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Dark Microglia: A New Phenotype
Predominantly Associated with

Pathological States

Kanchan Bisht,1 Kaushik P. Sharma,1 Cynthia Lecours,1 Maria Gabriela S�anchez,1

Hassan El Hajj,1 Giampaolo Milior,2 Adri�an Olmos-Alonso,3 Diego G�omez-Nicola,3

Giamal Luheshi,4 Luc Vallières,1 Igor Branchi,5 Laura Maggi,2 Cristina Limatola,2

Oleg Butovsky,6 and Marie-�Eve Tremblay1

The past decade has witnessed a revolution in our understanding of microglia. These immune cells were shown to
actively remodel neuronal circuits, leading to propose new pathogenic mechanisms. To study microglial implication in the
loss of synapses, the best pathological correlate of cognitive decline across chronic stress, aging, and diseases, we
recently conducted ultrastructural analyses. Our work uncovered the existence of a new microglial phenotype that is
rarely present under steady state conditions, in hippocampus, cerebral cortex, amygdala, and hypothalamus, but becomes
abundant during chronic stress, aging, fractalkine signaling deficiency (CX3CR1 knockout mice), and Alzheimer’s disease
pathology (APP-PS1 mice). Even though these cells display ultrastructural features of microglia, they are strikingly distinct
from the other phenotypes described so far at the ultrastructural level. They exhibit several signs of oxidative stress,
including a condensed, electron-dense cytoplasm and nucleoplasm making them as “dark” as mitochondria, accompanied
by a pronounced remodeling of their nuclear chromatin. Dark microglia appear to be much more active than the normal
microglia, reaching for synaptic clefts, while extensively encircling axon terminals and dendritic spines with their highly
ramified and thin processes. They stain for the myeloid cell markers IBA1 and GFP (in CX3CR1-GFP mice), and strongly
express CD11b and microglia-specific 4D4 in their processes encircling synaptic elements, and TREM2 when they associ-
ate with amyloid plaques. Overall, these findings suggest that dark microglia, a new phenotype that we identified based
on their unique properties, could play a significant role in the pathological remodeling of neuronal circuits, especially at
synapses.
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Introduction

The past decade has witnessed a revolution in our under-

standing of microglia, especially since their roles in the

healthy brain have started to unravel (Tremblay et al., 2011).

These cells were shown to actively regulate neuronal develop-

ment, function, and plasticity, providing further insights into

their crucial involvement with diseases (Katsumoto et al.,

2014; Prinz and Priller 2014; Salter and Beggs, 2014; Trem-

blay and Sierra, 2014).

Among the discoveries, ultrastructural analyses revealed

that IBA1-positive microglial processes almost exclusively

(�94%) contact synaptic elements (axon terminals, dendritic

spines, astrocytic processes, and synaptic clefts) under nonpa-

thological conditions (Tremblay et al., 2010a). Electron
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microscopy (EM) also indicated that microglial cell bodies

and processes frequently engulf axon terminals and dendritic

spines, within the thalamus, cerebral cortex, or hippocampus,

during development, adulthood, or aging (Milior et al., in

press; Paolicelli et al., 2011; Schafer et al., 2012; Tremblay

et al., 2010a). With these and other recent studies (Bialas and

Stevens, 2013; Elmore et al., 2014; Parkhurst et al., 2013;

Rice et al., 2015; Schafer et al., 2012; Stevens et al., 2007),

microglia have emerged as crucial effectors of neuronal circuit

remodeling in the developing and mature healthy brain

(reviewed in Kettenmann et al., 2013; Schafer et al., 2013;

Tremblay et al., 2014).

Following up on this work, we are studying microglial

implication in the loss of synapses, which is the best patho-

logical correlate of cognitive decline across chronic stress,

depression, normal aging, and neurodegenerative conditions

that include Alzheimer’s disease (AD) (Duman and Aghaja-

nian, 2012; Spires-Jones and Hyman, 2014). Chronic stress is

well known for triggering depression, accelerating aging, pre-

disposing to neurodegenerative diseases, as well as exacerbat-

ing their progression and symptoms (Miller and Sadeh,

2014). So far, this work revealed that microglial phagocytosis

of synaptic elements is exacerbated in a mouse model of

human immunodeficiency virus-associated cognitive disorder

(Lu et al., 2011; Marker et al., 2013; Tremblay et al., 2013)

and in wild-type mice following 2 weeks of chronic unpre-

dictable stress (Milior et al., in press). Microglial phagocytosis

of synaptic elements is also elevated in the absence of fractal-

kine signaling (CX3CR1 knockout mice) under basal condi-

tions, but contrarily to wild-type mice, phagocytosis remains

unchanged by chronic stress in these animals, indicating that

their experience-dependent remodeling of neuronal circuits is

impaired at synapses (Milior et al., in press).

