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The increasing availability of computational resources is enabling more detailed, realistic
modeling in computational neuroscience, resulting in a shift toward more heterogeneous
models of neuronal circuits, and employment of complex experimental protocols. This
poses a challenge for existing tool chains, as the set of tools involved in a typical
modeler’s workflow is expanding concomitantly, with growing complexity in the metadata
flowing between them. For many parts of the workflow, a range of tools is available;
however, numerous areas lack dedicated tools, while integration of existing tools is
limited. This forces modelers to either handle the workflow manually, leading to errors,
or to write substantial amounts of code to automate parts of the workflow, in both
cases reducing their productivity. To address these issues, we have developed Mozaik:
a workflow system for spiking neuronal network simulations written in Python. Mozaik
integrates model, experiment and stimulation specification, simulation execution, data
storage, data analysis and visualization into a single automated workflow, ensuring that all
relevant metadata are available to all workflow components. It is based on several existing
tools, including PyNN, Neo, and Matplotlib. It offers a declarative way to specify models
and recording configurations using hierarchically organized configuration files. Mozaik
automatically records all data together with all relevant metadata about the experimental
context, allowing automation of the analysis and visualization stages. Mozaik has a
modular architecture, and the existing modules are designed to be extensible with minimal
programming effort. Mozaik increases the productivity of running virtual experiments on
highly structured neuronal networks by automating the entire experimental cycle, while
increasing the reliability of modeling studies by relieving the user from manual handling of
the flow of metadata between the individual workflow stages.
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1. INTRODUCTION
One of the primary goals of computational neuroscience is to
create models of neuronal structures and their function that
as closely as possible adhere to the known anatomy of brain,
while at the same time match as wide a range of experimen-
tal measurements as possible. In pursuit of this goal, supported
by ever more plentiful computational resources, neuroscientists
are building increasingly detailed, heterogeneous neuronal mod-
els and testing them under more and more elaborate experimental
conditions. This process has accelerated in the last decade due
to the increasing availability and capability of high-performance
computing (HPC), enabling the simulation of neuronal struc-
tures at unprecedented levels of detail (Reimann et al., 2013),
while expanding the simulations into multi-layer or even multi-
areal contexts (Potjans and Diesmann, 2012; Nakagawa et al.,
2013) and reproducing complex stimulation and recording exper-
imental protocols (Shushruth et al., 2012).

This rapid increase in the overall complexity of simulation
workflows has only partially been accompanied by development
of the various software tools that support them. The main devel-
opment has been in the adaptation of neuronal network simula-
tors to the HPC and supercomputer environments (Plesser et al.,

2007), but the rest of the simulation workflow has been largely
ignored. Such a focus on the underlying network simulation soft-
ware was reasonable in the past, as it constituted most of the
software stack required for a given project, and was by far the most
computationally demanding part of it. However, due to the recent
increase in the complexity of the models, stimulation/record-
ing protocols and the subsequent analysis and visualization of
the results, the lack of software support for the full simulation
workflow (see Figure 1) drives users to write increasing amounts
of code to meet the requirements of their projects. It is our
belief that this lack of support for the full simulation workflow
greatly reduces the productivity of the field (Wilson, 2006) and
constitutes a major challenge for future development of brain
simulation infrastructure.

In this paper we address this problem by proposing a new
integrated environment for the simulation of spiking neuronal
networks, which attempts to unify the various aspects of the
workflow involved in simulating heterogeneous spiking neuronal
networks in realistic experimental contexts and the subsequent
processing of the resulting data, into a single automated work-
flow. Even though the current state of tools in the field is rather
fragmented, there are a number of software packages that cover

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 34 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2013.00034/abstract
http://www.frontiersin.org/people/u/25229
http://www.frontiersin.org/people/u/937
mailto:antolikjan@gmail.com
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Antolík and Davison Mozaik: workflows for neuronal network simulations

FIGURE 1 | The typical workflow of a neuronal simulation modeling

project. A user specifies the model using certain primitives such as
neurons, the connections between them and the stimulation protocol. An
instance of such a model is then simulated for a period of time, while being
presented with stimuli specified by the experimental protocol. During the
simulation a range of variables are recorded (e.g., spikes, membrane
potential etc.); and typically stored for future processing. After the
simulation is finished the data is; this data is then passed through the
analysis and visualization protocols. At this point the user can inspect the
results, which likely leads to modification of the model or experimental
protocol (interrupted arrows), requiring another pass through the workflow
cycle.

certain aspects of the workflow very well. Consequently our goal
was to reuse as many of these existing tools as possible, focus-
ing mainly on writing intermediate code to facilitate seamless
communication between them, although we still had to cover
several unaddressed aspects of the workflow by developing new
tools.

The first question we faced in the process of designing Mozaik
was the choice of programming environment. Conveniently, this
choice was made rather easy by the recent proliferation of neu-
roscience tools implemented in Python. Python itself is an ideal
language for integration projects (Scripps and Sanner, 1999),
and together with the packages such as PyNN (Davison et al.,
2009) and Neo (Davison et al., 2011) it provides an ecosystem
perfectly fitted for our needs. PyNN is a simulator-independent
specification of neuronal models, that includes (among oth-
ers) back-ends for the major simulators used today including
NEST (Gewaltig and Diesmann, 2007) and NEURON (Hines and
Carnevale, 1997). Using this tool as the low-level model specifica-
tion language makes Mozaik more independent of the simulation
environment, yielding a more universal tool. The Neo package
defines a common object model for storing a wide range of data
typically recorded in neuroscience experiments, and allows for its
flexible labeling with additional metadata. Furthermore, Neo also
contains an extensive number of back-ends that allow for con-
version of a number of data formats to and from the Neo data
structures.

Mozaik has a modular architecture, and a great deal of empha-
sis has been put on designing a hierarchy of interfaces that allow
for replacing or adding modules at the desired level of abstrac-
tion, reducing the amount of new code required for implementing
new or changing existing features. Mozaik currently covers the

following aspects of the workflow: experiment and stimulation
specification, simulation execution, data storage, data analysis
and visualization. Even though the major added value of Mozaik
is the specification of application programming interfaces (APIs)
for the various steps of the workflow, it also provides a ready
to use implementation of all these APIs. While the APIs are
written in as general a manner as possible, and should encom-
pass a very wide range of spiking neuronal network simulation
projects, the components implemented are currently focused on
the visual modality. In this paper we provide a general descrip-
tion of the Mozaik design, accompanied with several illustrative
usage examples, and explain the reasoning behind the vari-
ous design choices. We do not, however, provide here a full
user guide; this can be found at https://github.com/antolikjan/
Mozaik.

2. DESIGN GOALS
The motivation behind Mozaik is to increase the productivity
of neuronal simulation workflows by means of automation and
a reduction of the amount of boiler-plate code a user has to
write. Most of the design principles discussed below are directly
motivated by these two main goals.

2.1. HIERARCHICAL ABSTRACTION
A common way of writing modular software is to partition
the project into several (usually roughly equal) components, at
roughly the same level of abstraction, and defining an indepen-
dent API for each of them. This means that users can replace each
of these components with their own implementation as long as
they adhere to that component’s API. The downside of such a
“flat” strategy is that even small changes to the functionality of
a given component generally require it to be completely rewrit-
ten (albeit using mainly copy-and-paste). The alternative strategy
is to define a hierarchy of APIs at different levels of abstraction,
which allows the user to pick the lowest point in the hierarchy that
encompasses the functionality he intends to add or override, and
hence minimize the amount of new code. In designing Mozaik we
have employed the latter strategy.

