif-pair inter-relationships. Proteins must often
be positioned in a particular orientation with respect to the DNA mol-
ecule to induce potential interactions (3,62,63). Interactions between
protein A and protein B occur when the latter is positioned at BI.
The same interaction frequently occurs one turn of the double-helix
away from Bl (i.e. at B2), since the orientation of protein B is consis-
tent relative to the turn of the DNA molecule. However, the interaction
cannot occur when protein B is at B3 due to its inconsistent orienta-
tion. The distance between factors A and B is determined by the size of
the proteins and is unique between different TF-pairs. In contrast,
phasing intervals (i.e. the distance between Bl and B2) remains rela-
tively consistent, as they correspond approximately to the number
of nucleotides in a turn of the DNA double-helix.

@3

3e-3
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In our particular application of the MRF method, we
used the phasing intervals of inter-motif distance prefer-
ences as a criterion for predicting motifs with a coopera-
tive role in transcriptional regulation. Namely, we
predicted pairwise interactions between putative regula-
tory motifs by scanning for consistency in the intervals
between overrepresentation peaks. In order to quantify
the phasing of inter-motif distance preferences, we defined
a ‘peak-separation value’, x,,,, to be the distance between
any pair of overrepresentation peaks within the same
motif-pair MRF. Thus, x,, = |W;,—p;| for any two
peaks i and ; within the same MRF (Equation 5).
We controlled for peaks potentially representing random
outlier points by filtering peaks corresponding to a single-
site location. We also filtered double motif occurrences
separated by less than 20 bp in order to remove spurious
peak phasing caused by repeat sequences and same-
sequence dyads.

Our comprehensive MRF analysis was conducted
across all possible pairwise combination of 5-mer motifs.
Enumerating across all MRFs containing at least two
overrepresentation peaks resulted in 619 MRFs exhibiting
Xgep-values ranging between 7.5-9.5bp (Figure 8). This is
more than twice the expected number (i.e. the average
number of MRFs producing x,,-values within any other
2-bp range). While these values do not correspond pre-
cisely to the number of nucleotides in a turn of the
double-helix (~10.5bp), it is possible that this deviation
can be explained by distortions of the DNA caused by
protein binding, or by other similar mechanisms.

Given these trends, we hypothesized that motifs produ-
cing consistent x,,,-values corresponding to the turn of
the DNA double-helix would act as protein-binding
sites. We chose to use a stringent criterion for motif-pair
predictions by specifically focusing on motifs exhibiting
significant concentrations of x,,-values, whose consis-
tency was unlikely to be due to chance. Thus, we calcu-
lated the distribution of peak phasing intervals for each
individual 5-mer motif across all possible motif partners,
testing for significant concentrations within their x,-
value concentrations. Namely, at each iteration, we
chose an individual 5-mer to be the fixed motif, and
Xgp-values were then determined across all MRFs

| | | [ I
-60 -30 0 30 60

Figure 7. MRFs of two motif-pairs-binding interacting TFs (64,65). A known occurrence of the reverse-strand NFY-binding site defines the position
x = 0; x-axis values denote the position of the (a) plus-strand NFY-binding site and the (b) minus-strand SP1-binding site. y-axis values show the
frequency of occurrence of these partner motifs. Each motif-pair exhibits more than one preferred distance between motifs, with intervals between
peaks being ~8-10bp. This is consistent with the scheme illustrated in Figure 6, where the location of the peaks represents the positions of Bl and
B2, and the position x = 0 corresponds to the position of factor A.
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Figure 8. MRF peak separation distributions. The distribution of peak
separation values (x,,-values) shown were produced by enumerating all
peak-pairs across all possible 5-mer motif-pairs. Peak separation values
are defined as x,., = | ; — ;| between overrepresentation peaks i and j
within the same MRF; this value is analogous to the distance between
Bl and B2 in Figure 6. Note the strong concentration of x,-values
close to ~8-9bp.

produced from this fixed motif and one of the possible
variable motif partners. x,,,-values were then accumulated
across all variable motif partners; fixed motifs producing a
significant x,,,-value concentration within one of the 2-bp
windows centered at x,,~8,9,10 were predicted to be
functional.

