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Antibiotic resistance poses a major threat to public health. More effective ways of the antibiotic prescrip-
tion are needed to delay the spread of antibiotic resistance. Employment of sequencing technologies cou-
pled with the use of trained neural network algorithms for genotype-to-phenotype prediction will reduce
the time needed for antibiotic susceptibility profile identification from days to hours.
In this work, we have sequenced and phenotypically characterized 171 clinical isolates of Escherichia

coli and Klebsiella pneumoniae from Norway and India. Based on the data, we have created neural net-
works to predict susceptibility for ampicillin, 3rd generation cephalosporins and carbapenems. All net-
works were trained on unassembled data, enabling prediction within minutes after the sequencing
information becomes available. Moreover, they can be used both on Illumina and MinION generated data
and do not require high genome coverage for phenotype prediction. We cross-checked our networks with
previously published algorithms for genotype-to-phenotype prediction and their corresponding datasets.
Besides, we also created an ensemble of networks trained on different datasets, which improved the
cross-dataset prediction compared to a single network.
Additionally, we have used data from direct sequencing of spiked blood cultures and found that AMR-

Diag networks, coupled with MinION sequencing, can predict bacterial species, resistome, and phenotype
as fast as 1–8 h from the sequencing start. To our knowledge, this is the first study for genotype-to-
phenotype prediction: (1) employing a neural network method; (2) using data from more than one
sequencing platform; and (3) utilizing sequence data from spiked blood cultures.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Around 33,000 European inhabitants die from infections caused
by bacteria resistant to antibiotics annually [1], and we might wit-
ness a tenfold increase in the number of deaths by 2050, given the
current state of AMR development [2]. There is a growing concern
regarding the dearth of new antibiotic scaffolds in the drug discov-
ery pipeline, especially for multidrug-resistant bacteria that
produce Extended Spectrum b-Lactamases (ESBLs) and carbapene-
mases. b-lactam antibiotics represent the most common drug class
of antimicrobial drugs with broad clinical indications. This class of
antibiotics makes up 65% of the total antibiotics market [3]. In
2017, WHO published a list of pathogens for which urgent global
action is needed [4]. This list includes 3rd generation cephalos-
porin and carbapenem-resistant Enterobacteriaceae, which are
among the priority 1 section of the WHO pathogen list. The
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b-lactamases produced by the Enterobacteriaceae family, particu-
larly Klebsiella pneumoniae and Escherichia coli, are hydrolytic
enzymes that confer bacterial resistance to b-lactam antibiotics,
such as the penicillin, cephalosporin, and carbapenem families that
are common antimicrobial drugs used all around the world [4,5].

A cornerstone of optimal antibiotic use is an informed and rapid
susceptibility profile of the pathogen. Traditional microbial diag-
nostics may require 3–4 days to a week for bacterial culture, isola-
tion of infectious agents, and antibiotic susceptibility testing (AST)
[6]. Therefore doctors are often forced to prescribe antibiotics
based on empirical guidelines and local epidemiological data. The
mortality risk doubles with a 24-hour delay in providing appropri-
ate antibiotics in bacteremia cases [7].

One way to speed up microbial diagnostics is the fast sequenc-
ing of the infectious agent and prediction of its phenotype based on
whole-genome sequencing (WGS) data. Based on the review of the
European Committee on Antimicrobial Susceptibility Testing
(EUCAST), the published evidence for using WGS as a tool to infer
antimicrobial susceptibility accurately is currently either poor or
non-existent, and the evidence/knowledge base requires signifi-
cant expansion [8]. Experts have proposed that the primary com-
parators for assessing genotypic-phenotypic concordance from
WGS data should be changed to epidemiological cut-off values
(ECOFF) to improve differentiation of wild-type from non-wild-
type isolates (harboring an acquired resistance). Therefore, clinical
breakpoints should be used as a secondary comparator, ideally
using the same data sets as used for ECOFF-based assessments.
This assessment will reveal whether genome-based predictions
could also be used to guide clinical decision making [8].