2.2. DECLARATIVE CONFIGURATION
There are two principal ways of specifying dynamical systems:
imperative, where a user specifies the algorithm that will per-
form the desired actions; and declarative, where a user specifies
what should be the outcome of the desired actions. Each has its
advantages and drawbacks, with imperative specification being
more flexible, and declarative more succinct, simpler and more
human readable. In Mozaik we combined both approaches to
gain both advantages where most appropriate. Generally Mozaik
is a programmatic API, implying its imperative nature, which
is inevitable given the scope of problems it addresses. However,
we have pushed a declarative configuration functionality into all
aspects of Mozaik, and paid attention to designing it to be as flex-
ible as possible. In practice this means that when creating a new
project most users will almost exclusively deal with the declara-
tive configuration mechanisms and will write at most a few small,
well isolated pieces of code (such as new analysis or visualization
routines).
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2.3. BALANCE BETWEEN AUTOMATION AND FLEXIBILITY
As declared in the Introduction the principal goal of Mozaik is to
automate the workflow of neuronal network simulation projects.
However, as with most automation projects, there is a compro-
mise between the level of automation that can be achieved and
the flexibility of the underlying framework in terms of the range
of projects/configurations it supports. In Mozaik a good level
of both automation and flexibility is achieved via the dual sys-
tem of programmatic API and configuration front-end described
above. If for a given project all required modules are already
present in Mozaik, the project can simply be configured and the
whole workflow will be executed without user intervention. On
the other hand if the current set of Mozaik modules does not
support some aspect of the project, a new module can be added,
and the amount of required code should be minimized thanks to
the hierarchical design of the API. Furthermore, special attention
was paid to designing the analysis and visualization APIs (which
are most likely to be extended by users) to automate the flow
of metadata and configuration information, allowing the user
to write a minimal amount of new code to express the desired
functionality.

2.4. EXPLICIT HANDLING OF METADATA
One of the major problems Mozaik addresses is handling the flow
of data between its various components. Even though it is usu-
ally clear what the main inputs and outputs of a given component
are, it is very common that extra contextual information is needed
at a given point of the workflow to correctly interpret the data,
whether it is the units of a recorded variable or the stimulus that
was presented. The most common way to deal with this contex-
tuality is that each component in the framework specifies what
context it requires (i.e., what units it assumes the voltage to be
in). This approach is simple, but has several drawbacks: it pre-
vents automation without an extra translation layer; it makes the
component implicitly dependent on changes in components arbi-
trarily far away in the framework structure; it makes it hard to
test the sanity of the input; and generally such implicit instead of
explicit handling of information is more error prone.

For this reason in Mozaik we adopted the policy that as much
contextual information as possible (in most cases all) is stored
directly in the objects that are being passed around. This means
not only that the level of automation in the Mozaik package can
be high, but also that should a user need to add or modify any of
the components he can be sure that all relevant metadata needed
for processing within the component will be directly available in
the given programmatic context, resulting in more localized code.

2.5. EMPHASIS ON GENERALITY OF INPUT
The most common way of designing programming APIs is to
specify a narrow focus for each component, which translates
into code containing functions or classes with very specifically
defined inputs and outputs. This approach makes it much eas-
ier to write code given the fewer input options, and the code can
be exhaustively tested against the narrow input/output specifica-
tion, resulting in fewer bugs. The disadvantage is that the resulting
library is less flexible and leaves the user with writing more code to
incorporate its functionality into a given programming context.

Given the integrative nature of Mozaik and its focus on
minimization of boilerplate code, in several parts of the frame-
work we have opted for the opposite design strategy. Particularly
in the analysis and visualization modules, where flexibility is
paramount, we have designed the API so that the input to
analysis and visualization methods is very general (essentially
it is any collection of recordings and analysis objects) and it
is the role of the given method to “apply” itself to as broad
a subset of this collection as possible, given its specification.
This in turn allows us to have a unified system for filtering
of such recording and analysis collections, which serves as a
powerful tool for modifying the behavior of the analysis and
visualization methods. Altogether this results in a more flexi-
ble system, allowing for the expression of complex analysis and
visualization paradigms with minimal code. The disadvantage
is that it makes the implementation of new analysis or visu-
alization classes somewhat more complicated, thus shifting the
balance between flexibility and ease of implementation toward the
former.

2.6. EMPHASIS ON FULL AUTOMATION OVER INTERACTIVITY
When designing a workflow one faces two basic options. Either
it is fully automated, with a specification created in advance and
then executed without user intervention, or the workflow is inter-
active, with the specification supplied on the fly. In Mozaik we
chose the former option, as we believe it fits better the context of
large-scale simulations, where the resource requirements make it
rarely practical to run in an interactive fashion. One exception to
this is the analysis and visualization modules, where users might
in certain situations prefer interactive usage. While interactive
use for these modules is in principle possible, the current design
is focused on automation, making the process cumbersome. We
hope to relieve this disadvantage in future with the addition of
a dedicated GUI for these modules and/or integration of Mozaik
with one of the analysis and visualization libraries that are taking
shape in the field.

2.7. OTHER ISSUES
In several cases (especially in the model specification module) we
have faced design problems where flexibility of specification was
in conflict with optimization of the code. In most of these cases
we have valued flexibility over optimization.

Mozaik being an integrative workflow API, is by design a pack-
age that is supposed to grow over time as new model components,
stimuli, experimental protocols, analysis and visualization meth-
ods are added. Furthermore, even the core API is likely to be
changed in future as some parts of Mozaik will be taken over by
dedicated tools. Therefore to ensure backwards compatibility and
support future development the API is versioned, so that users
can always be sure that their code is fully functional with respect
to a well defined version of the library.

3. ARCHITECTURE
To achieve the goal of automating all important parts of a typi-
cal large-scale neuronal simulation project workflow, Mozaik has
to cover a wide range of heterogeneous functionality. Mozaik cur-
rently supports the following aspects of the workflow: experiment

Frontiers in Neuroinformatics www.frontiersin.org December 2013 | Volume 7 | Article 34 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Antolík and Davison Mozaik: workflows for neuronal network simulations

and stimulation specification, model specification, simulation
execution, data storage, data analysis, visualization, and meta-
workflow. To organize this complex structure and to support
future changes we have structured Mozaik into nine sub-
packages, each with its own API that is largely independent of the
others:

1. models—specification of the high-level model API, and
implementation of several basic models.

2. sheets—specification of the sheet API - Mozaik’s basic model
building block.

3. connectors—specification of API defining how neurons con-
nect within and between sheets.

4. stimuli—stimulus specification API, unifies stimulus han-
dling across the workflow.

5. experiments—API for implementation of experimental pro-
tocols.

6. storage—implementation of a data store, handling both raw
recorded data and analysis results.

7. analysis—specification of the analysis API and implementa-
tion of a range of analysis methods.

8. visualization—specification of the visualization API and
implementation of a range of plotting methods.

9. meta-workflow—code handling workflows involving multiple
model instance execution (such as parameter searches).

It is our hope that several of these sub-packages will, in future, be
separated out into stand-alone packages or replaced with third-
party tools, as the software ecosystem in the field matures. In the
remainder of this section we will first describe the high-level inter-
action between the components, and then discuss in more detail
each of the sub-packages, focusing on the most important aspects
of their design.