After correcting for multiple hypothesis testing, thirteen
5-mers were found to have significant x,,, concentrations
within one of these regions (P < le-5). Clustering these
5-mers according to sequence similarity and their corre-
sponding x,., distributions produced nine consensus
motifs (Table 3). Six of the nine consensus sequences
matched known TF-binding sites in TRANSFAC,
namely the NRF1, NFY, EVIl, and MADS-box protein
family-binding sites. The NFY and MADS-box protein
family-binding motifs were predicted on both strands,
while the NRFI-binding sequence was palindromic.
Three additional motifs, denoted as yl-y3, did not
match any known binding sequences in TRANSFAC,

PAGE 14 oF 21

Table 3. Motifs exhibiting consistent phasing intervals between
preferred inter-motif distances

Rank Consensus TF Xsep P Partners
Motifs with consistent phasing intervals

1 TTTGTA 1 9 Te-26 19
2 ATTTTT MADS (-) 8 3e-21 24
3 AAAAAT MADS (+) 8 4e-19 16
4 GCATGC NRFI 9 Te—19 23
S ATTGC 2 8 3e-12 8
6 TCTTG EV11 9 le-11 7
7 GAGCT »3 10 2e-10 7
8 ATTGG NFY(-) 10 4e-8 5
9 CCAAT NFY(+) 10 le-7 3

Phasing intervals (x,,,) were considered across all MRFs produced by
the (fixed) motifs shown above and one of the possible 5-mer partners.
Xgep-values denote the interval between distance preferences (peaks)
within the same MRF for a pair of motifs (x,., = [ — I;|). Xy,-value
concentrations were determined across all 2-bp intervals centered
around 8-10bp. P-values (fifth column) correspond to the significance
of this concentration for the top-ranking S5-mer in each cluster. Tfs
binding to known motifs in TRANSFAC (39) are shown in the
third column [STAMP (40) E-value threshold: le-5]; novel regulatory
element predictions are labeled yl—y3. The number of predicted partner
clusters is given in the right column.

and therefore represent novel cis-regulatory element can-
didates. Figure 9 shows the x,,,-value distribution for the
highest-ranking S-mer in four of the predicted motif clus-
ters. These include the reverse-strand MADS-box protein
family-binding site, the NRFI1-binding site, the novel
y1 motif, and the reverse-strand NFY-binding site. Note
the highly significant concentration of x,,,-values around
~8-10bp for each motif.

Periodic phasing of inter-motif distance preferences detects
known and novel regulatory element relationships

We extended the analysis in order to predict binding
site partners for each of the motifs exhibiting significant
Xgep-value concentrations. Each fixed motif predicted
during the previous MRF analysis was paired with multi-
ple partner motifs by considering each individual fixed/
partner motif-pair MRF. A 5-mer was predicted to pair
with the fixed motif if the motif-pair produced phased
distance preferences corresponding to the fixed motif’s
Xgep-value concentration. The predicted partner motifs
were then clustered according to sequence similarity as
well as the location of their overrepresentation peaks.
This procedure produced a total of 112 motif partner
clusters pairing with one of the nine fixed motifs predicted
in the previous analysis.

Partner motif predictions for the NFY and MADS-box
protein family-binding sites are given in Tables 4 and 5,
respectively. Only a few motif clusters were predicted
to pair with the NFY-binding motifs; each of the part-
ner clusters corresponded to either the NFY or the
SP1-binding sequences. Both factors are known to have
direct interactions with NFY (64,65).

The MADS-box protein family-binding sites were pre-
dicted to pair with more partner motifs than the NFY-
binding element. Sixteen and 24 partner clusters are
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Figure 9. MRF peak separation concentrations. Peak separation distributions are shown for four motifs with significant x,,,-value concentrations.
Each panel shows the x,, distributions for the most significant 5-mer of the reverse-strand MADS-box family-binding motif, the NRF1-binding
motif, the reverse-strand NFY-binding motif and the novel regulatory element prediction yl.