The very limited availability of rapid, easy to use, and scalable
methods to interpret the WGS data for clinical purposes is chal-
lenging. Data-driven machine learning (ML) is a promising
approach for this kind of data analysis. Some ML-based algorithms
for phenotype [9], AMR gene content [10], or MIC prediction [11]
have been proposed in recent times (see a detailed review in
[12]). Both assembled genomes [10,11] and raw unassembled
sequencing data have been evaluated [11]. Also, k-mer profiles
have been used to predict resistance [11,13].

Previous studies have shown that the trained model often
requires only a few genomic features, making it unnecessary to
analyze the complete genome for generating predictions for new
samples [14,15]. Additional issues that need to be considered when
developing a reliable and useful prediction model include the fact
that genotypes are often geographically clustered. This means that
if a prediction model is trained on data from one country, the
model might not be generalizable to data from another country
[16]. Data from multiple countries potentially must be used in
any proposed model. India and Norway have a very different spec-
trum of AMR profiles. Norway has very low levels of AMR, whereas
India has relatively higher levels [17]. While most Norwegian iso-
lates are sensitive to antibiotics, India has mostly resistant isolates.
Therefore, our collection of isolates gives us a good spectrum of
sensitive and resistant strains for building a robust prediction
model. Moreover, all the previously published studies have used
Illumina sequencing technology. Illumina sequencing is not clini-
cally time-efficient, and recent studies have shown that Oxford
Nanopore Technology’s (ONT) MinION could potentially be used
for point of care sequencing and, thus, may become a basis for
WGS-based diagnostic strategies [6,18].

This paper presents an assembly-free neural network based
method for predicting phenotypic resistance of E. coli and K. pneu-
moniae towards 3rd gen. cephalosporins and carbapenems from
WGS data. The current model offers a prediction for six antibiotics.
Overall, network accuracy ranges between 94% and 100%, and it is
independent of the sequencing platform used to generate the data.
We have also compared our networks with other previously pub-
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lished ML algorithms for genotype-to-phenotype prediction. To
the best of our knowledge, this is the first study for (1) employing
a neural network that uses (2) data frommore than one sequencing
platform; and (3) additionally testing spiked blood cultures for
prediction of phenotype from genotype.
2. Materials and methods

2.1. Bacterial strains

A total of 171 bacterial isolates from human urine, blood, spu-
tum, pus, ascitic, and cystic fluid samples isolated in Norway and
India were used in this study. Norwegian isolates were collected
from October 2015 to December 2019, whereas Indian strains were
collected from December 2017 to August 2019. Strains were col-
lected and phenotypically characterized at Oslo University Hospi-
tal (Oslo, Norway) and All India Institute of Medical Science
(New Delhi, India). This included 90 E. coli and 76 K. pneumoniae
isolates. Five sequenced isolates were later found to be wrongly
assigned as E. coli and K. pneumoniae at the start of the study.
Two of these belonged to Enterobacter bugadensis and Enterobacter
cloacae, and the other three isolates were found to be K. quasipneu-
moniae. All these five isolates were excluded from our training
dataset.

In Norway, minimum inhibitory concentration (MIC) (per-
formed at Norwegian Institute of Public Health, Oslo) for ampi-
cillin, ceftazidime, cefotaxime, meropenem and imipenem was
determined by broth microdilution using Sensititre surveillance
EUVSECTM 96 well plates (ThermoFisher). Plates were inoculated
using the Sensititre AutoInoculatorTM (AIM, V3020, Sensititre), incu-
bated for 18–24 h, and subsequently read both with the naked eye
using the Sensititre Manual ViewboxTM (V4007, Sensititre) and
using the Sensititre Vizion Digital MIC Viewing SystemTM (V2021,
Sensititre). E. coli ATCC 25922 and E. coli IP2.1 were used as quality
strains for E. coli and K. pneumoniae isolates, respectively. Quality
strains were tested in triplicates, and the samples were analyzed
once and repeated in case of uncertain results. In India, Mueller
Hinton agar medium (BD Difco, Sparks, MD, USA) was inoculated
with bacterial inoculum matching a turbidity of 0.5 McFarland
standard and then incubated for 18–24 h at 37 �C for antibiotic sus-
ceptibility determination. MIC for ampicillin, ceftazidime, cefo-
taxime, meropenem, imipenem was determined by MIC gradient
strips (Himedia Laboratories Ltd, Mumbai, India) according to the
manufacturer’s instructions. Antimicrobial susceptibility towards
ertapenem was determined by Kirby-Bauer disk diffusion test as
per CLSI guidelines using 10 lg antibiotic disks (Himedia Laborato-
ries Ltd, Mumbai, India) [19]. E. coli ATCC 25,922 was used as a
quality control strain.