3.1. CONTROL FLOW
The flow of control between the Mozaik components roughly fol-
lows the typical user workflow depicted in Figure 1. The workflow
is launched from a short script which points Mozaik to a spec-
ification of a model, a list of experiments to be run with the
model, and a list of analyses and visualizations a user wishes to
perform on the recorded data. From this point, control is handed
to Mozaik and the rest of the process is automated, resulting in a
collection of files containing the raw recorded data, results of the
analyses, including any intermediate steps, and possibly a set of
figures saved in a specified format.

To better understand the organization of Mozaik we will now
give a brief account of how control flows between the components
(see Figure 2). The user script hands control to the controller
module, the control hub of Mozaik. The controller module cre-
ates a new data store, initializes the model instance (more on this
in the following section), and proceeds to iterate over the experi-
ment list. For each experiment it will ask for the list of stimuli that
the experiment wishes to be presented to the model, and removes
any that might have already been recorded in previously executed
experiments, thus saving computing resources. After this it will
hand over control to the experiment instance, together with the
(possibly reduced) list of stimuli, which in turn will initiate the

FIGURE 2 | The flow of control between the individual Mozaik

components. Continuous arrows indicate flow of control between
components, while interrupted arrows indicate initialization of component
instances. The workflow is initiated from a user script with a single
command that hands control to the Mozaik control hub (the experiment
controller), which in turn initializes the model and data store based on the
parameter files specified on the command line and proceeds with
executing the list of specified experiments one by one. Each experiment
specifies a list of stimuli, which it sequentially presents to the model,
executing the model simulation for each of them. At the end of each
stimulus presentation the experiment module receives back the recorded
data, which it passes into the data store module. Once all experiments are
executed, a script specifying the list of analysis and visualization
procedures to be run over the stored data is executed. The analysis and
visualization routines directly communicate with the data store via a query
interface in order to retrieve and manipulate the stored data.

process of inserting the stimulus into the input space (see section
3.4) of the model and execute the simulation. In addition to speci-
fying which stimuli will be presented to the model, an experiment
can also add additional direct stimulation (for example current
injection) of the model.

During simulation execution all raw data and relevant meta-
data are recorded and stored in the data store, based on the
recording specifications that are part of the model’s initialization
(see section 3.6). At the point when all experiments have been
executed, the data store holds all the recordings made during the
experiments. At this point control flow returns to the controller
module, which proceeds by handing the data store to the analy-
sis and visualization methods, which will add additional analysis
data to the data store and visualize them. Once this is done con-
trol returns again to the controller module which saves the final
data store as the last step of the workflow. At this point the user
can find all data including any possible figures in a pre-specified
directory. Should he wish he can modify the list of analyses or
visualizations to be done and run them on the saved data store
without re-executing either the simulations or any previously
performed analysis.
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3.2. PARAMETERS
In Mozaik we use two different systems for parameterizing com-
ponents, each serving different roles: one for parameterizations
of hierarchies of components using hierarchical configuration
files, another for unified explicit parameterizations of data struc-
tures supporting a range of parameter specific operations. These
parameterizations systems contribute significantly to the level
of flexibility Mozaik offers, and play central roles in transmit-
ting metadata between components—one of the major problems
Mozaik addresses. The two systems are based around two external
packages, (1) parameters (https://github.com/NeuralEnsemble/
parameters) and (2) param (https://github.com/ioam/param),
which Mozaik further extends.

The parameters package is used to parameterize hierarchies of
objects for which the parameters are typically loaded from config-
uration files, and is thus used mainly in the components related
to model specification. Each class in Mozaik that is parameterized
via the parameters package has to specify a required_parameters
attribute, a dictionary which holds the names and types of the
required parameters. For such classes the presence of all the
required parameters and the matching of their types with the sup-
plied values is automatically checked. The type of a given param-
eter can also be ParameterSet, allowing for nesting of parameters,
that can be then passed to other class instances created in the
given class in a transparent fashion. Overall this allows config-
uring hierarchies of object in a transparent manner, separating
the parameters from the code into human readable configura-
tion files. Furthermore, the parameters package contains several
useful operations with the parameter hierarchies, such as param-
eter references or parameter replacements, that greatly enhance
the flexibility of working with such hierarchical specifications (see
section 4.5).

The param package offers a way to explicitly declare attributes
of a class as parameters, and associate additional information with
them such as type, ranges or documentation strings. We extend
it further in Mozaik to also declare units and periodicity. The
advantage of the param package is that it allows for automation
of processes dealing with the parameters due to their explicit dec-
laration and the additional information associated with them,
while retaining the standard Python attribute access in progra-
matic context, resulting in more transparent and concise code.
Specifically, in Mozaik there are several situations where we deal
with large numbers of objects, each uniquely identified by a
(potentially different) set of parameters. Often we want to refer
to subsets of such collections of objects based on combinations of
their parameter values. In Mozaik this happens when we deal with
stimuli, with recordings and with analysis data structures. The
param package facilitates common handling of these cases, and
allows us to supply a single set of methods which provide power-
ful filtering of collections of such parameterized instances based
on their parameter names and their values. As we will demon-
strate in section 4 this system greatly enhances the flexibility of
access to the records in the data store, allowing for simpler and
more concise analysis and visualization code.

3.3. MODEL SPECIFICATION
Because the focus of Mozaik is large-scale heterogeneous neu-
ronal simulations, it offers a higher-level abstraction for model

specification than most other tools in the field. The four basic
building blocks of a Mozaik models are:

1. input space—defines the geometry of sensory inputs.
2. sensory input component—defines how sensory input is

translated into spiking of the peripheral neurons.
3. sheet—a population of neurons distributed in 2D space, typ-

ically corresponding to a certain type of neurons in a cortical
layer.

4. connectors—a specification of a projection between two
sheets of neurons.

The high-level input space API is very general, it basically only
stipulates that stimuli are presented to the model at some dis-
crete time steps, are embedded in some kind of vector space and
can be added and removed from it. Currently only a single input
space is implemented—visual modality, which corresponds to a
2D space with visual field coordinates. For this input space, a
range of convenience methods is implemented, making adding,
translating and scaling stimuli straightforward.

Each model that contains an input space (it is possible to
specify models with no sensory inputs) must also contain a
sensory input component that translates the stimulus in input
space into spiking of neurons. Each such component declares
one or several sheet components that will become the most
peripheral neurons of the model, and which can be treated
from the perspective of the rest of the model like any other
sheet of neurons. The declared sheets of neurons do not have
to be the physiologically most peripheral neurons (i.e., photo-
receptors), for example the retina/LGN model that is shipped with
Mozaik implements an abstract model of the whole pathway from
photo-receptors to LGN relay neurons, and it declares only two
sheets of neurons, corresponding to LGN ON and LGN OFF cell
classes.

The sheet API is also very general, essentially it only declares
a population of neurons that are distributed in 2D space, with
respect to some coordinates. Multiple classes are derived from the
base class that give additional meaning to the coordinates, such
as classes that allow specification of cortical magnification factors
with respect to visual field coordinates. This allows for more con-
venient specification of models, using more natural units such as
densities, millimeters of cortical space etc., and it ensures auto-
matic conversion of these parameters with respect to connectors
or other sheets. Importantly the top level sheet class also contains
extensive utility code allowing for specification of what to record,
whether to apply some background stimulation, the possibility
of adding additional metadata to the sheet that can be later uti-
lized during analysis and plotting and shields from the user all the
recording and data handling code.