predicted to pair with the forward- and reverse-strand
MADS-box motif, respectively. A total of 24 (60%) of
the partner clusters were found to match known TF-bind-
ing sequences in TRANSFAC, comprising a total of 19
known regulatory elements. Several of these regulatory
elements bind proteins with direct interactions to SRF, a
member of the MADS-box protein family. These include

binding motifs of TCF3 (66), CEBP (67), NFY (68) and
ATF6 (69). We found that partner motifs pairing with
the MADS-box-binding site were frequently predicted in
both orientations. There were eight reverse complement
matches between partner motifs pairing across opposing
strands of the MADS-box-binding motif, comprising half
of the motif predictions pairing with the forward-strand
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MADS-box parent motif (Table 5). We found that the
mutual directionality of the fixed/partner motif-pairs was
highly conserved, with each separate strand of the MADS-
box motif pairing with only a single strand of the partner
motif. There were no same-strand matches between part-
ner motifs across opposing strands of the parent MADS-
box-binding element; i.e. individual strands of the partner
motifs were not found to pair to both orientations of
the MADS-box-binding motif.

DISCUSSION

Measuring spatial overrepresentation at high-scale resolu-
tion provides a powerful, but not yet frequently applied,

Table 4. Motif partners for the NFY-binding element

TF partner Forward strand Reverse strand
NFY-binding site partners
NFY (+) CCAAT GCCAATC
(=) GATTGGC ATTGG
CGATT
SP1 (+) GGCGG GGGCGG
(-) CCGcce

Partner motifs for the forward and reverse strand NFY-binding motif
are shown in the second and third columns, respectively. Each partner
motif binds either the NFY or SPI factors (left column). Both NFY-
NFY and NFY-SPI factor-pairs exhibit known interactions (64,65).

Table 5. MADS-box family-binding site partners
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approach to predicting functional motifs on a genome-
wide scale. The MPF model provides a general measure
of position-specific enrichment for a motif at single-site
precision in relation to a given reference point. The meth-
odology is distinct from previous methods that use general
overrepresentation as a criterion for regulatory function.
Although such motif finders have been useful for certain
applications, assessments of these methods have shown
that the efficacy of such approaches is somewhat limited
(70). The method presented here is designed to predict
either individual regulatory elements or functional motif-
pair relationships using spatial biases, rather than the
overall frequency of occurrence, as a criteria for function-
ality. The MLF model shows that many known regulatory
elements exhibit strong locational preferences relative to
the TSS. The MRF model predicts motif-pair relation-
ships de novo by analyzing inter-motif distance preferences
without prior knowledge about the corresponding motif
sequences. Our implementation of this model predicts cis-
regulatory elements and their pairwise interactions using
periodically phased distance preferences between pairs of
motifs.

The MLF method predicts positional enrichment for 48
consensus motifs

The comprehensive MLF analysis predicted 48 consensus
motifs to exhibit positional enrichment within the pro-
moter (Table 1). Thirty-four (71%) of these consensus
sequences matched previously documented cis-regulatory

Forward strand: AAAAAT

Reverse strand: ATTTTT

Consensus TF RC Consensus TF RC
MADS-box motif partners
1 AGACC 1 GAACTCCT NRI1I2
2 CAGCTAC TOPORS 2 AGCCT RI
3 AGGCTG rl 3 AGTGC HMX3 R8
4 CAGCC 4 ATCCG
5 CCTGTA AR 5 ATGTT
6 CGCCA E2F1 6 CACCA NFY (%) R7
7 CTACTC 7 CCACG ATF6 (*)
8 GCTGAG NFE2 2 8 CCCAA IKZF1
9 GAACC 9 CCTCC MAZ R3
10 GGCAGG TCF3 (*) 10 CCTGA
11 GGAGG MAZ r3 11 TCGAAC XBP1
12 GGTTG r4 12 GCTGGGACA PITX2
13 TGTAATCCCA CEBP (%) r5 13 GATCC
14 GTGGC r6 14 GGATTACA CEBP (%) R5
15 TGGTG NFY (*) r7 15 GCCAC R6
16 GCACT HMX3 r8 16 GGGTTT TERF2IP
17 TCAAG NKX2
18 TGACC ESR1
19 TGATC
20 AGCCA PCBP2
21 CAACC R4
22 CTCGG ZNF569
23 TCAGC NFE2 R2
24 TGCCT

TFs binding to the known cis-regulatory elements in TRANSFAC (39) are shown in the third columns. Binding factors with known direct
interactions to SRF, a MADS-box family member, are labeled with asterisks. Reverse complements across opposing strands of the MADS-box
fixed motif, as determined by STAMP (E-value threshold: le-5), are labeled r1-r8 and RI1-RS8 (e.g. rl is the reverse complement of R1, etc.).
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elements, comprising a total of 22 known regulatory
elements. The remaining 14 comprise putatively novel
cis-regulatory element predictions without known binding
partners.