Working on the latter project and another study regard-

ing microglial involvement in AD using the APP-PS1 mouse

model (Audoy-Remus et al., 2015), we recently uncovered

the existence of a new myeloid cell phenotype, strikingly dis-

tinct from the other ones described so far at the ultrastruc-

tural level (referred here as “normal” microglia) (Graeber

et al., 1988; Herndon, 1964; Mori and Leblond, 1969; Trapp

et al., 2007; Tremblay et al., 2010a, among others). Contra-

rily to the normal microglia, these cells exhibit several signs

of oxidative stress, making them as “dark” as mitochondria.

Dark microglia are rarely present under steady state condi-

tions, within the hippocampus, cerebral cortex, amygdala,

and hypothalamus, but become abundant upon chronic stress,

normal aging, fractalkine signaling deficiency (CX3CR1

knockout mice), and AD pathology (APP-PS1 mice). Dark

microglia appear to be phagocytically active, even more than

the normal microglia, extensively engulfing dendritic spines,

axon terminals, and entire synapses, suggesting their implica-

tion in the pathological remodeling of neuronal circuits.

Materials and Methods

Animals
All experiments were approved and performed under the guidelines of

the Institutional animal ethics committees, in conformity with the

European Directive 2010/63/EU and Italian D.lg. 4.05.2014, n. 26

(chronic unpredictable stress), the U.K. Home Office licensing (CCR2

knockout mice), and the Canadian Council on Animal Care guidelines

(all the other animals). The animals were housed under a 12-h light–

dark cycle at 228C–258C with free access to food and water.

Chronic unpredictable stress experiments were conducted using

12–16-weeks-old mice: wild-type C57BL/6J and CX3CR1-GFP

homozygotes on a C57BL/6J background (Jackson Laboratory) where

the Cx3cr1 gene is replaced by a GFP reporter gene (Jung et al.,

2000). The animals were housed in IntellicagesVR (TSE-system, New-

Behavior AG, Z€urich, Switzerland). Following 2 weeks of habituation,

they were exposed to control (without disturbance) or stressful condi-

tions (chronic unpredictable stress) for two additional weeks, as

recently described (Milior et al., in press). The stressful procedures

included sporadic air puffs and random modifications of the access to

the drinking water. Also, the escape box was removed in the stressful

condition, adding on to the stress due to forced social interactions.

For repeated social defeat stress, 7–8-weeks-old C57BL/6J

mice (Charles River) were subjected to chronic social stress as previ-

ously described (Golden et al., 2011). Briefly, the animals interacted

3–5 min daily with CD-1 retired breeders (4–6 months old) for 10

consecutive days. They were tested on the following day for social

interactions with a novel aggressor to evaluate their phenotype of

susceptibility to stress, characterized by the avoidance of social inter-

actions. The animals were weighed every third day, and their health

status carefully monitored throughout the paradigm. Control

C57BL/6 mice were paired-housed in defeat boxes.

To determine the consequences of amyloid b deposition and

aging, we examined 6-, 14-, and 21-month-old APP-PS1 mice

(Borchelt et al., 1997) as well as 14-month-old wild-type littermate

controls. These 6C3-Tg(APP695)3Dbo Tg(PSEN1)5Dbo/J mice

express a chimeric amyloid precursor protein (APPSwe) and the

human presenilin 1 (A246E variant) under the mouse prion protein

promoter. CCR2 knockout mice (16 weeks old) were used to deter-

mine whether the dark microglia could arise from circulating mono-

cytes. CCR2 regulates the egress of monocytes from the bone marrow,

resulting in fewer circulating monocytes in CCR2-deficient mice (Ser-

bina and Pamer, 2006; Tsou et al., 2007). CCR2 knockout mice have

a greatly decreased Ly6ChiCCR21 monocyte population, and their

recruitment to the brain parenchyma is CCR2-dependent, making

them a valuable model to study the role of recruited monocytes in

brain function (Gomez-Nicola et al., 2014; Mildner et al., 2007).