Finally the high-level Mozaik connector component essentially
corresponds to PyNN connectors, however, it allows for utiliza-
tion of the extra information that is associated with the sheets
to parameterize the connectivity, for example the position of the
neurons. Indeed, to provide users with optimized connectors,
we have created wrappers for all the existing PyNN connectors,
which are thus available through the Mozaik connector API.
However, on top of this high level API, that allows for writing
for any potentially highly optimized connector functionality, we
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have built a flexible modular connector design. It is composed
of two main components—the ModularConnector class, and the
ModularConnectorFunction. The latter class defines a distribution
of probabilities of connections between the pairs of neurons in
the source and target sheets. The former serves as a container
that combines multiple ModularConnectorFunction instances into
the final probability distribution from which the connections
are drawn. Importantly, it also defines how the connections will
be drawn from the distribution. The specification of how the
different ModularConnectorFunctions are combined is done via
a Python expression that contains references to the declared
ModularConnectorFunctions, making it very flexible to express
different combinations of modular functions (see section 4.1 for
an example).

3.4. STIMULUS
The role of the stimulus component is two-fold, first is the actual
generation of the stimulus temporal stream, and second is preser-
vation of the stimulus identity throughout the Mozaik workflow.
As we will show below, thanks to the param package these two
roles are conveniently unified in a single class.

In Mozaik, each stimulus is a regularly sampled temporal
stream of vectors of a certain dimensionality (2D in the case of
visual stimuli). Each stimulus explicitly declares all the parame-
ters (using the param package) that uniquely identify the stim-
ulus. Each stimulus overloads a method that returns the vector
stream corresponding to the stimulus for an arbitrarily long
period of time. Importantly, Mozaik provides mechanisms that
allow any class that is parameterized only via the param package
parameters to be seamlessly converted into a so called ID object,
which is essentially a shell of the original class holding only the
parameters identities, their values, and the identity of the original
class. This ID object can in turn be seamlessly converted back and
forth into a string or the original stimulus instance.

During the recording, all data recorded during a presentation
of a given stimulus are annotated with the corresponding stim-
ulus ID object. This means that while only the identity of the
stimulus and its parameters are stored with the recordings, at
any point during the future processing the original stimulus can
be easily recreated down the original vector stream used during
the simulation. The identity of the stimulus is further maintained
throughout the Mozaik analysis system, when it is passed into all
generated analysis structures (see section 3.7 for more details).
Last but not least the usage of the param package allows for uti-
lization of the unified filtering functionality to perform searches
on sets of records or analysis data structures annotated with the
stimuli, based on the stimuli parameters, which allows for eas-
ier and more concise expression of analysis and visualization
algorithms.

3.5. EXPERIMENT
As with most other Mozaik components, the high level experi-
ments API is very simple and general. Each experiment is defined
by the list of stimuli that it presents to the model and option-
ally a list of direct stimulations (i.e., current injection, etc.) that it
administers during the duration of the experiment. Importantly,
it is assumed that the stimuli are independent of each other—i.e.,

in real experiments they would be presented in randomized order
and/or interleaved with presentation of blank stimuli. After pre-
sentation of each stimulus either a blank stimulus is presented
or the simulation environment is reset (depending on the user’s
choice and availability of reset in the PyNN back-end simulator
used), thus ensuring the independence of the responses on the
order of the stimuli presentation. The length of the blank stimu-
lus presentation is set by the user, and should reflect the dynamics
of the model to ensure return of activity to background levels.

The independence of stimuli presentation is one of the central
design decisions we took in Mozaik. It is based on the realization
that the majority of stimulation protocols in neuroscience can
be usefully subdivided into short presentations of independent
stimuli, and that this allows for powerful conceptualization of the
analysis and visualization code, leading to much more reusable
code and a greater level of automation. Note that this does not
prevent users from implementing experimental protocols where
stimuli are not independent, but at the Mozaik level the user
would have to concatenate all the dependent stimuli into one sin-
gle longer Mozaik stimulus, thus losing some of the utility (but
not all) of current Mozaik analysis and visualization components.
It is possible that in future, a separate analysis package could be
designed for analysis of such time dependent stimuli, but until
now our usage of Mozaik did not indicate the necessity of this.

3.6. STORAGE AND QUERIES
The main role of the storage component is to accumulate
recorded data annotated with all relevant metadata, as well as data
structures produced during the subsequent analysis. The data
store is represented by the class DataStore and is very simple: it
essentially maintains two lists to which the recordings and anal-
ysis data-structures are added as they are produced. This is done
automatically without user intervention. The storage component
offers a number of methods to access the stored recordings based
on the associated metadata. The storage of recordings is build
around data-structures provided by the Neo package, while the
analysis data structures (ADSs) will be discussed in section 3.7.

Importantly, the storage component also introduces the con-
cept of views, implemented by the class DataStoreView (DSV),
that represents an arbitrary subset of the data in the data store.
The DataStoreView interface is identical to a “read-only” version
of the DataStore, and thus allows for identical operations to be
performed on a data store and its views, while preventing the
replication of raw data in memory. The concept of views is utilized
in query components, which allow a user to create new views of
the data store, based on a given data store or data store view and
various criteria, mostly related to associated metadata. Overall
the storage components accompanied by the query system offer
a powerful way to organize and filter data, which allows for highly
flexible and reusable implementation of analysis and visualization
components, as will be demonstrated below.

3.7. ANALYSIS
A common way to implement analysis code is to specify meth-
ods that accept as input the data to be analyzed, in the form of
data structures that are suitable for the given analysis. This allows
for easier implementation of said analysis algorithm, but leaves
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a bigger burden to the future users as they will have to carefully
study the input specification of each analysis method and often
write a non-trivial amount of code that translates the data from
their current form to the data structures required by the given
analysis.

Given that the goal of Mozaik is automation and reduction of
boiler-plate code, we have decided to shift the complexity from
the usage of the analysis code to its implementation. Thus the
high-level analysis API is extremely general—it essentially spec-
ifies that the input of each analysis is a DataStoreView instance.
It is the role of the given analysis class to filter out the widest
range of data from the data store view to which it can be applied.
The results of analyses are ADSs that are stored back into the data
store, to become potential future inputs to subsequent analysis or
visualization steps.

ADSs are derived from the high-level abstract class
AnalysisDataStructure. Similarly to the stimulus API, analy-
sis data structures have to declare all their parameters using the
param package; the only attributes they declare should be the
ones that hold the “raw” data. This allows the query system to
filter collections of ADSs based on any of their parameters. The
AnalysisDataStructure class from which all ADSs are derived
declares several parameters that are thus common to all ADSs:

1. identifier—which essentially corresponds to the given ADS
class name.

2. analysis_algorithm—set to the algorithm that produces the
specific ADSs instance.

3. sheet_name—sheet with which this ADS is associated.
4. neuron—neuron with which this ADS is associated.
5. stimulus_id—stimulus with which this ADS is associated.

The latter three parameters can also be set to None. For example if
neuron is set to None it means that the ADS is not associated with
a single neuron (i.e., when it holds population average results).
Users can add new ADSs as required; however, they are encour-
aged to re-use existing ADSs whenever possible, as this allows for
potentially more of the already implemented analysis and visu-
alization methods to be applicable to the given results. So far
our experience was that a wide range of analysis results can be
expressed with very few different ADSs.

The parameters in the ADSs function as metadata that iden-
tify the content of the ADS. When specifying a new ADS it is
important to think of all parameters that might be required to
identify the results in the data store. In the same way, whenever a
new analysis method is implemented, the developer has to make
sure to use ADSs that are suitable for holding the results of the
said analysis and set all parameters that are required to identify
the results in the data store. Altogether this makes the process of
writing new analysis methods somewhat more involved; however,
as we will demonstrate in the following section, it leads to a very
flexible and reusable analysis system, requiring a minimal amount
of code from the end user.