While most previous studies predict spatial preferences
by counting motif occurrences within multiple indepen-
dent windows of ~20-25bp (18-20,47,48), the MLF
model considers the data collectively at single-site resolu-
tion, estimating the underlying frequency of occurrence
according to position. Although prior studies have
shown positional enrichment of motifs, the increased
spatial resolution of our approach provides evidence for
finer-scale functional constraints on the position of motifs.
Inspection of the results of FitzGerald et al. (19) and
Vardhanabhuti et al. (18) showed that the most common
Inr 5-mer consensus (TCAGT) did not appear in the pre-
dictions of either study. Occurrences of this motif are con-
strained to a single nucleotide site, and thus the positional
specificity of this motif could not be detected using larger
20-bp windows. Previous methodologies cannot operate
at single-site resolution without a loss of sensitivity to spa-
tial preferences occurring across larger ranges of the reg-
ulatory region. We also note that several of our motif
predictions not predicted by these previous methods
were found overrepresented across wide ranges of the
upstream flanking region. For instance, the ZFPI161-
binding motif shows clear enrichment across a range of
~200bp (Figure 4); this consensus motif had not pre-
viously been detected using the sliding window method.
We show that considering the data collectively leads to a
significant increase of sensitivity, and allows us to detect
positional biases occurring either across broad portions of
the promoter or constrained to a single nucleotide site.

The model presented here accounts for dinucleotide
fluctuations found in and around the promoter. We
show from the results of two simulation analyses that
changes of basepair composition within the promoter
can produce spurious motif predictions due to the rise
of GC content near the TSS. This effect was found to
be more prominent in simulated data sets conserving
dinucleotide frequencies at each site than those generated
using only mono-nucleotide basepair composition.
Comparisons to previous studies suggest that models not
accounting for nucleotide composition are sensitive to the
significant rise of GC content near the TSS. Methods
assuming a uniform background frequency are prone to
predict GC-rich motifs which are likely to reflect only
changes in basepair composition, rather than motif func-
tionality. However, the cross-studies comparisons also
show that accounting for fluctuations in mono- and di-
nucleotide frequencies must be conducted collectively
across all positions, rather than independently at each
location. For instance, Vardhanabhuti ez al. (18) estimated
the expected frequency of occurrence separately at
each location within the promoter. However, overrepre-
sentation of a positionally enriched motif can itself
increase the basepair composition at the same location.
Estimating the expected frequency within each separate
window therefore incorporates such increases in basepair
composition into the background frequency, although this
rise in the expected frequency is simply a direct byproduct
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of the biologically relevant overrepresentation. As dis-
cussed by the authors of this study, their method was
unable to predict positional specificity of the TATA-box
at its correct functional location (48,58—60); it is highly
likely that many other existing signals went undetected
using this model. In contrast, the model presented here
estimates the background frequency of occurrence collec-
tively in a continuous fashion. In this way, increases of the
expected frequency resulting from true biological signals
remain outlier points after fitting the expected frequency
to the data, and they are therefore not directly incorpo-
rated into the background frequency of occurrence
(Figure 1b). We note that in the case of the TATA-box,
our model predicts enrichment at its correct location 30 bp
prior to the TSS at a high level of significance. Thus, we
find that considering the data collectively is essential in
order to control for dinucleotide fluctuations within the
promoter.