Tissue Preparation
Three or four mice per group were anesthetized with sodium pento-

barbital (80 mg/kg, intraperitoneally) and perfused with 0.1% glu-

taraldehyde in 4% paraformaldehyde (Ligorio et al., 2009) (chronic
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unpredictable stress, CCR2 knockout mice) or 3.5% acrolein fol-

lowed by 4% paraformaldehyde (Tremblay et al., 2010b) (repeated

social defeat mice, APP-PS1 mice, wild-type controls). Fifty-

micrometer-thick transverse sections of the brain were cut in sodium

phosphate buffer (PBS; 50 mM at pH 7.4) using a vibratome (Leica

VT100S) and stored at 2208C in cryoprotectant until further proc-

essing (Tremblay et al., 2010b). Brain sections containing the ventral

hippocampus CA1 (Bregma 23.27 and 24.03 in the stereotaxic

atlas of Paxinos and Franklin (2013)), the frontal cortex (Bregma

2.93–2.57), the basolateral nucleus of the amygdala (Bregma 20.83

to 21.55), or the median eminence of the hypothalamus (Bregma

22.03 to 22.27) were examined.

Immunoperoxidase Staining
Brain sections containing the hippocampus CA1 from the chronic

unpredictable stress or repeated social defeat animals were utilized

for immunostaining, except for TREM2 staining, which was con-

ducted in 21-month-old APP-PS1 mice. The sections were washed

in PBS, quenched, and processed for immunostaining with antibod-

ies against specific cellular and phenotypic markers: ALDH1L1

(Abcam, #ab87117), OLIG2 (Millipore, #AB9610), IBA1 (Wako,

#019-19741), GFP (Aves Lab, GFP-1020), CD11b (AbD Serotec,

MCA711GT), P2RY12, 4C12, and 4D4 (from Oleg Butovsky, Har-

vard Medical School), MHCII (Millipore, MABF33), TREM2 (Life-

span Biosciences, LS-C150262), CD11c (BD, clone HL3, 550283),

and CD206 (AbD Serotec, MCA2235GA). Secondary antibodies

conjugated to biotin were used, all from Jackson ImmunoResearch:

goat anti-rabbit (111-066-046), goat anti-chicken (103-065-155),

goat anti-rat (112-065-167), and donkey anti-sheep (713-066-147).

Briefly, the sections were blocked and incubated overnight at 48C in

primary antibody solution, following which they were incubated

with appropriate secondary antibody, and then with either ABC Vec-

tastain system (1:100 in Tris-buffered saline (TBS); Vector Laborato-

ries, #PK-6100) or Streptavidin-HRP (Jackson, 016-030-084). The

sections were developed with diaminobenzidine (0.05%) and hydro-

gen peroxide (0.015%) to reveal the immunostaining. PBS or TBS

was used to prepare the different incubation solutions and also for

washing off the excess reagents after the incubation steps. See Table

1 for detailed staining conditions pertaining to each antibody.

Light Microscopy
Cellular specificity of each immunostaining was determined at the

light microscopic level, using a Zeiss AxioPlan microscope. The

immunostained sections were carefully mounted onto glass slides,

dehydrated in ascending concentrations of ethanol, cleared in citrisol,

and coverslipped with DPX (Electron Microscopy Sciences; EMS).

Electron Microscopy
Sections stored in cryoprotectant were rinsed in PBS only (ultra-

structural and densitometry analyses) or immunostained as described

earlier. Afterward, they were postfixed flat in 1% osmium tetroxide

and dehydrated in ascending concentrations of ethanol. They were

treated with propylene oxide and then impregnated in Durcupan

resin (EMS) overnight at room temperature. After mounting

between ACLAR embedding films (EMS), they were cured at 558C
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for 72 h. Areas of interest were excised from the embedding films,

re-embedded at the tip of resin blocks, and cut at 65–80 nm of

thickness using an ultramicrotome (Leica Ultracut UC7). Ultrathin

sections were collected on bare square mesh grids (EMS), and exam-

ined at 80 kV with a FEI Tecnai Spirit G2 transmission electron

microscope.

Qualitative and Quantitative Analyses
Ultrathin sections from the different brain regions and experimental

conditions were examined and photographed at various magnifica-

tions ranging between 4403 and 9,3003 using an ORCA-HR digi-

tal camera (10 MP; Hamamatsu). Profiles of neurons, synaptic

elements, microglia, astrocytes, oligodendrocytes, and myelinated

axons were identified according to well-established criteria (Peters

et al., 1991). In addition to their immunoreactivity for IBA1 or

GFP (in the CX3CR1-GFP mice), microglial cells were distinguished

from oligodendrocytes by their paler cytoplasm, prevalent association

with the extracellular space, distinctive long stretches of endoplasmic

reticulum, frequent vacuoles and cellular inclusions, irregular con-

tours with obtuse angles, and small elongated nucleus delineated by

a narrow nuclear cistern (Milior et al., in press; Tremblay et al.,

2010a). To assess colocalization of the dark microglia with various

markers, ultrastructural observations were conducted at the tissue–

resin border, where the penetration of antibodies and staining inten-

sity is maximal (Tremblay et al., 2010b). This analysis was strictly

conducted in tissue areas where intense immunostaining was

observed. For cases where no colocalization was detected, the pres-

ence of immunostaining in the same field of view ruled out the pos-

sibility that these cells were not stained due to a limited penetration

of the antibodies.

