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Background. Spatial characteristics of sEMG signals are obtained by high-density matrix sEMG electrodes for further complex upper
arm movement classification. Multiple electrode channels of the high-density sEMG acquisition device aggravate the burden of the
microprocessor and deteriorate control system’s real-time performance at the same time. A shoulder motion recognition opti-
mization method based on the maximizing mutual information from multiclass CSP selected spatial feature channels and wavelet
packet features extraction is proposed in this study. Results. .e relationship between the number of channels and recognition rate is
obtained by the recognition optimization method. .e original 64 electrodes channels are reduced to only 4-5 active signal channels
with the accuracy over 92%.Conclusion..e shoulder motion recognition optimizationmethod is combined with the spatial-domain
and time-frequency-domain features. In addition, the spatial feature channel selection is independent of feature extraction and
classification algorithm. .erefore, it is more convenient to use less channels to achieve the desired classification accuracy.

1. Introduction

Analysis of user’s intention through noninvasive surface
electromyography acquisition methods has the advantages
of shorter experimental preparation time and more con-
venient acquisition. Noninvasive sEMG analysis has been
widely used in prosthesis [1, 2], exoskeleton [3], and re-
habilitation robot control [4–6]. Pattern recognition based
on EMG signal processing was adopted by growing smart
prosthetic hands and arms control [7–9]. Rd [10] achieved
the hand motion classification by analyzing time-domain
features of the EMG signal. In addition, Hudgins et al. [11]
used the frequency-domain and time-frequency-domain
features analysis method to obtain a desired classification
result for the specific actions based on EMG signals. In these
methods, few electrodes (<16 channels) were used for re-
cording EMG signals, which are arduous to obtain the most
active muscle positions channels. Electrodes were shifted
during each experiment. An uncertainty shifted electrode
position caused worse classification results. Moreover, few
electrodes provide insufficient sEMG features, which decline
complex movement classification accuracy [12]. Studies [13]
showed that when a person does some movements, the

active muscles do not contract simultaneously. Ordinarily,
muscle contraction causes joint motion and a group of
muscles contraction are ahead of others. sEMG signals in-
formation amplitude from the monopolar electrode is rel-
evant to the electrode position, and if the electrode recording
position deviates from the main contraction areas, signal
amplitude will be lower. In addition, when the electrodes
need to be replaced, the electrode position would be shifted
and then the sEMG signal recorded at the original electrode
position is accompanied by an unpredictable change, which
leads to an obvious classification accuracy reduction. .e
solution is to retrain the classifier. Otherwise, the electrode
shift or offset will deteriorate EMG control robustness and
pattern recognition reliability.

Recently, the two-dimensional high-density electrode
sEMG signals acquisition technique has been used in pattern
recognition analysis [14]. .e high-density surface electro-
myography analysis method is a noninvasive technique with
multiple electrodes that can measure electrical activity of
muscles in the limited area of skin and capture temporal and
spatial information in the whole muscles EMG activation
region. Using high-density acquisition electrodes device can
not only overcome the shortcomings of the poor robustness of
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the monopolar electrode shifted but also can detect some
small movements of muscles activity signal information. In
addition, more sEMG acquisition channel electrodes are used
to achieve better motion classification performance, which is
beneficial to prosthetic arm control [15]. At the same time, the
topographic map of activity signals amplitude intensity of the
high-density electrode matrix analysis method is used to
determine the electrode position of the region where the
muscles motion potential activity is relatively strong [16, 17].
Vieira et al. [18] used the segmentation recognition method
for the active region of high-density EMG signals to extract
the EMG signals features on the muscle activation region and
to improve the accuracy and robustness of the pattern rec-
ognition classifier. However, the increasement of high-density
signal electrode channels aggravated data processing burden.
EMG signals were collected from the channels of high-density
matrix electrodes, containing large amounts of artifacts and
redundant information, while processing these data would
make classifier overfitting and reduce classifier’s recognition
accuracy. .erefore, separating the useless information and
reducing the processing amount of the data are beneficial to
improve the pattern recognition [19]. .e spatial filtering
algorithms principle component analysis (PCA), independent
component analysis (ICA), and common spatial pattern
(CSP) [20] are carried out by using the 128-channel EEG
signals [21] for spatial-domain feature extraction..e original
signal components were extracted from the original signals. It
will reduce the computational dimension of the original data
and the amount of data processing.