The results from our analyses indicate that many regu-
latory motifs exhibit positional enrichment in or near the
promoter. It is likely that these motifs may perform spe-
cific functions at their respective locations of enrichment.
We note that some of the known motifs are also known to
function at a diverse number of locations, and thus func-
tional occurrences of these motifs are not restricted to
occur within their location of enrichment. For instance,
functional occurrences of the SRF-binding motif are not
limited to its predicted location of enrichment (71).
However, SRF binding is known to be facilitated by the
YY1 factor, with each protein occupying the same binding
location on the DNA, albeit on opposite strands of the
molecule (72,73). As YY1 has been shown to function at
specific locations within the promoter (48), it is not sur-
prising that the SRF-binding motif also exhibits positional
enrichment near that of YY1. Thus, although functional
occurrences of the SRF-binding element occur at other
locations, it is likely that SRF may play a unique role
within its location of enrichment in concert with the
YY1 factor. It is possible that other factors also known
to bind at a diverse number of locations may also perform
specific functional roles at which their binding motifs pre-
ferentially occur, and future studies may elucidate the bio-
logical relevance regarding the roles of these motifs within
their area of enrichment.

Our predictions also include 14 motifs (d1-d14) that do
not match any known human TF-binding motifs in
TRANSFAC. Although these motifs do not match any
known TF-binding sequences, some have been reported
to play alternative roles in gene regulation. For instance,
the novel d5 and d10 motifs consist of (GT), and (CA),
dinucleotide repeats, respectively. These sequence ele-
ments are known to promote left-handed Z-DNA struc-
tures that affect DNA supercoiling, and subsequently
transcription (52—54). Similarly, the d3 motif consists of
a homopolymeric thymine [poly(T)] tract. Such poly(T)
tracts are known to alter the conformation of the DNA
molecule, thereby disrupting nucleosome positioning (51).
Both d3 and d10 show a significant overrepresentation
peak centering near the start of the transcription bubble
(74). A recent study conducted by Kaplan ez al. (75) has
shown that nucleosome occupancy is significantly
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decreased at this location. It is therefore likely that occur-
rences of these motifs in this region of the promoter may
make the area more accessible to the RNA-polymerase
machinery. Thus, while many of our novel regulatory ele-
ment predictions are likely to function as protein-binding
sites, others may affect transcriptional regulation through
alternative mechanisms.

Applying our method to a set of mouse promoters
showed that the majority of the motifs exhibiting spatial
preferences in humans also show positional enrichment in
mouse. Thirty-six (75%) of the motif clusters were shared
across the two species, and the location of positional
enrichment was frequently found to be highly conserved
between the two lineages. Supplementary Data S4 pro-
vides results from a second mouse promoter analysis
conducted on a smaller, high-quality data set provided
by the RIKEN Institute. This analysis was conducted on
1354 mouse promoters generated using CAGE-tag data
(56,76), a significant decrease in the number of sequences
used during our previous analyses. Thirty-one motifs
predicted during the human promoter analysis matched
predictions from the RIKEN data set, representing a sig-
nificant overlap between results produced from the two
data sets. However, the positional bias of some infre-
quently occurring motifs could not be detected using the
smaller RIKEN data set, including several regulatory ele-
ments whose positional bias is well-documented, such
as the CREB, MYC, NRFI and ETS-binding sites
(19,47,48). Thus, we note that it is usually preferable to
use larger data sets than smaller ones in order to minimize
the amount of random noise relative to the background
frequency. This increases sensitivity to the spatial bias of
infrequently occurring motifs, and it also eliminates spu-
rious peaks caused by random outlier points. We have
found that our approach is not greatly affected by noise
when applied to large data sets, and that the MLF method
is efficient at detecting instances of spatial bias when using
an adequate number of sequences.

MREF peak separation analyses predict individual and
putatively interacting cis-regulatory elements

The MRF model presented here analyzes inter-motif
distance preferences between pairs of sequence elements.
Our application of this method predicted cis-regulatory
element-pairs that putatively bind interacting TFs by con-
sidering periodically phased spatial preferences. We found
that pairs of TF-binding sequences with collective roles
in transcription often show elevated frequencies of
co-occurrence at multiple separation distances. The
model presented here explicitly uses multi-modal charac-
teristics of inter-motif distance frequencies, and is there-
fore inherently different from previous uni-modal models,
which have generally relied on the sliding window method
or maximum-distance approaches (16-18,31,77-79). We
have found that individual instances of spatial preferences
are generally constrained to widths of only ~2-3 bp, and
that single overrepresentation peaks often exhibit only
minimal amounts of significance. However, despite the
subtlety of each individual instance of spatial preference
between motif-pairs, overall trends in the phasing intervals
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between preferred inter-motif distances are highly signifi-
cant. Our model was intentionally designed to account for
spurious overrepresentation peaks by considering peak
separation distances collectively across a comprehensive
list of all pairs of 5-mers. We explicitly focused on
motifs with distinguishing phasing intervals between pre-
ferred distances, and whose consistency was unlikely to be
due to chance.