To analyze dark microglia’s and “normal” microglia’s density

across control conditions, chronic stress, aging, fractalkine signaling

deficiency, and AD pathology, one ultrathin section containing the

hippocampus CA1 strata radiatum and lacunosum-moleculare was

sampled in each of three mice per group (3-month C57Bl/6J con-

trol, 14-month C57Bl/6J control, 3-month CX3CR1 knockout, 3-

month stressed C57Bl/6J, 3-month stressed CX3CR1 knockout, and

14-month APP-PS1 model), for a total neuropil surface of

�400,000 lm2 sampled in each animal. The entire section area was

sequentially imaged at lowest magnification under the transmission

electron microscope (4403) to determine systematically the total

number of grid squares enclosing tissue from each of stratum radia-

tum and lacunosum-moleculare. These two neuropil layers were

identified based on their position to the CA1 pyramidal cell layer, as

well as their cellular and subcellular contents. The total surface

area was calculated at high precision by multiplying the number of

grid squares containing each of stratum radiatum or lacunosum-

moleculare by the area of a single grid square. A schematic represen-

tation of all the grid squares included in the analysis was drawn for

each section/animal. The ultrathin sections were afterward rigorously

screened for the presence of dark microglia, strictly identified based

on a series of ultrastructural features that are described in detail in

the Results section. Only dark microglia showing a complete or a

partial profile where part of the nucleus could be seen were included

in the analysis, considering that the chromatin pattern is a distinctive

feature of the dark microglia. Each dark microglia was photographed

at magnifications between 4,6003 and 9,3003, and marked on the

schematic representation, for a total of 95 cells included in the anal-

ysis. Considering the heterogeneity in dark microglia’s distribution,

with these cells generally appearing within clusters, and the impossi-

bility to identify them with light microscopy (see Discussion sec-

tion), and hence to select the areas to examine based on their

presence, their density was expressed as maximal numbers per mm2

of tissue surface across three animals/experimental conditions. The

density of normal microglia was assessed in the same manner to

allow for comparison. We did not attempt to distinguish normal

microglia from bone marrow-derived macrophages and other types

of myeloid cells in the brain. In addition, using the same samples,

we determined the percentage of dark microglia that were: (1)

located in stratum radiatum versus lacunosum-moleculare, (2)

directly apposing one or more blood vessel, and (3) encircling one

or more synaptic element (axon terminal, dendritic spine, and excita-

tory synapse between axon terminal and dendritic spine) with their

processes.

Results

Distinctive Features
Using high spatial-resolution EM, we uncovered the presence

of highly phagocytic cells within the brain that have not yet

been described, within the hippocampus, cerebral cortex,

amygdala, and hypothalamus, across various contexts of

health and disease described later. Indeed, we found cells

with ultrastructural features of microglia, particularly their

size, shape, long stretches of endoplasmic reticulum, frequent

interactions with neurons and synapses, and association with

the extracellular space. These cells invariably displayed signs

of oxidative stress, including a condensed, electron-dense

cytoplasm and nucleoplasm (making them as dark as mito-

chondria), accompanied by cytoplasmic shrinkage, Golgi

apparatus and endoplasmic reticulum dilation, as well as

mitochondrial alteration (Fig. 1A–E). By comparison,

unstained microglia normally exhibit at the ultrastructural

level a light cytoplasm and nucleoplasm with a clearly

defined chromatin pattern (Fig. 2A, B). The dark microglia’s

loss of chromatin pattern suggests an active phenotypic trans-

formation, as chromatin remodeling regulates gene expres-

sion, in addition to imparting an epigenetic regulatory

control over several key biological processes (Lardenoije

et al., 2015).