To extract more features of each sEMG signal channel,
the method is proposed by gathering time-domain and
frequency-domain signal characteristics from the selected
high-density signal channels. Performance and practicality
of the algorithmwill be enhanced by selectingmore channels
of active signal characteristics, and this paper focuses on
selecting more active channels automatically and gathering
useful information from these channels. Wang et al. [22]
used the wavelet packet transforms to extract the time-
frequency domain characteristics of the active EMG sig-
nals, which were collected by 46 high-density matrix elec-
trodes. .e analytical methods that combined Fisher’s class
separability index with sequential feed forward selection
were used for selecting the characteristics channels. .e
average classification accuracy was 98.53%when 46 channels
were selected; when 10 predetermined channels were se-
lected, the accuracy rate reached 92.92%. .e disadvantage
of this method is that all channels EMG decomposed by the
wavelet packet will produce higher dimension data, which
leads to huge data calculation. Moreover, this algorithm of
channel selection largely relies on EMG features and clas-
sification algorithms. Geng et al. [23] applied the one-versus-
rest (OvR) scheme to multiclass CSP channel selection al-
gorithms. Firstly, 56-channel high-density matrix electrodes
were used to acquire signals. Secondly, time-domain char-
acteristics were extracted for the selected channel. Finally,
motion classification by the LDA and KNN classification
algorithm is employed, average classification accuracy rate is
94.5%when 56 channels were selected, and if 18 channels are
used, the accuracy rate is 93.3%. .e advantage of this

method is that the channel selection algorithm is in-
dependent of the feature extraction and classification al-
gorithm, when the feature and classification algorithm need
to be changed, channel selection becomes more convenient,
and the dimensionality problem of high-dimension feature
need not be considered. Its disadvantage is that it still needs
more channels to achieve the desired classification accuracy.

In this work, the multiclass CSP algorithm was adopted
by joint approximate diagonalization (JAD) [24] as the data
preprocessing method. A spatial feature channel selection
method was proposed to select the less channels based on
maximize mutual information for different types of the
sEMG signal, and the feature extraction method of the
wavelet packet transform (WPT) was used to extract wavelet
coefficients characteristics for different frequency bands of
EMG data of the selected channels. Finally, pattern recog-
nition was realized by the SVM classification algorithm.
.ere are two purposes of the proposal idea. First, channel
selection is for the next feature extraction and pattern
classification algorithm. Second, WPT is for achieving fea-
ture segmentation of the EMG signal from the selected
channel. Finally, the method will achieve the desired clas-
sification accuracy by selecting fewer channels.

In this paper, high-density sEMG provides important
guidance for optimizing the electrode number and location to
detect the intended movements..e structure of the shoulder
joint is more complicated. .e movement of the upper arm
activates the muscle group and causes the upper arm to
perform various movement modes. When upper arm does
different movements, it often needs more muscles to co-
ordinate [25]. Upper arm EMG signal resolution is difficult to
obtain, accuracy rate of pattern recognition is low, Naik et al.
[26] used theHD-sEMG signal for optimalmuscle selection, it
indicates that it is not necessary to perform all muscle signal
analysis, and only the muscles close to the wrist can be used to
resolve the soft movement of the fingers. At the same time, it
is verified by the optimization algorithm and shoulder motion
analysis of the muscles coordinated motion. Furthermore, the
upper arm EMG analysis will benefit for prosthetic arm
control for patients with high upper limb amputations.

.e following is organized in three sections. .e next
section describes the methods of high-density surface EMG
recording and myoelectric pattern recognition. Section 3
describes the experimental results, followed by the discus-
sions and the conclusion in Section 4.

2. Experimental Setup

In this work, three healthy experimental subjects were se-
lected. sEMG signals were recorded by a 64-channel high-
density matrix electrode, which is made by OT Bioelectronics
in Italy, as shown in Figure 1(a). 64-channel high-density
matrix-type electrode arrangement is 5 rows× 13 columns,
the spacing between adjacent electrodes is 8mm, the diameter
of each electrode is 3mm, and the number and position of 64
channels are arranged in a certain order, which is convenient
to determine the electrode position by the channel number. In
addition, the reference electrode that is like spire lamella is
worn on the subject wrist. As showed in Figure 1(b), the high-
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density surface electrode is placed on the medial deltoid
muscles position of the subject’s upper arm. .e deltoid
muscles contract when the upper arm movements [24].