3.8. VISUALIZATION
The philosophy of the visualization package is similar to that of
the analysis sub-package. The input of each visualization method

is a DSV. The role of each visualization method is to extract as
much data as possible from the provided DSV and display as
much information as possible with respect to its visualization
role. It is thus up to the user to filter the data store before passing
it to the plotting function to select the information that is plotted.

Beyond the flexibility of input, the other major design goals
were to support hierarchical definition of figures, and separation
of the “appearance” aspects of plotting from the rest of the visu-
alization functionality. To achieve this the visualization package
is divided into two separate APIs, represented by two high-
level classes Plotting and SimplePlot, the former representing the
high-level hierarchical functionality, while the latter represents
low-level plotting.

The implementation of the Plotting API is based on mat-
plotlib (Hunter, 2007) and its GridSpec objects. The Plotting API
is mainly responsible for hierarchical organization of figures with
multiple plots, any mechanisms that require consideration of
several plots at the same time, and the translation of the data
from the general format provided by DSVs, to any specific for-
mat that the low-level SimplePlot classes require. In general the
Plotting instances do not do any plotting of axes themselves, but
instead call the SimplePlot instances to do the actual drawing.
Each class that was derived from Plotting derived from plotting
can itself contain several other Plotting or SimplePlot references.
Essentially each figure in Mozaik is a tree, whose inner nodes
are Plotting instances and leaves are SimplePlot instances. Each
Plotting instance contains a GridSpec object, that defines how the
figure space at that level of hierarchy is separated between the
children components. This allows for very concise and flexible
constructions of complex figures with multiple plots.

The SimplePlot API represent low-level plotting. Each
SimplePlot represents only a single matplotlib axis that is drawn
into the region defined by the GridSpec instance that is passed
into it. The high-level SimplePlot API offers a range of mecha-
nisms to control the detailed look of the plot. When defining a
new SimplePlot class the user is encouraged to use, as much as
possible, the decorating mechanisms provided by the high-level
SimplePlot API. This ensures a unified look for all Mozaik fig-
ures, while maintaining a good appearance for new plots with a
minimal amount of code.

4. EXAMPLE USAGE
We will now walk through an example Mozaik project to demon-
strate how the design principles discussed in the previous sections
translate into a real-world scenario. The following project cre-
ates a simple model of visual cortex (see Figure 3), probes it with
a standard stimulation protocol using sinusoidal gratings, and
applies several analysis and visualization algorithms commonly
performed in visual cortex.

4.1. MODEL SPECIFICATION
As discussed in section 2.2, if all required components are already
implemented in Mozaik, a new model can be declared almost
entirely via configuration files. Mozaik expects as input a sin-
gle hierarchical configuration structure. However, the parameters
package allows us to conveniently split this hierarchy into multiple
files for better organization and reuse. Below we show the top level
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FIGURE 3 | The architecture of the model presented in section 4. The
model consists of two thalamic layers, corresponding to ON and OFF cell
types (C), and a single cortical layer of excitatory and inhibitory cells, whose
afferent receptive fields are generated drawn from a Gabor-shaped
probabilistic distribution, whose parameters are based on an orientation
map (B). The connectivity between cortical neurons is set to have push-pull
connectivity, i.e., excitatory neurons selective to a certain orientation and
phase connect with a higher likelihood to other excitatory or inhibitory
neurons preferring the same orientation and phase, while inhibitory
neurons are more likely to connect to excitatory and inhibitory cells
preferring the same orientation but opposite phase (A).

configuration file, which specifies several high-level parameters
and also contains references to files containing the configurations
of individual sheets of neurons (in this case representing cortical
layers):

{ ’input_space_type’: ’mozaik.space.VisualSpace’,
’input_space’: {

’update_interval’: 7.0, # ms
’background_luminance’: 50.0 }, # cd/m^2

’retina_lgn’: url("param/SpatioTemporalFilter
RetinaLGN_defaults"),

’l4_cortex_exc’: url("param/l4_cortex_exc"),
’l4_cortex_inh’: url("param/l4_cortex_inh"),
’visual_field’: {

’centre’: (0.0, 0.0), # degrees (x, y)
’size’: (6.8, 6.8) }, # degrees

(width, height)
’results_dir’: ’’,
’name’: ’V1 Model’,
’reset’: False,
’null_stimulus_period’: 140.0 }

Note the url keyword that allows us to refer to another file
containing the corresponding sub-tree of the hierarchical config-
uration. Let us now have a look at configuration of the excitatory
sheet. As it is rather long we will look at it in parts. First are the
parameters configuring the excitatory sheet of neurons itself:

’component’: ’mozaik.framework.sheets.
CorticalUniformSheet’,

’params’: {
’name’: ’V1_Exc_L4’,
’sx’: 5000.0,
’sy’: 5000.0,
’density’: 64.0,
’mpi_safe’: True,
’magnification_factor’: 5000.0,

’cell’: {
’model’: ’IF_cond_exp’,
’params’: {

’v_thresh’: -57.0,
’v_rest’: -70.0,
’cm’: 0.29,
’tau_m’: 10.0,
... },

’initial_values’: {
’v’: PyNNDistribution(name=’uniform’,

params=(-60, -50))}},
’background_noise’: {

’exc_firing_rate’: 2000.0,
’exc_weight’: 0.00145,
’inh_firing_rate’: 2000.0,
’inh_weight’: 0.00030 },

’recorders’: url("param/l4_exc_rec") }

Here the parameter component contains the reference to the sheet
class we want to use, in this case a cortical sheet with spatially
uniformly distributed neurons. The parameter params then con-
tains a hierarchy of parameters that will be passed to the sheet
class. At the top we see several parameters directly configuring the
sheet. Next the cell parameter specifies the PyNN neuron model to
be used, its parameters, and initial conditions. At the bottom we
see a parameter recorders which holds configurations for a set of
recorder objects specifying which variables in which neurons will
be recorded during the simulation. For example, the following
configuration will tell Mozaik to record spikes from 1000 ran-
domly selected neurons, and to record the membrane potential
and synaptic conductances from another 20:

"Spikes" : {
’component’: ’mozaik.sheets.population_selector.

RCRandomN’,
’variables’: ("spikes",),
’params’: {’num_of_cells’: 1000} },

"DetailedRecordings": {
’component’: ’mozaik.sheets.population_selector.

RCRandomN’,
’variables’: ("spikes","v","gsyn_exc","gsyn_inh"),
’params’: {’num_of_cells’: 20} }

Following the sheet parameters, the configuration file also con-
tains the specification of the connectors. First let us look at the
lateral connections (see Figure 3B):

’L4ExcL4ExcConnection’: {
’target_synapses’: ’excitatory’,
’short_term_plasticity’: {

’u’: 0.5,
’tau_rec’: 1100.0,
’tau_psc’: 1.5,
’tau_fac’: 50.0 },

’weight_functions’: {
’f1’: {

’component’: ’mozaik.connectors.modular_
connector_functions.V1PushPullArborization’,

’params’: {
’or_sigma’: 0.26,
’phase_sigma’: 0.52,
’target_synapses’: ’excitatory’ }},

’f2’: {
’component’: ’mozaik.connectors.modular_

connector_functions.HyperbolicConnectorFunction’,
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’params’: {
’theta’: 207.76,
’alpha’: 0.013944 }}},

’delay_functions’: {},
’weight_expression’: ’f1*f2’,
’delay_expression’: ’2’,
’base_weight’: 0.108,
’num_samples’: 72 },

’L4ExcL4InhConnection’:
ref(’l4_cortex_exc.L4ExcL4ExcConnection’),

Here we specify two connectors corresponding to the con-
nections from neurons in the excitatory sheet to other neu-
rons in the excitatory and inhibitory sheets (the parameters
L4ExcL4ExcConnection and L4ExcL4InhConnection). Each con-
nector allows the user to specify the short term plasticity model
to be used for the synapses. The L4ExcL4ExcConnection connector
uses the Mozaik modular connector specification, which allows
the user to specify a number of connector functions to deter-
mine the weights and delays of connections (the weight_functions
and delay_functions parameters). The connector functions are
then combined in the weight_expression and delay_expression
parameters to determine the distributions of delays and weights.