Interactions with Synapses
The dark microglia appeared to be extremely active, even

more than the normal microglia under both pathological and

nonpathological conditions. Dark microglia’s processes of pri-

mary, secondary, tertiary, and higher-order, generally contigu-

ous in ultrathin section, often reached for synaptic clefts,

suggesting synaptic stripping, and extensively encircled pre-

synaptic axon terminals, postsynaptic dendritic branches and
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FIGURE 1: Ultrastructural features of the dark microglia. A–E: Examples of dark microglial cells (dc) encountered in the CA1 region of
the hippocampus (stratum lacunosum-moleculare) of stressed CX3CR1 knockout mice (A–D) or in the median eminence of the hypothala-
mus in a nontransgenic control mouse (E). In addition to their ultrastructural features of microglia, for instance their frequent long
stretches of endoplasmic reticulum (arrowheads in C), these cells are recognized by their various signs of oxidative stress: their con-
densed, electron-dense cytoplasm and nucleoplasm, accompanied by cytoplasmic shrinkage, Golgi apparatus (g) and endoplasmic reticu-
lum (er) dilation, and mitochondrial alteration (arrowheads in D, E). Examples of endoplasmic reticulum dilation in cell bodies and a
process are, respectively, provided in (B), (D), and (C). The dark microglia contain lipofuscin granules (g) in (D) and (E). Direct contacts
with blood vessels (bv), dendrites (d), a neuronal perikaryon (np), axon terminals (t) and dendritic spines (s), and synapses between axon
terminals and dendritic spines are also shown. ma 5 myelinated axon. Scale bars 5 1 lm.
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spines, as well as entire synapses between axon terminals and

dendritic spines (Fig. 3A–F). Dark microglia’s processes typically

formed acute angles as they weaved between the other elements

of neuropil (Fig. 3B, D–F), akin to astrocytes (Ventura and

Harris, 1999), and they were occasionally surrounded by pockets

of extracellular space (Figs. 3A and 4A for examples). Together

with the shrunken appearance of the encircled synaptic elements

(Fig. 3F), these pockets suggest ongoing extracellular digestion

in the vicinity of their processes. By comparison, the primary

processes of normal microglia rarely protrude from their cell

body in ultrathin section (see Fig. 3G for a typical example).

Even though higher-order processes with spindly appearances are

encountered (Tremblay et al., 2010a), normal microglia in

healthy adult mice generally display bulkier processes with

obtuse angles, which contain phagocytic inclusions, and focally

contact (rather than encircle) synaptic elements (Fig. 3H).

Identification
To determine the nature of the dark microglia, we performed

pre-embedding immunostaining to analyze their colocalization

with several markers (see Table 1 for details on the immuno-

staining conditions and Table 2 for a summary of the results).

Our results revealed that dark microglia do not express the

pan-astrocytic marker ALDH1L1 or the oligodendrocytic line-

age marker OLIG2 (not shown). They displayed a faint and

punctiform staining for IBA1 in nontransgenic animals (not

shown) or GFP in CX3CR1-GFP mice (Fig. 4A), contrary to

the normal microglia that show strong and diffuse immunore-

activity for IBA1 (Fig. 3G, H) and GFP (not shown) through-

out their cytoplasm, across contexts of health and disease.

Whether this reduction of staining intensity in the dark micro-

glia is due to the condensed state of their cytoplasmic contents,

including the GFP and IBA1 proteins, is unclear. However,

dark microglia strongly expressed the myeloid cell marker

CD11b, which is a critical component of phagocytic receptor

CR3, at the plasma membrane of their processes encircling

synaptic elements (Fig. 4B, C). They also expressed 4D4, a

recently discovered marker of homeostatic microglia (Butovsky

et al., 2012), specifically at the extremity of their ramified

processes (Fig. 4D, E). In contrast, they were not shown to

express P2RY12, another marker of homeostatic microglia (Fig.

4F). Similarly, negative immunostaining results were obtained

for markers of dendritic cells (CD11c), perivascular macro-

phages (CD206) (Galea et al., 2005), and antigen-presenting

cells (MHCII) (not shown).