Before the electrodes are pasted, target skin needs to be
cleaned by alcohol for reducing skin resistance. Between the
skin and electrode, a double-sided electrode sheet coated
with conductive gel is used (the electrode sheet is affixed
with upper and lower sides; one side is pasted on the
subject’s skin, and the other side is pasted on the high-
density matrix-type electrode sheet, where the electrode hole
is coated with a conductive gel to enhance the conductivity)
that the skin will be closely adhered to the electrode sheet.
.e other end of the high-density matrix electrode is con-
nected to the amplification system (EMG-USB2+, OT
Bioelectronics, Italy), with a signal magnification of 1000
and a sampling frequency of 5120Hz.

Before the experiment, each subject sits comfortably on a
chair. .en, subjects start to be familiar with the whole
process of the experiment. After subjects understand the
whole experiment, subjects are scheduled to complete the
intended action at the prompt of the sound guide. .e ex-
perimental process lasted for 50 s. Multiple muscles partici-
pate in the body to do certain movement. Maintaining the
same posture for a long time can cause muscle fatigue,
resulting in muscle compensation..e angle sensor measures
the angle of the main force muscle. When experiment starts,
the subject’s upper arm does the forward flexion and hori-
zontal flexion motion with 8 different kinds of angles.
.e diagram of the specified motions is shown in Figure 2.

Each motion lasts for 2 s and then continues to do the next
motion. When the overall motion is completed, subject’s take
a minute and then start the next experiment to prevent
muscles fatigue. Each subjects’ experiments are repeated five
times. .e whole process of EMG data acquisition is com-
pleted by the EMG signal recording software (OT Biolab).

3. Spatial Filtering Principle and Analysis

High-density matrix electrode is used in this work which
contains 64 channels. .e recorded signals contain several
redundant and artifact signals. To be able to separate the
useful signal from original signals, three spatial filtering al-
gorithms CSP, ICA, and PCA are used in data preprocessing.
In the three spatial filtering algorithms, raw data are used to
calculate the spatial filter matrix ω � [ω1, . . . ,ωn], through
which y(t) � [y1(t), . . . , yn(t)], the principle components
of raw data, are obtained. .e implementation process uses
W to multiply the original EMG signal xt to calculate yt �

WT ∗x(t).

3.1. Principle Component Analysis. .e essence of PCA is to
maximize the representation of the original data features as
much as possible, the orthogonal transformation of multi-
variate data to its relevance, and projected onto a new co-
ordinate system such that the largest variance in the data lies
on the first coordinate and the smallest variance in the data
tends to the last coordinate. PCA is an unsupervised spatial
filtering algorithm that is used to determine the number of
principal components. .at is, if the number of channels for
collecting the sEMG number is n, the dimension of the
separation matrix is n∗ n. Raw sEMG signal is processed by
the PCA, and the dimension ofW becomes only k∗ n(k≤ n).
As shown in Table 1, the PCA spatial filtering algorithm is
used to determine the number of principal elements by the
cumulative contribution rate when six subjects have eight
different motion angle modes in the shoulder joint. In order
to reduce the processing amount of the original sEMG data
as much as possible, the average value of each experimenter
subjects’s sEMG data in eight different action modes is
selected as the number of principal elements of the final filter
matrix. HD-sEMG signals of the upper arm eight different
motions are preprocessed by the PCA spatial filtering al-
gorithm. 64 channels of sEMG data are projected to low-

(a)

(b)

Figure 1: Experimental diagram of 64-channel high-density matrix
electrode acquisition: (a) 64-channel (5 rows× 13 columns) high-
density matrix-type electrodes and number and position of each
channel; (b) high-density surface electrodes’ position on the
subject’s medial deltoid muscles of the upper arm.