Here we define two connector functions for weights, one spec-
ifying that neurons are connected in a push–pull manner with
respect to the orientation of their receptive field (see Figure 3A),
while the second connector function specifies that the connec-
tion probability between neurons falls off with distance follow-
ing a hyperbolic function (see Figure 3B). By specifying the
weight_expression as a multiplication between the two connector
functions we effectively say that the probability of the connec-
tions of neurons will be falling of with distance, while with respect
to orientation similarly-oriented neurons will be more proba-
bly connected. In this connector we want to have all connection
delays be a constant of 2 ms, which we can simply express by set-
ting the delay_expression parameter to 2, without specifying any
connector functions for delays.

The specification of the L4ExcL4InhConnection connector
parameter demonstrates another feature of the configuration
system: references. In this example we want the connections
from excitatory to inhibitory neurons to follow the same rules.
Therefore instead of repeating the whole configuration structure
specified for the L4ExcL4InhConnection we simply give a reference
to it.

The following listing shows the specification of the third
afferent projection in the model from thalamic to cortical neu-
rons, which is based on externally supplied orientation map (see
Figure 3B):

’AfferentConnection’: {
’aspect_ratio’:

UniformDist(min=0.57, max=0.57),
’size’:

UniformDist(min=0.46, max=0.46),
’orientation_preference’:
UniformDist(min=0.0, max=3.141592653589793),

’phase’:
UniformDist(min=0.0, max=6.283185307179586),

’frequency’:
UniformDist(min=0.8, max=0.8),

’or_map_location’ : ’./or_map’,

...
’specific_arborization’: {

’weight_factor’: ref(’l4_cortex_exc.L4ExcL
4ExcConnection.base_weight’)*2,

’num_samples’: 94,
’target_synapses’: ’excitatory’,
’short_term_plasticity’: { ... }}}

Apart from supporting more concise model specifications, the
references can also be combined in simple Python expres-
sions as demonstrated in the parameter weight_factor of the
AfferentConnection connector specification. Here we say that the
weights of this connector should be twice as strong as those of
the lateral connections. This provides a very flexible way of defin-
ing the most common relationships between model parameters
and, as will be demonstrated in section 4.5, greatly simplifies the
specification of parameter search protocols.

To finish specification of the model, the user currently has to
still write a short Python class. For the model discussed here the
model class would look as follows:

class PushPullCCModel(Model):

required_parameters = ParameterSet({
’l4_cortex_exc’: ParameterSet,
’l4_cortex_inh’: ParameterSet,
’retina_lgn’: ParameterSet ,
’visual_field’: ParameterSet

})

def __init__(self, sim, num_threads, parameters):
Model.__init__(self, sim, num_threads,parameters)
# Load components
CortexExcL4 = load_component(self.parameters.

l4_cortex_exc.component)
CortexInhL4 = load_component(self.parameters.

l4_cortex_inh.component)
RetinaLGN = load_component(self.parameters.

retina_lgn.component)

# Build and instrument the network
self.visual_field = VisualRegion(location_x=self.

parameters.visual_field.centre[0],
location_y=self.parameters.visual_field.

centre[1],
size_x=self.parameters.visual_field.size[0],
size_y=self.parameters.visual_field.size[1])

self.input_layer = RetinaLGN(self,
self.parameters.retina_lgn.params)

cortex_exc_l4 = CortexExcL4(self,
self.parameters.l4_cortex_exc.params)

cortex_inh_l4 = CortexInhL4(self,
self.parameters.l4_cortex_inh.params)

# initialize each of the projections
GaborConnector(self, self.input_layer.sheets

[’X_ON’], self.input_layer.sheets[’X_OFF’],
cortex_exc_l4, self.parameters.l4_cortex_

exc.AfferentConnection,
’V1AffConnection’).connect()

GaborConnector(self, self.input_layer.sheets
[’X_ON’], self.input_layer.sheets[’X_OFF’],
cortex_inh_l4, self.parameters.l4_cortex

_inh.AfferentConnection,
’V1AffInhConnection’).connect()

ModularSamplingProbabilisticConnector
(self, ’V1L4ExcL4ExcConnection’,
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cortex_exc_l4, cortex_exc_l4, self.para
meters.l4_cortex_exc.L4ExcL4ExcConnection
).connect()

...

Essentially all this code does is to initialize the individual
sheets and then use them to initialize the individual connectors.
It should in principle be possible to automate the above code, and
thus we plan that in future releases of Mozaik the user will be able
to skip this configuration step altogether.

4.2. EXPERIMENTS AND EXECUTION
Each mozaik experiment specifies a list of stimuli that will be pre-
sented to the model, and optionally what direct stimulation (such
as current injections) happens throughout the duration of the
experiment. To tell Mozaik what experiments to execute over the
model the user has to create a function that accepts the model as
a parameter and returns a list of initialized experiments like this:

def create_experiments(model):
return [
MeasureSpontaneousActivity(model, duration=147*7),
MeasureOrientationTuningFullfield

(model, num_orientations=2, spatial_frequency=0.8,
temporal_frequency=2, grating_duration=147*7,
contrasts=[10, 20, 30, 40, 50, 60, 70,

80, 90, 100],
num_trials=10),

MeasureNaturalImagesWithEyeMovement(model,
stimulus_duration=147*7, num_trials=15) ]

Here we tell Mozaik to perform three experiments: one during
which there is no stimulation (which effectively means we mea-
sure spontaneous activity); one where we perform a full-field
orientation tuning protocol; and one in which we show a natural
image movie with simulated eye movements.

At this point the whole workflow is configured and we are
ready to execute it with a single command, to which the model
class and a method returning a list of experiments is passed:

data_store, model = run_workflow(’PushPullModel’,
PushPullModel, create_experiments)

Running the above command hands control to Mozaik, which
will proceed to execute each of the specified experiments while
recording all the specified variables. All recorded data will be
annotated with relevant metadata and stored in a central data-
store that is handed back to the user for subsequent analysis and
visualization. Mozaik will report the progress of the stimulation,
by logging the number of already executed experiments and pre-
sented stimuli at the end of each stimulus presentation. This log
is by default routed both to the standard output and a file.