Origin
The dark microglia appeared very different from the circulat-

ing monocytes that we observed in brain blood vessels and

parenchyma (Fig. 5D–F). Given the evidence that Ly6C-

positive monocytes infiltrate the brain in a CCR2-dependent

manner (Mildner et al., 2009), we also examined CCR2

knockout mice in an attempt to determine the origin of the

dark microglia. Analysis of these CCR2 knockout mice under

steady state conditions revealed examples of dark microglia

(not shown), indicating that these cells are either microglia

derived from yolk sac or brain progenitors, or bone marrow-

derived cells recruited to the brain in a CCR2-independent

FIGURE 2: Examples of normal microglia, observed in the median eminence of the hypothalamus in a nontransgenic control mouse. A,
B: Unstained microglia (m) generally display a lighter cytoplasm and nucleoplasm with a clearly defined chromatin pattern, compared
with the dark microglial cells. They also share with the dark microglia a small elongated nucleus delineated by a narrow nuclear cistern,
associated pockets of extracellular space (asterisks), distinctive long stretches of endoplasmic reticulum (arrowheads), frequent endo-
somes, lipofuscin granules (g), and cellular inclusions. a 5 astrocytic process, ap 5 astrocytic perikaryon, d 5 dendrites, and ma 5 myeli-
nated axon. Scale bars 5 1 lm.
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manner (Bruttger et al., 2015), in order to increase the phag-

ocytic capacities. In support of a central origin, the dark cells

did not express 4C12 (not shown), a marker of inflammatory

monocytes (Butovsky et al., 2014).

Local and Regional Distribution
Dark microglia were generally found within clusters, and they

frequently (65.3% of 95 dark microglia included in the analy-

sis) associated with the vasculature, extending processes all

FIGURE 3: Dark microglia’s interactions with synapses. A–F: Examples of dark microglial cells (dc) typically contacting synaptic elements (col-
ored in purple) with their profusion of highly ramified and extremely thin processes, reaching for synaptic clefts (arrowheads), while encir-
cling axon terminals (t) and dendritic spines (s), in the CA1 lacunosum-moleculare of stressed CX3CR1 knockout mice. In (C), the dark
microglia is simultaneously contacting two blood vessels (bv) and a normal microglia (m) that is stained for IBA1. Its processes are exten-
sively encircling various types of synaptic elements, including shrunk axon terminals surrounded by extracellular space (asterisks) in the pro-
cess of being digested and an entire synapse (see the inset in F). By comparison, an example of IBA1-stained microglia (m) that is extending
a single process, discontinuous from its cell body in ultrathin section, is shown in (G). Contrary to the dark microglia processes, it is bulkier
and showing obtuse (instead of acute) angles. It nevertheless contains several phagocytic inclusions (in), among which a synapse between an
axon terminal (t) and a dendritic spine (s), in addition to making focal contacts (instead of encircling) synaptic elements. Scale bars 5 1 lm
for (A) and (G) and 2 lm for (C). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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around the blood vessels and ensheathing their basal lamina

(Figs. 1B, 3C, 4A, and 5A–D). Even though there was heter-

ogeneity between animals, especially considering the dark

microglia’s clustered distribution and partial visualization of

some of their profiles under the electron microscope, 52.63%

were found to be in direct contact with one blood vessel, and

12.63% contacted two vessels simultaneously. Because this

analysis was conducted in ultrathin sections, some cells devoid

of vascular contact could have apposed blood vessels in

another focal plane (i.e., below or above the imaged section),

leading to underestimation. We observed dark microglia’s

interactions with both capillaries and arterioles that we distin-

guished based on their ultrastructural features.

In the CA1 region of the hippocampus, clusters of dark

microglia were mainly found in stratum lacunosum-

moleculare (86.32% of 95 dark cells analyzed in 18 animals),

where larger vessels are located, but also to a lesser extent in

the radiatum (13.68%; see also Table 3 for densitometry anal-

ysis). These two layers contain the apical dendrites of the

CA1 pyramidal cells: their distal branches in lacunosum-

moleculare and proximal branches in the radiatum. The CA1

mediates mood and memory, and is profoundly affected by

stress (Joels and Krugers, 2007). In the cerebral cortex, dark

microglia were encountered in the subgranular layers where

larger vessels are also prevalent (not shown). In the amygdala,

an integrative center for emotions and motivation, they were

FIGURE 4: Phenotypic characterization of the dark microglia, using immunoperoxidase staining in the CA1 lacunosum-moleculare of
stressed CX3CR1 knockout mice (A–C, F), or a nontransgenic control mouse (D, E). A: Focal staining for GFP in a dark microglial cell (dc)
from a CX3CR1-GFP mouse. In contrast, normal microglia display strong and diffuse immunoreactivity for IBA1 throughout their cyto-
plasm. B, C: Examples of dark microglia staining for the myeloid cell marker CD11b, which forms CR3 involved in phagocytosis, strongly
expressed at the plasma membrane of their processes encircling synaptic elements. D, E: Dark microglia’s staining for 4D4, a recently
discovered marker of homeostatic microglia, at the extremity of their ramified processes. In contrast, the dark microglia do not stain for
P2RY12 (F), another marker of homeostatic microglia that is abundant in microglial processes (m). a 5 astrocytic process, bl 5 basal lam-
ina, bv 5 blood vessel, s 5 dendritic spine, and t 5 axon terminals. Asterisks show the extracellular space. Scale bars 5 1 lm.