Motion 1–4
30°, 45°, 60°, and 90°

Motion 5–8
30°, 45°, 60°, and 90°

Horizontal
flexion

Forward
flexion

Figure 2: Diagram of the subject’s upper arm motion pattern.
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dimensional representation by linear transformation with-
out discarding the original sEMG information features. .e
subject eight different motion high-density sEMG signal
spatial filter preprocessing results by PCA are shown in
Figure 3; the linear dimensionality reduction process of the
original sEMG data is visualized by PCA and the contri-
bution rate is calculated to be 95%; the separation matrix is
determined to retain the least number of spatial filters, which
achieves the purpose of reducing the number of dimensions.

3.2. Independent Component Analysis. FastICA algorithm
extracts independent components from the mixture data,
which is an effective method for signal blind source sep-
aration. Its fast convergence (secondary convergence at
least) is easy-to-use (no need to set the step parameters),
which has been widely used in medical signals processing
[27]. It is based on the principle of maximum negentropy to
analyze the independent components in non-Gaussian
mixed signals. Raw signals are averaged and whitened.
.en, independent components are extracted. .e imple-
ment process is to reduce errors accumulation that n in-
dependent components were processed at the same time
using symmetric orthogonal, and W is applied to raw data
y � WT ∗x, which obtains independent components of n

channels that removed interference. .e visualization is
shown in Figure 4.

3.3. Spatial Filtering Algorithm of HD-sEMG Based on Mul-
ticlass CSP. CSP is a supervised two-class spatial filtering
algorithm [21]. Spatial filtering W can maximize one class
variables while minimizing the other class variables. .is
method was proposed by Blankertz [28], which has been
successfully applied to two categories EEG/MEG data pat-
tern recognition. X1 and X2 represent the original signal two
categories data matrix (n∗d), d is the number of signal
channels, and n is the number of sampling points for each
channel signal. .e purpose of the algorithm itself is to
calculate a filter matrix W that maximizes the class 1 var-
iables while minimizing the class 2 variables and is shown in
the following equation:

W � argmax
WT1W

WT2W
. (1)

.e linear filtering matrix W is obtained by solving the
problem of a generalized eigenvalue, while diagonalizable
simultaneously by the covariance matrix:

W 
1

W
T

� D1, (2a)

W 
2

W
T

� D2, (2b)

D1 + D2 � I. (3)

.e columns number of the W matrix is equal to the
number of spatial filters L, and application of spatial filtering
matrix W to raw signal data will be L-dimensional output
signal, y � WT ∗ x, which is principle components of the
raw signals.

In addition, there are several methods to extend the CSP
algorithm into multiclass paradigms analysis by performing
two-class CSP on different combinations of classes. One
approach is to combine multiple two-class CSP methods
based on one class versus all other class (OvR) or one class
versus another class (OvO) scheme [28] and another method
based on joint approximation diagonalization with di-
agonalizable simultaneously multiclass covariance matrices
(JAD) [21]. W is obtained by diagonalization covariance
matrices of multiclass at the same time, Wci

WT � Dci
,

ci
Dci

� I, i � 1, . . . , M, is the number of classes.
In this work, the multiclass CSP algorithm is employed

in JAD, which spatial filtering matrix W is calculated based
on different class covariance matrices. .e multiclass CSP
method was proposed by Grosse et al. [21] based on the JAD,
which will project the mixture signal into the space where
the raw signal is orthogonal to the noise signal. .e visu-
alization of covariance matrix 1, . . . , 8 for eight different
motions HD-sEMG is shown in Figure 5..e block structure
of the covariance matrices is caused by the row-wise posi-
tioning of the channels within the electrode arrays.

It can be seen in Figure 5 that the magnitude color
change in the visualized covariance matrix that the fast
Frobenius diagonalization (FFDIAG) [29] is used in di-
agonal eight different action covariance matrices, and eight
different motion classes diagonalization matrices are
D1, . . . , D8. .e main diagonal element of Dc is the ei-
genvalue spectrum from class c. As in the binary case, the
eigenvalue λc

i indicates the variance of cow component i for
signals of class c.

Selecting specific components for classification is not
straightforward as in the binary case, where the component
with highest eigenvalue for one class has automatically the
lowest eigenvalue for the other class. However, multiple
classes of the covariance matrix simultaneously diagonal

Table 1: Different experimenter subjects in eight different motions using PCA spatial filter through the cumulative contribution rate to
determine the number of principle component.