We have found that for many motif-pairs exhibiting
multiple preferred separation distances, the intervals
between preferred inter-motif distances are often found
near the range of ~8-9 bp. This corresponds to approxi-
mately 2bp less than the number of nucleotides in one
turn of the DNA double-helix (~10.5bp). This finding
may reflect a structural requirement for interacting TF
proteins to be positioned in a particular orientation rela-
tive to the turn of the DNA molecule, albeit at a distortion
of the helical structure upon protein binding. The devia-
tion from the expected number of 10.5 bp is worth noting,
particularly due to the robustness of the signal occurring
across such a large number of motif-pairs. There are some
possible explanations available from the literature.
Structural analyses have shown that protein binding,
and the binding of multi-protein complexes in particular,
distort the conformation of the DNA (80-83), thus affect-
ing the helical characteristics of the DNA. An alternative,
although not necessarily exclusive, interpretation is that
the occurring protein-protein interactions may either be
stabilized by alterations of the DNA molecule or require
them for collective binding. Selective binding of proteins
to DNA involves not only sequence-specific elements
within the DNA, but also topological characteristics of
the DNA molecule (84-86); this is known to be particu-
larly true during the recruitment of multiple interacting
proteins to the DNA (85,86). Thus, although the biolog-
ical explanation of the observed pattern remains unclear,
these results are not inconsistent with our current knowl-
edge of protein—protein and protein—DNA interactions.

Nine motif clusters were found to exhibit highly
consistent phasing intervals around 8-10bp. Six of these
consensus motifs matched known binding sites in
TRANSFAC, including the binding motifs for the NFY,
NRFI, EVII and the MADS-box protein family. We sub-
sequently used our phasing criteria to predict multiple
partner motifs for each of these nine motifs, resulting
in 112 motif-pairs predicted to bind interacting TFs
(Supplementary Data S5). We have illustrated several
examples of our motif-pair predictions in Tables 4 and
S, which show the partner motifs pairing with the
NFY-binding element and the MADS-box protein
family-binding sequence. All partners predicted to pair
with the NFY-binding motif correspond to either the
NFY or SPl-binding elements; both NFY-NFY and
NFY-SP1 factor-pair interactions are documented in the
literature (64,65). The MADS-box family consensus
sequences predicted during the analysis bind both the
myocyte enhancer factor 2 (MEF2) and the serum
response factor (SRF) (87). These two factors are known
to be involved in complex extra-cellular signaling path-
ways, playing multiple roles involving cell differentiation
and development (88-90). Both MEF2 and SRF regulate
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gene expression through the recruitment of multiple acces-
sory co-factors whose presence or absence within the com-
plex cause differential expression of their target genes
(66,67,86), and therefore we would expect a large
number of partner motifs to pair with their binding ele-
ments. Many predicted partner motifs were predicted on
both orientations, with eight reverse complement-pairs
occurring across opposing strands of the MADS-box-
binding motif. The mutual directionality of the MADS-
box/partner motif-pairs was found to be highly conserved,
with each individual strand of the partner motif pairing
with one, but not both, orientations of the MADS-box-
binding motif. The majority of partner motifs pairing with
the MADS-box-binding element match known TF-bind-
ing sites. In addition, 12 motif partners bind proteins
known to be involved in either signal transduction path-
ways or developmental processes. Three such factors
belong to the homeobox family, whose members play a
crucial role in early development (91-93). Many of the
remaining partner motifs may play unknown functional
roles in concert with one of the MADS-box protein factors.

We note that the MRF method comprises a general
tool that can be used to analyze spatial preferences, and
that our present analysis represents only one of the many
possible applications of the model. Expanding our knowl-
edge about the nature of collective protein binding is
crucial to further the understanding of gene regulation,
and future studies are necessary to demonstrate the full
efficacy of the method presented here.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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