TABLE 2: Dark Microglia’s Phenotypic Characterization
in Hippocampus CA1

Immunopositive IBA1, GFP (in CX3CR1-GFP mice ),
CD11b, 4D4, TREM2

Immunonegative ALDH1L1, OLIG2, P2RY12,
4C12, MHCII, CD206, CD11c
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FIGURE 5: Dark microglia’s interactions with the vasculature, in the hypothalamus median eminence of a nontransgenic mouse (A–C) and
CA1 radiatum of an APP-PS1 6-month-old mouse (D–F). In these two examples, the dark microglial cell (dc) bodies are directly juxtapos-
ing the blood vessels’ (bv) basal lamina (bl), and their processes are extending all around the vessels, as well as ensheathing the basal
lamina. In (D–F), the blood vessel contains a circulating, bone marrow-derived monocyte or macrophage (mu; colored in blue). Additional
examples of bone marrow-derived macrophages can also be seen in the brain parenchyma (colored in blue). It can be noted that the
dark microglial cell’s contact with the blood vessel is occurring at the site of docking, raising the intriguing possibility of dark cells func-
tional interactions with endothelial cells, as well as circulating immune cells. Scale bars 5 2 lm. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

TABLE 3: Dark Microglia’s and Normal Microglia’s Layer- and Group-Specific Density in Hippocampus CA1 (cells/mm2)

Dark microglia Normal microglia Total

Str.
radiatum

Str.
lacunosum-
moleculare

Str.
radiatum

Str.
lacunosum-
moleculare

Str.
radiatum

Str.
lacunosum-
moleculare

3 months

Wild-type

Control 0 0–3.10 7.81–16.25 7.81–37.19 7.81–16.25 7.81–40.29

Stress 0–5.58 2.08–11.16 4.28–10.10 29.93–43.78 4.28–15.58 32.01–54.94

CX3CR1 knockout

Control 0–5.21 0–22.58 3.64–15.63 25.51–34.74 3.64–20.84 25.51–57.32

Stress 0–11.45 6.87–23.08 3.30–13.23 24.26–43.74 3.30–24.68 31.13–66.82

14 months

Wild-type—Control 0–2.88 8.15–10.67 8.65–19.02 37.47–55.47 8.65–21.90 45.62–66.14

APP-PS1—Control 0–2.34 4.67–36.05 5.09–33.27 22.89–52.68 5.09–35.61 27.56–88.73
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observed in the basolateral nucleus (not shown) involved in

stress resilience (Berube et al., 2014; Janak and Tye, 2015).

In the hypothalamus, dark microglia were identified in the

median eminence (Figs. 1E and 5A–C) that contains fenes-

trated vessels forming a porous blood–brain barrier, and is

involved in the hypothalamic-adenohypophysial regulation of

reproduction, stress, lactation, growth, as well as thyroid and

metabolic functions (Yin and Gore, 2010).

Regulation by Stress and Fractalkine Signaling
Deficiency
Quantitative analysis of the dark microglia’s density in the

hippocampus CA1 (strata radiatum and lacunosum-molecu-

lare) revealed a robust increase in their numbers upon chronic

stress and fractalkine signaling deficiency. Their density was

found to be maximal in the CX3CR1 knockout mice (22.58

cells/mm2 in three control CX3CR1 knockouts and 23.08

cells/mm2 in three stressed CX3CR1 knockouts; Table 3),

corresponding to approximately half of the normal microglial

density (Table 3). Fractalkine signaling deficiency was recently

shown to affect microglial migration, survival, dynamic sur-

veillance of the brain, and phagocytic activity toward synaptic

elements, with various consequences on the brain and behav-

ior (Arnoux and Audinat, 2015; Blank and Prinz, 2013; Mil-

ior et al., in press; Paolicelli et al., 2014). By contrast, we

encountered few dark microglia in 3-month-old wild-type

controls, showing a maximal density of 3.10 cells/mm2 across

three animals (Table 3).