Select PCs Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Average value
Subject 1 36 22 6 4 5 7 6 6 12
Subject 2 36 22 6 4 7 7 6 6 12
Subject 3 28 13 5 4 7 7 6 6 10
Subject 4 30 12 5 4 7 7 6 6 10
Subject 5 32 17 6 4 7 7 6 6 11
Subject 6 28 21 6 4 6 7 6 6 11
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method are used for specific implementation of the mul-
ticlass CSP algorithm. In addition, the number of spatial
filtering Cs is chosen as a free parameter in the two-class
CSP algorithm. For the two classifications of the problem in
[24], the number of Cs was chosen between 2 and 4.
However, there is no fixed method for selection of Cs
numbers in multiclass CSP algorithms. Para et al. [30]
proposed a strategy that assumed two different eigenvalues
for the same pattern have the same effect if their ratios to

the mean of the eigenvalues of the other classes are mul-
tiplicatively inverse to each other, and thus all eigenvalues λ
are mapped to score (λ) � max(λ, 1/(1 + N)2λ/(1− λ)) and
a specified number m of highest scores for each class are
used as CSP patterns.

3.4. Multiclass CSP Filter Number Selection Algorithm Based
on Mutual Information Maximization. .e multiclass CSP
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Figure 3: High-density sEMG data of subject’s eight different motion modes spatial filtering by PCA. (a)–(h) Eight different motions using
high-density sEMG data projection of the three-dimensional visualization scatter map by PCA; (i)–(p) eight different of motion high-
density sEMG data projection cumulative contribution rate chart by PCA.
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based on the FFDIAG algorithm is used to determine the
spatial filter matrix W and a method based on maximizing
the mutual information between the category c, and the
reconstruction matrix WT ∗ x is proposed to determine the
spatial filter number of the spatial filter matrix. Its purpose is
to be able to select the dimensions of the original EMG data.
.e spatial filter number for spatial filtering matrix W of
each column is calculated by maximizing the mutual in-
formation between class labels c and reconstructed signal
matrix ωTx, shown as follows:

ω∗ � argmax I c,ωT
x  . (4)

.e mutual information between c and y � ωTx is
shown in the following equation:

I c,ωT
x  � H ωT

x −H ωT
x | c 

� H(y)− 
M

i�1
P ci( H y ci

 .
(5)

.e entropy of y given class labels ci is

H y ci

  � log
�������
2πeσ2

y ci|


� log

����������

2πeωT 
ci

ω


. (6)

.e marginal distribution p(y), however, does not
follow a Gaussian distribution:

p(y) � 
M

i�1
p ci( p y ci

   p ci( N 0, σy ci| . (7)

.e definition of negentropy is

J(y) � Hg(y)−H(y), (8)

where Hg(y) is the entropy of the Gaussian random variable
with the same as y and the negentropy of y can be ap-
proximated as

J(y) ≈
1
12

k3(y)
2

+
1
48

k4(y)
2
, (9)

with the third-order and fourth-order cumulates k3(y) �

E y3  and k4(y) � E y4 − 3[4]. Since p(y) is the probability
density of a sum with a zero mean Gaussian distribution, it is
symmetrical. So k3(y) � 0. On combining (7) and (8), we
obtain the following equation:

H(y) ≈ log
�������

2πe−
3
16





M

i�1
p ci(  σ4y ci| − 1 ⎛⎝ ⎞⎠

2

, (10)

where the method of evaluating the mutual information be-
tween class c and y is derived by combining (5), (6), and (10).

I(c, y) ≈ −
M

i−1
p ci( log

�������

WT 
ci

ω


−
3
16



M

i�1
p ci(  ωT


ci

ω⎛⎝ ⎞⎠

2

− 1⎛⎝ ⎞⎠

2

.

(11)

After the covariance of raw class EMG data is JAD,
spatial filtering matrix W is obtained by descending the
mutual information of each column of W by (11). In this
work, EMG signals were preprocessed by three spatial filter
methods. .is purpose is to extract principal components of
the raw signal in 64 high-density matrices. .en, the great
performance spatial preprocess algorithm will be applied to
the upper arm motion classification.