4.3. DATA STORAGE AND MANIPULATION
Once the Mozaik workflow is executed all data are stored in the
central data store. The Mozaik query system allows the user to
express operations over the data, with respect to the metadata

with which they are annotated, in a simple manner. For exam-
ple, the following query returns a DSV with data (recordings or
analysis data structures) associated only with sheet V1_Exc_L4:

param_filter_query(data_store,
sheet_name=[’V1_Exc_L4’])

while the following code filters data structures that declare a
parameter named value_name with value AfferentOrientation and
that belong to any of the listed sheets:

param_filter_query
(data_store, sheet_name=[’V1_Exc_L4’,
’V1_Inh_L4’, ’V1_Exc_L2/3’, ’V1_Inh_L2/3’],
value_name=’AfferentOrientation’)

Finally, the following query filters all recordings or analysis
data structures associated with any sheet and recorded during
presentation of stimulus FullfieldSinusoidalGrating of horizontal
(0◦) orientation:

param_filter_query(data_store,
st_name=’FullfieldSinusoidalGrating’,
st_orientation=0)

Here we demonstrated simple filtering queries, but Mozaik
offers a number of other query methods providing more com-
plex data manipulation, such as collation of data with respect to
selected parameters. These significantly simplify the expression of
a range of visualization and analysis algorithms.

4.4. ANALYSIS AND VISUALIZATION
Now that we have explained how to access and filter data in
data-store we can proceed to explain the analysis and visualiza-
tion system. To remind the reader, the input to each analysis or
visualization method is a DSV, they should always try to apply
themselves to the largest possible subset of DSVs, and the analy-
sis methods produce ADSs that are put back into the data store
to become inputs for subsequent analysis and visualization. This,
combined with rich annotation of recorded data, ADSs with
metadata and the query system, allows for a powerful, flexible,
and unified way of modifying the behavior of the analysis and
visualization process.

Let us now have a look at several simple examples demonstrat-
ing this functionality. The following code visualizes the raw data
recorded during presentation of a FullfieldSinusoidalGrating stim-
ulus at horizontal and vertical orientations and 100% contrast
(Figure 4A):

dsv = param_filter_query(data_store, st_orientation
=[0, pi/2],
st_name=[’FullfieldDriftingSinusoidalGrating’],
st_contrast=100)

OverviewPlot(dsv, ParameterSet({’sheet_name’:
’V1_Exc_L4’, ’neuron’: l4_exc,
’sheet_activity’: {}}))
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FIGURE 4 | The figures produced by the example visualization

commands in section 4.4 (see text). (A) The result of the first command,
plotting only the data acquired during presentation of vertically and
horizontally-oriented gratings. (B) The result of the second command, plotting
data acquired during presentation of all grating orientations (four, in this
case). In both plots, each column shows recordings in response to a grating
of the orientation indicated at the top. The top panels show the spike rasters

for the five times each stimulus was presented. The middle panel shows the
excitatory (red) and inhibitory (blue) conductances recorded during the
stimulus presentation; the pale lines show single trial traces while the thick
saturated lines show the trial average trace. The bottom panels show the
membrane potential traces recorded during the stimulus presentation; the
gray lines showing the single trial traces while the black line shows the trial
averaged trace.

while this code will do the same, but will display the data for
any orientation of the grating stimulus that was presented and
recorded (Figure 4B):

dsv = param_filter_query(data_store,
st_name=[’FullfieldDriftingSinusoidalGrating’],
st_contrast=100)

OverviewPlot(dsv, ParameterSet({’sheet_name’:
’V1_Exc_L4’, ’neuron’: l4_exc,
’sheet_activity’: {}}))

In the above two examples the first line restricts the data store
to the set of responses we wish to visualize, while the second line
is a basic visualization method that shows the raw responses to
each stimulus recorded in the data store.

We can use the same system to control the analysis scope. For
example, this is how to compute trial-averaged firing rates to all
the presented stimuli:

TrialAveragedFiringRate(data_store).analyse()

while this is how one would compute trial-averaged firing rates
only for neurons in a sheet named V1_Exc_L4 and only due to a
FullfieldDriftingSinusoidalGrating stimulation.

dsv = param_filter_query(data_store,
st_name=[’FullfieldDriftingSinusoidalGrating’],
sheet_name=’V1_Exc_L4’)

TrialAveragedFiringRate(data_store).analyse()

Behind the scenes, this code creates a number of ADSs—one
per stimulus—holding the average firing rates of individual neu-
rons, and adds them back into the data store. These analysis data
structures are annotated with metadata such as the identity of
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the stimulus with which they are associated, allowing for their
identification using the query system.

After populating the data store with ADSs holding a sin-
gle value per stimulus and neuron (specifically the trial-
averaged firing rate), we can for example plot the tuning
curves that span the parameter space of the presented stim-
uli. The following code would plot the size tuning curves
of neurons in V1_Exc_L4, based on the trial averaged fir-
ing rate responses due to the DriftingSinusoidalGratingDisk
stimuli:

dsv = param_filter_query(data_store,
st_name=’DriftingSinusoidalGratingDisk’,
analysis_algorithm=[’TrialAveragedFiringRate’],
contrast=100, sheet_name="V1_Exc_L4")

PlotTuningCurve(dsv,
ParameterSet({’parameter_name’: ’size’,
’neurons’: list_of_4_neurons})).plot()

(see Figure 5A) while the following code would plot contrast
response curves (Figure 5B):

dsv = param_filter_query(data_store,
st_name=’DriftingSinusoidalGratingDisk’,
analysis_algorithm=[’TrialAveragedFiringRate’],
size=1.5, sheet_name="V1_Exc_L4")

PlotTuningCurve(dsv,
ParameterSet({’parameter_name’:
’contrast’, ’neurons’: list_of_4_
neurons})).plot()

Note that the PlotTuningCurve visualization function is agnos-
tic to how the values it is plotting have been computed and
through which parameter we want to plot the tuning curve. It

simply expects a set of ADSs in the datastore view (specifically
ADSs of type PerNeuronValue, which hold a single scalar value
per neuron) which are associated with the same kind of stimu-
lus but with varying values of its parameters. By telling it through
which parameter we want to plot the tuning curve it has all the
information required to perform the task. Furthermore, because
the PerNeuronValue ADS holds other useful metadata, such as the
name of the value that it stores, and the units in which it was mea-
sured, the PlotTuningCurve can use these to populate the plot with
all this contextual information. This demonstrates how our sys-
tem allows for specification of very general operations that can
be used in a broad range of contexts, making them much more
reusable.

4.5. META-WORKFLOW
The meta-workflow sub-package encapsulates code related to
running workflows that require execution of multiple model
instances with different parameterizations and the processing and
visualization of the data produced by them. Currently, the com-
monly used grid parameter search is implemented. Thanks to the
flexible parameterizations system discussed and demonstrated in
previous sections, execution of a systematic parameter search of
a model such as the one described above is possible with a single
line of code:

CombinationParameterSearch(
SlurmSequentialBackend(num_threads=4, num_mpi=8),
{ ’l4_cortex_exc.L4ExcL4ExcConnection.weights’:

[0.1, 0.2, 0.3, 0.4, 0.5],
’l4_cortex_inh.L4InhL4ExcConnection.weights’:
[0.2, 0.4, 0.6, 0.8, 1.0] }).run_parameter_
search()

FIGURE 5 | Example of tuning curve plotting. Responses of four
neurons in responses to optimally oriented drifting sine-gratings disks
confined to an aperture of varying diameter (A). Responses of the
same four neurons as in (A) to optimally oriented full-field drifting

sine-gratings of varying contrast (B). Firing rates were calculated as
spike counts during the one second stimulus presentation and
averaged over ten trials. The aperture diameter is in degrees of
visual field.
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Here the first parameter specifies which job scheduling back-end
to use (here the back-end for Slurm (Jette et al., 2002)), and
the second parameter is a dictionary with parameter paths as
keys and lists as values. Thanks to the possibility of using refer-
ences in parameter files, it is very easy to express relationships
between parameters such as keeping a balance between excitatory
and inhibitory weights constant while varying its magnitude, etc.
The above code will schedule 25 simulations with all combina-
tions of values of the two selected parameters. All the results will
be stored in a master directory together with extra information
about the parameter search that can be used for further processing
of the data. Data from each simulation is stored in a separate sub-
directory, together with any figures produced during the given
simulation run.