Regulation by Aging and AD Pathology
Dark microglia became more prevalent during aging, at 14

months of age which corresponds to middle age in non trans-

genic mice (maximal density of 11.53 cells/mm2 in C57BL6/

J controls; Table 3), and even more prevalent in aged-

matched APP-PS1 littermate mice (maximal density of 36.05

cells/mm2; Table 3). Nearby the amyloid b plaques (Fig. 6A),

dark microglia showing extreme signs of oxidative stress fre-

quently encircled dystrophic neurites (Fig. 6B), and contained

amyloid deposits recognized by their ultrastructural features

(Fig. 6C, D). Plaque-associated dark cells typically encircled

synaptic elements with signs of dystrophy, such as autophagic

vacuoles (Fig. 6F) as previously described in AD models

(Francois et al., 2014; Sanchez-Varo et al., 2012). Most of

these dark microglia were TREM2 immunoreactive (Fig. 6D–

F), suggesting that they could be the plaque-associated

TREM2-positive myeloid cells which—regardless of their still

debated origin (Rivest, 2015)—were recently shown to

express the phagocytic effectors MERTK and AXL (Jay et al.,

2015; Savage et al., 2015).

Discussion

Our work describes a novel microglial phenotype with ultra-

structural features that imply unique properties as compared

with the other myeloid cell phenotypes that we encountered

in the brain. The dark microglia that we described are pre-

dominantly associated with pathological states. They are iden-

tified by the condensation of their cytoplasm and

nucleoplasm (making them look “dark” with EM), accompa-

nied by various alterations, such as endoplasmic reticulum

dilation, which is the most well-characterized sign of oxidative

stress at the ultrastructural level (Schonthal, 2012). They

appear to be extremely active, typically engulfing dendritic

spines and axon terminals, and at times entire synapses. Their

nuclear chromatin remodeling suggests changes at the tran-

scriptional and epigenetic levels that are indicative of ongoing

DNA replication and repair, apoptosis, chromosome segrega-

tion, or a state of pluripotency (Lardenoije et al., 2015).

To our knowledge, the only other mention of dark

microglia within the literature comes from a pioneering EM

study published over 50 years ago that examined microglia in

the rat parietal cortex (Schultz et al., 1957). Without men-

tioning dark microglia specifically, this publication described

microglia as cells with a “striking overall electron density”,

making it impossible to delineate their nucleus. Their proc-

esses displayed “heavy material concentration” and based on

the pictures provided, they also appeared highly ramified and

phagocytic, as for the dark microglia. Additionally, these

“microglia” showed a uniform chromatin pattern, contrary to

the normal microglia, which were subsequently described

using staining with del Rio-Hortega’s silver carbonate method

(Mori and Leblond, 1969) and more contemporarily immu-

nostaining for IBA1 (Shapiro et al., 2009; Tremblay et al.,

2010a).

It is fundamental at this stage to identify the nature and

origin of the dark microglia, especially considering their

extreme phagocytic activity at the synapse, and high potential

for therapeutic intervention. The dark microglia could repre-

sent a newly discovered myeloid cell that infiltrates the brain

in a CCR2-independent manner, considering their occurrence

in the CCR2 knockout mice, which would be recruited to

increase the brain’s phagocytic capacities in contexts where

the pathological or traumatic remodeling of neuronal circuits

is exacerbated. They do not express 4C12, a marker of

inflammatory monocytes (Butovsky et al., 2014). Neverthe-

less, they could arise from the infiltration and subsequent dif-

ferentiation of bone marrow-derived cells into the brain

(Bruttger et al., 2015). Alternatively, dark microglia could

represent a subset of hyperactive microglia that become

stressed as a result of their hyperactivity in contexts of adver-

sity, leading to dysregulated interactions with synapses. By
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comparison, normal microglia were shown to become

“senescent” with age and AD pathology (Siskova and Trem-

blay, 2013), accumulating phagocytic debris, as well as show-

ing slower process motility and response to injury (Hefendehl

et al., 2014; Heppner et al., 2015; Tremblay et al., 2012).

Tridimensional serial block-face EM will be required for

a more complete account of the dark microglia’s changes in

density, morphology, and interactions with neurons, synapses,

and the neurovascular unit across various brain regions, and

contexts of health and disease. Because dark microglia are

currently recognizable only by EM (staining for IBA1, GFP

(in the CX3CR1-GFP mice), CD11b, 4D4, or TREM2 is

not sufficient to distinguish them from other myeloid cells at

the light microscopy level), it will be important to find selec-

tive markers enabling to precisely identify them, in order to
study their dynamic behavior, gene expression signature,

pro- or anti-inflammatory activity, and establish their func-
tional relevance to the pathogenesis of diseases. In parallel,
the presence of dark microglia will have to be confirmed in
human postmortem brain samples.
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