3.5. Multiclass CSP Channel Selection Algorithm Based on
Mutual InformationMaximization. In fact, W is constructed
by these spatial filtering algorithms and the reconstructed raw
signal principal components represent a raw signal to the
greatest extent, but raw signal information is lost. It cannot be
determined whether it contains the action pattern in-
formation. In addition, the principal component is formed by
separation matrix W reconstruction, if it does not reduce the
number of channels which will increase calculation time for
subsequent signal processing. However, it is desired that the
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Figure 4: .e diagram of independent components of HD-sEMG data in eight different motions by FastICA.
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appropriate number of channels is selected and the electrodes
position will be determined, which will be applied to actual
prosthetic control. .erefore, the appropriate channel se-
lection algorithm has important application significance. In
Grosse’s research [22], only extracted L columns in spatial
filter W is extracted to represent spatial subset of raw signal
feature information with maximized mutual information and
reconstructed to expected principal component L-di-
mensional EMG signal preprocessed matrix y. For sub-
sequent pattern recognition, although good results have been
achieved, specific method of L number selection has not been
given. In this work, spatial filtering matrix W is used to find
the number of raw channels that determine the L dimension
based on maximizing the mutual information between class c

and principal component y. .e less original channel (L′ <L)

EMG data are selected by wavelet packet decomposition
analysis, and wavelet coefficients under different frequency
segments are extracted, which greatly reduces data processing
capacity and calculation time. It not only solves the problem
of subject’s original EMG motion intention information lost
for reconstructing subspace y but also reduces the amount of
data processed, which will be described below. .e 64-
channel EMG data preprocessing algorithm of the channel
selection process is as shown in Table 2.

4. Feature Extraction and Analysis of HD-sEMG

4.1. Spatial-Domain Feature Extraction. .e HD-sEMG
spatial features of the shoulders of the different joints in
the upper limb extension and abduction are shown in
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Figure 5: Visualization of covariance matrix data for eight different motions HD-sEMG.
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Figure 6. From this, the characteristic trend of the shoulder
joint and the analysis method of the HD-sEMG signal
characteristics can be visually obtained. .e multiclass CSP
channel selection method based on mutual information
maximization is proposed in the previous section, the
number of channels with strong muscle source signals is
selected, and the original sEMG data for the selected signal
channel are selected. .e WPTmethod is used to complete
the feature subdivision of the frequency domain of the
signal; that is, the signal feature is extracted based on the
spatial characteristics.

4.2. Time- and Frequency-Domain Feature Extraction.
Firstly, EMG signals are preprocessed by PCA, FastICA, and
multiclass CSP spatial filtering algorithm to obtain the
separation matrix W which reconstructed EMG data, and
then, the different classes are decomposed in detail by
WPT, and the logarithm of the RMS value of wavelet
coefficients at different frequencies are extracted as the
eigenvalue. WPT is an extension of the traditional wavelet
decomposition method to provide time-frequency analysis
of multiresolution for nonstationary signals, the original
signal space as Ω0,0, and WPT can split signals into an
approximation subspace Ω1,0 and a detail subspace Ω1,1.
Each approximation or detail obtained from the top level,
supposed in the subspace Ωj,k, will be further split into a
new approximation and a new detail, located in two or-
thogonal subspaces Ωj+1,2k and Ωj+1,2k+1. .is process will
be iteratively performed to a targeted depth J. Here, J is a
scale index ranging from 0 to J and k represents subband
index with in the scale, ranging from 0 to 2J − 1. Conse-
quently, WPTgenerates a binary tree structure of subspaces
spanned by a set of bases, to which a signal will be mapped
for multiresolution analysis. Such a characteristic makes
WPT to apply in feature extraction successfully. In this
paper, the wavelet packet of the fifth order symlet mother
wavelet function is used in each channel of the EMG signal,
and the number of decomposed layers is J � 4. Finally,
logarithmic RMS of wavelet coefficients of different fre-
quency domains in the Jth layer composed subsequent
pattern classification.

Secondly, the multiclass CSP channel selection
method is adopted based on maximizing mutual in-
formation according to the spatial feature distribution of
HD-sEMG. .e optimal number of spatial feature

channels is selected, and WPT method is used to select
original channels which can maximize the mutual in-
formation between different types of channels EMG de-
composition in detail; the last layer of wavelet coefficients
at different frequencies RMS is extracted as the eigenvalue
for pattern recognition. Its advantage is that only the
selected channels EMG are decomposed by the wavelet
packet will produce less dimension data than with all
channels. In addition, it can extract wavelet coefficients
characteristics for different frequency bands EMG data.
Figure 7 shows scatter distribution of sEMG time-
frequency feature by WPT that is processed by three
spatial filtering algorithms obtained.