Epidemiological cut-off values (ECOFF) for wild-type (WT) vs.
non-wild-type (NWT) differentiation was taken from the European
Committee on Antimicrobial Susceptibility Testing MIC distribu-
tion website [20] (accessed on February 2020). Ertapenem ECOFF
value was taken from the Rationale for the EUCAST Clinical Break-
points v 1.3 (June 2009). Additionally, isolates were also classified
as susceptible (S), susceptible to increased exposure (I), and resis-
tant (R) according to EUCAST breakpoints v11.0 (December 2020).
2.2. DNA isolation and sequencing

DNA for Illumina sequencing was prepared using the CTAB
method described elsewhere [21]. Genomic DNA was isolated from
freshly grown strains using QIAamp DNA minikit (Qiagen, Ger-
many) following the manufacturer’s instructions and was quanti-
fied using Qubit fluorometer (Life Technologies, USA). Sequencing
libraries were prepped using Illumina Nextera XT DNA sample
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preparation kit (Illumina, USA) and were sequenced on a MiSeq
Illumina platform using MiSeq v3 chemistry. Strains from Norway
were sequenced at the Norwegian Sequencing Centre, whereas
Indian isolates were sequenced at All India Institute of Medical
Sciences. Output data files were de-multiplexed and transformed
into fastq files with Casava v.1.8.2 (Illumina Inc, USA).

Raw sequencing data were filtered using Trimmomatic v 0.38
[22]. Adapters were removed, and low-quality read ends with an
average Phred quality score <15 within a 4-bp window were
trimmed. Reads with an average Phred quality score <15 and/or
shorter than 36 bp after adapter removal and trimming were
discarded.

Six isolates were additionally sequenced on the MinION plat-
form (Oxford Nanopore Technology, UK) following a previously
published protocol [6].

2.3. Assembly-dependent genotyping

Filtered reads were error-corrected and assembled using
SPAdes v 3.13.1 [23]. The taxonomic assignment was confirmed
using BLAST search against the NCBI RefProk database (release
18.10.2018). AMR genes were detected by nucleotide BLAST search
against CARD (release 11.10.2018) [24] and ResFinder (release
22.01.2019) [25]. MLST analysis was performed using PubMLST
schemes built into the MLST plug-in of the OmicsBox (BioBam,
Spain). Whole genome pairwise alignment was performed with
CLC Genomics workbench (Qiagen, Germany). Assemblies were
annotated using Prokka [26] and core genome analysis was per-
formed using Roary with 75% minimum protein similarity [27].
MAFFT (Multiple Alignment using Fast Fourier Transform) was
used for core genome alignment [28]. Maximum likelihood core
genome phylogenetic tree was build using IQ-Tree [29] with
default and pangenome matrix was visualized using roary_plots.
py script from Roary [27].

2.4. Assembly-free genotyping

All analyses were performed in MATLAB� v2018 (MathWorks
Ltd, USA) unless stated otherwise.

2.4.1. b-lactamase associated k-mers (BLAKs) database development
We extracted all b-lactamase associated genes from CARD v3.0

(release 11.10.2018) [24] and ResFinder (release 22.01.2019) [25],
combined them into one collection and removed all the duplicates.
This newly generated database contained 1872 unique b-lactamase
associated entries. Each gene entry was subsequently transformed
into 21-bp k-mers using kmercountexact.sh command (BBMap
v38.32 [30]) and all unique k-mers (n = 294 636) were extracted.
These k-mers will be further referred to as b-lactamase associated
k-mers (BLAKs).