The most common way of analyzing and visualizing param-
eter search data is to implement a measure producing sin-
gle value per model instance (e.g., mean firing rate of the
model neurons) and than show it as a function of the varied
parameters. For such situations Mozaik offers a visualization
method that automatically collates the produced data and displays
them:

single_value_visualization("PushPullModel",
"./PushPullModelParameterSearchRun1",
ParamFilterQuery(ParameterSet({’params’:
ParameterSet({’sheet_name’: ’V1_Exc_L4’})})),
filename=’ExcitatoryPopulation.png’)

Here the first two parameters identify the model that was run
and the master directory in which the parameter search data
were stored, the third parameter is a query instance that will be
applied to filter out data from data-stores produced during each
of the individual simulation runs, and the last parameter specifies
the name of the file into which to save the resulting figure. The
single_value_visualization method assumes that the individual
data-stores were populated during the analysis with SingleValue

ADSs (which, as the name indicates, hold a single scalar value). It
will automatically collate the data and show the value held in the
SingleValue ADSs as a function of the varied parameters. If multi-
ple SingleValue ADSs with different value_name parameters were
produced during the analysis, it will automatically create multiple
subplots, one for each of the encountered values of the parameter
value_name. If the analysis script for the model demonstrated in
this section contained analyses that created SingleValue ADSs with
value_names parameter set to “Mean(firing rate)” and “Mean(CV
of ISI squared)”, the above command would produce a figure such
as the one shown in Figure 6.

Overall these examples demonstrate how seamlessly different
components of Mozaik integrate, and the level of automation
that is achievable thanks to this integration. We would like to
emphasize that the extreme flexibility and broadness of the com-
mands demonstrated in this sub-section critically depends on
three of the defining features of Mozaik: the parameterizations
system, the ADS system, and the rich metadata with which the
various data structures are annotated throughout the Mozaik
workflow.

5. DISCUSSION
In this article we have presented Mozaik, a Python-based inte-
grated workflow framework for spiking neuronal simulations.
Much of the effort in detailed modeling projects in computational
neuroscience is in managing the workflow and moving data and
metadata between different simulation, analysis and visualization
tools. Mozaik eliminates much of this effort by providing a frame-
work that takes care of most of these low-level details, leaving
the modeler to focus on the high-level concepts of models and
experiments.

Mozaik leverages several broadly used neuroscience Python
tools, thus increasing interoperability between current and future
tools as well as increasing the possibility of replacing in future
some of the Mozaik components with dedicated tools. Long-term,
conditional on the continued convergence of neuroscience tools

FIGURE 6 | Example of automatic plotting of parameter search results.

Method single_value_visualization plots the values from SingleValue ADSs as a
function of the parameters that were varied (see the axis labels in the
plots which specify the full path of the parameter in the parameter
hierarchy), creating one subplot for each value of parameter value_name

(see titles of the subplots). In this specific example we ran a simulation of
the Vogels and Abbott (2005) model, while varying the strength of

excitatory and inhibitory synapses in the network. For each combination of
values of these two parameters the network’s mean firing rate and mean
square of coefficient of variation of inter-spike intervals (CV of ISI) were
calculated, thus providing a single value measure for each network
parameterization. The plot on the left shows the mean firing rate as a
function of the varied parameter values, while the plot on the right shows
the mean square of CV of ISI measure.
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around common standards, the goal is for Mozaik to serve only as
a glue between existing dedicated tools.

Mozaik is being used in real life modeling projects, and its
scalability has been tested in a distributed HPC environment,
both with large-scale network models (>105 neurons and >108

synapses) and large parameter searches (106 independent simula-
tion instances).

Since Mozaik uses PyNN to access simulator engines, the
underlying speed of a Mozaik simulation run will inevitably
depend on the performance of PyNN and, more importantly, the
simulator backend selected for the given simulation. However,
naturally, with the extra functionality Mozaik provides, it intro-
duces extra overhead. To verify that this overhead is acceptably
small, we have performed several test runs using the NEST sim-
ulator (currently the state of the art in large-scale point neuron
simulation). As a benchmark we have selected the Vogels and
Abbott (2005) model, an implementation of which is shipped
with PyNN. This model does not require any sensory stimu-
lation, which allows for a fair comparison between the pure
PyNN and the Mozaik implementations, as sensory stimulation,
which is handled by Mozaik, would in the case of a pure PyNN
simulation have to be implemented by the user, thus not pro-
viding a well defined comparison reference. We ran both the
Mozaik and pure PyNN simulations ten times with two dif-
ferent population sizes and the same number of synapses per
neuron (10,000 and 100,000 neurons and ∼200 synapses per
neuron). For the smaller population size the mean run time
of the pure PyNN implementation was 64.6 s (SD = 2.3) vs.
72.8 s (SD = 0.7) for the Mozaik implementation, indicating an
overhead of about 13%. However, for the simulation of large pop-
ulations the mean run time of the pure PyNN implementation
was 1106.1 s (SD = 11.3) vs. 1123.5 s (SD = 5.8) for the Mozaik
implementation, meaning that the overhead was now reduced to
only 1%. Given that the Mozaik project is intended for large-
scale simulations, we conclude that the overhead introduced is
acceptable.

During the implementation of Mozaik it became clear that
the most critical aspect of integrating the different aspect of the
neuronal simulation workflow is the handling of metadata. In
majority of Mozaik’s components, notably in the analysis, visual-
ization, and experimental protocol modules, the rich annotation
of data-structures with metadata that flow between the com-
ponents was instrumental in achieving the level of automation
and flexibility demonstrated here. Unfortunately, there does not
currently exist a common standard for interpretation of meta-
data in neuroscience (and more specifically in computational
neuroscience). This lack of standard limits the ease of integra-
tion of current neuroscience tools, including Mozaik, as even
though tools are able to exchange raw data thanks to common
data formats such as those provided by the Neo package, the
interpretation of metadata has to still be reconciled on an indi-
vidual basis. It is the belief of the authors that creation of a
common standard capturing the semantics of metadata is the next
key technological advance that is required in the neuroscience
community to achieve sufficient integration between the various
tools.

As is clear from its architecture, Mozaik is a package that will
be continuously developed and extended, and great care was put
into its design to allow for ease of such incremental develop-
ment. Specifically, the typical user will probably develop their own
model components, stimuli, experimental protocols, analysis and
visualization methods. We hope that users will contribute these
additions back to the core Mozaik project, which will thus be
able to provide a growing library of such resources. Furthermore,
even the core API is likely to be changed in future as some parts
of Mozaik will be taken over by dedicated tools, or forked out
into independent packages. An example of such planned future
changes is the replacement of the Mozaik datastore with dedicated
database software, or linking of the Mozaik stimulus interface to
one of the existing Python-based stimulation packages used in
biological experiments. Finally, one of our short-term plans is
the addition of a dedicated GUI for the analysis and visualization
steps of the workflow and/or integration of Mozaik with one of
the analysis and visualization libraries that are taking shape in the
field.
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