4.3. Analysis of HD-sEMG Spatial-Domain and Time-
Frequency-Domain Features. For the spatial feature distri-
bution of HD-sEMG, based on the multiclass CSP channel
selection method of maximizing mutual information, the
spatial channel with strong spatial distribution of the source
signal is selected, and the WPTmethod is used to maximize
the mutual information between different types of channels.
.e original channel sEMG is decomposed in detail, and the
RMS of the wavelet coefficients decomposed into the fourth

Table 2: Spatial feature extraction based on multiclass CSP.

Input: covariance matrices x|ci
, i � 1, . . . , M

(1) Perform joint approximate diagonalization
s.t. wTx|ci

w � Dci
, i � 1, . . . , M

(2) For each columnwj, j � 1, . . . , N, ofw scalewj s.t. wT
j  wj � 1,

estimate mutual information according to I(c, y) ≈
−M

i�1p(ci)log
�������
WTci

ω


− 3/16(
M
i�1p(ci)((wTci

w)2 − 1))2

(3) Choose the L columns of W with highest mutual information
(4) Acquire the raw channel number of the L columns of W with
highest mutual information
Output: preprocessing matrix W and channel number with
highest mutual information
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Figure 6: High-density sEMG spatial map of eight different degrees
when the subject’s shoulder extended and abducted motion.
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Figure 7: Continued.
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layer at different frequencies is obtained as the target action to
generate the eigenvalues of the HD-sEMG signal for the
subsequent pattern classification. As shown in Figure 8, it can
be seen from the distribution of feature scatters in 3D and 2D
space that the hierarchical clustering effect of feature points in
each category is obvious. .e feature extraction method can
greatly reduce the processing amount of the HD-sEMG signal
while effectively extracting the signal characteristics and has
the advantage of small data processing amount and is suitable
for the analysis of the HD-sEMG signal.

5. Pattern Recognition

In this work, different numbers of principal components are
selected by the FastICA algorithm, and the classification
accuracy of four classifiers is compared, as shown in Fig-
ure 9. When different numbers of ICs are selected, classi-
fication accuracy of four classifiers will be compared. PCA is
used to analyze the principal component channels data at
eight different motion patterns, and original 64-channel
signals are transformed into linearly independent. .e 12-
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Figure 7: Scatter distribution of HD-sEMG in eight different motions of the shoulder extracted from RMS features after WPT de-
composition by three different spatial filtering algorithms: (a) scatter distribution of RMS by WPT for raw HD-sEMG signals; (b) scatter
distribution of RMS by WPT for the reconstructed sEMG signals by PCA; (c) scatter distribution of RMS by WPT for the reconstructed
sEMG signals by FastICA; (d) scatter distribution of RMS by WPT for the reconstructed sEMG signals by multiclass CSP.
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dimensional filters are obtained with the 95% contribution
rate for original data. It will reduce the dimension of the
preprocessing matrix. 64-channel EMG signal data for eight
different motions classification analysis of the experiment
are carried out by PCA, in which 12-dimensional EMG data
were obtained. PCA are also used to determine the number
of ICs for the FastICA, which will resolve the problem to
determine the number of ICs by FastICA.

.e covariance matrix of the EMG signals is calculated
for the eight different motions by the multiclass CSP al-
gorithm. .en, the reconstructed EMG signal dataset

time-frequency domain feature was extracted. When the
numbers of selected spatial filters are different, the classi-
fication accuracy of each classifier is shown in Figure 10.
It demonstrates that the number of spatial filters ICs is
chosen between 12 and 15, which in case of 16 Cs, is chosen.
Reconstructed EMG signals for eight different motions with
time-frequency domain feature are analyzed; four classifiers
achieve high classification accuracy.

Original channels were selected by the maximized
mutual information multiclass CSP algorithm in Fig-
ure 11, which was compared with the reconstructed signal
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Figure 8: Scatter distribution of RMS by WPT after channel selection based on mutual information maximization multiclass CSP.
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methods based on the spatial filter matrix by multiclass
CSP for the eight different movements. Apparently, if the
five channels were selected, the accuracy of the classifier
LDA, SVM, and KNN must exceed 80%, where the ac-
curacy of SVM is 94.3%, which is 5.7% higher than the
classification accuracy of SVM when selecting Cs � 12 as
the reconstructed EMG signal. It manifests a favorable
classification performance by this method. When the
number of selected channels is more than 10 channels, the
recognition rates of the four classifiers are higher than
80%, and the recognition rates of LDA, SVM, and KNN
are 91.3%, 95.1%, and 89.9%, respectively. .erefore, it is
concluded that the multiclass CSP algorithm with max-
imum mutual information is superior to motion pattern
recognition based on extraction of a few channel data of
the original EMG signals.

.e 2D plots scatter diagram is composed of column1
and column2 eigenvalues in Figure 12 that the multiclass
CSP algorithm selects the training and prediction results of

the fivefold cross validation of the top 16 electrode channel
characteristic matrix datasets of the eight different motion
angles when the mutual information between the class labels
and the different components is maximization. It can be seen
from Figure 12 that the processed data features have good
separability.

In this work, different spatial filtering algorithms are
used to extract the principal components which are PCA,
FastICA, and multiclass CSP. .ey are based on mutual
information maximized channel selection for the upper arm
eight different motion degrees EMG data (when the number
of spatial filters was ICs� 12 and Cs� 12), and pattern
recognition results of the four classifiers are shown in
Figure 13. When the first five original EMG channels are
selected based on the different types of mutual information
maximization methods, eight different motions of sEMG
data were preprocessed by the four spatial filters, which are
applied to the four classifiers ANN, SVM, LDA, and KNN.
.e accuracy of combination CSP +WPT+ SVM (95.1%)
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Figure 10: Average classification accuracy of four recognition algorithms in the selection of different Cs by multiclass CSP.
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and the recognition accuracy rate of SVM are superior to
LDA, KNN, and ANN. .e confusion matrix plot for eight
different motions by the SVM classifier is as shown in
Figure 14. .e rows show the true class, and the columns
show the predicted class. .e diagonal cells show where the
true class and predicted class match. If these cells are green,
the classifier has performed well and classified observations
of this true class correctly.

.e classification accuracy of the first three motions is
100%, and the fourth to eighth motions are, respectively, 94%,
88%, 97%, 97%, and 85%. It can be seen from Figure 8 that the
first three motions feature points are distinguishable.

However, the fourth to the eighth motion feature points are
densely distributed, and there are more overlapping points;
therefore, the classification accuracy of the latter five motions
is slightly lower.

It is concluded that a better way to solve the problem of
HD-sEMG pattern recognition by multiclass CSP based on
mutual information maximization using multiclass CSP+
WPT+SVM.At the same time, the original sEMG is selected by
maximizing mutual information. If 4-5 optimal channels are
selected, accuracy rate reaches to 92%, and amounts of pro-
cessed channels is less than 10% than the original channels. It is
suitable for the EMG prosthesis arm control.
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6. Conclusion

In this work, 64-channel HD-sEMG technique was used
to evaluate the myoelectric signal pattern recognition for the
upper arm forward flexion and horizontal flexion motion by
analyzing the spatial- and time-frequency-domain sEMG
signals characteristics. High-density matrix electrodes in-
troduce large data processing problems to the processor.
.erefore, a recognition optimization method is proposed
based on the combination of the maximum mutual in-
formation channel selection, wavelet packet feature ex-
traction, and support vector machine (SVM) by using the
high-density electrode sEMG signal acquisition device,
which is, respectively, compared with three spatial filtering
(PCA, ICA, and CSP). Four classifications ANN, SVM, LDA,
and KNN are used, which are suitable for EMG pattern
recognition. When performing this kind of movement
recognition, the original 64 electrodes will be reduced to
only 4-5 active signal channels and obtain more than 92%
accuracy at the same time. .e performance of the classifier
was analyzed by selecting the number of principal com-
ponents for the three kinds of spatial filtering algorithms.
.e PCA algorithm is used to determine the number of ICs.
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