2.4.2. Mapping of bacterial genomes to BLAKs database
All filtered reads were transformed into 21-bp k-mers using the

k-mercountexact.sh command (BBMap v38.32 [30]). To reduce the
number of k-mers caused by sequencing error, only k-mers
detected in the dataset more than five times were kept (min-
count = 5). These k-mers were then mapped to the BLAKs database,
and sequencing information was transformed into a line with the
presence/absence of the BLAKs.

As a result, the dataset was then represented as an n-by-k bin-
ary table where n is the number of bacterial isolates, and k denotes
the number of BLAKs.

2.4.3. Neural network modeling
Feed-forward neural network models for prediction of WT/NWT

phenotype (and in cases of S/R phenotype) were built for each
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bacteria-antibiotic combination using the Deep Learning toolbox
for MATLAB� (MathWorks Ltd., USA). Eighty percent of the data
were used for training, 10% for validation, and 10% for testing each
model.

For each antibiotic, we first selected featured BLAKs, which
were differentially represented in WT/NWT strains using Neigh-
boring Component Analysis (NCA). Isolates were partitioned into
5 folds of train and test data. For each fold, NCA with twenty lin-
early spaced k values (regularization parameter) between 0 and
0.5 were performed and loss in classification for each test set
was calculated. Finally, NCA was performed using optimized k on
all data. A subset of BLAKs with feature weight exceeding threshold
was then used as the input for the neural network model. For each
model, the threshold was set on the right-end of the features’
weight distribution histogram (Supplementary Fig. 1).

The dataset was split into train, validation and test subsets
(80%/10%/10% of data respectively). A set of featured BLAKs was
used as an input layer for the neural network (all BLAKs were trea-
ted equally and no weights were preset to the NCA weights),
whereas the number of hidden layers, as well as the number of
neurons in them, varied depending on the size of the input layer.
If number of featured BLAKs was below 50, then one-layered net-
work was used. First, a network with one hidden layer and 12 neu-
rons was trained. Then, number of neurons was increased by 12*n
and a new network was trained as long as 12*n < number of BLAKs.
In case number of BLAKs was above 50, two hidden layers with 24
and 12 neurons in each was trained, and number of neurons in
each layer in further iterations was also increased by n times. A
scaled conjugate gradient backpropagation algorithm was used
for weights- and bias values update during model training. Hyper-
bolic tangent sigmoid (tansig) activation function was used
between inner layers. The softmax classification layer comprising
two neurons (WT/NWT and S/R) was used as an output layer.
Finally, networks with best prediction rate for each species-
antibiotic set was selected.
3. Results

3.1. Phenotypic characteristics of the dataset

The AMR-Diag dataset comprised 90 strains of E. coli and 76
strains of K. pneumoniae, both from Norway and India, with varying
resistance profile against ampicillin (AMP), cefotaxime (CTX), cef-
tazidime (TAZ), meropenem (MEM), and imipenem (IMI) (Table 1).
Third-generation cephalosporins (CTX, TAZ) had the most even
representation of both WT and NWT isolates regardless of species
(E. coli – 60%/40%; K. pneumoniae – 50%/50%), whereas, in the case
of carbapenems, WT was overrepresented in our dataset. The
majority of NWT isolates were of Indian origin. Detailed informa-
tion on MIC values, as well as inhibition zone diameter interpreta-
tion for ertapenem (ERT), can be found in Supplementary Table A.
3.2. Genotypic characteristics of the dataset

3.2.1. WGS stats
The sequencing data comprised 5 403 000 ± 2 693 600

[mean ± SD] raw paired-end reads per isolate, and 95.4% ± 6.2%
of them remained after adapter trimming and quality filtering.
Overall assemblies comprised 199 (208) [median (IQR)] contigs
of � 500 bp length with a total length of 4 997 094 ± 1 648
995 bp (Table 2; Supplementary Tables B and C). Whole genome
pairwise identities ranged up to 98.4% for E. coli and 99.4% for K.
pneumoniae (Supplementary Tables D and E). Core genome phylo-
genetic trees, as well as heatmap of genes presence/absence are
provided in Supplementary Fig. 2.



Table 1
MIC distribution of the isolates. The cut-off between WT (light blue) and NWT (no coloring) is set according to EUCAST ECOFF values [20]. N –
number of NWT isolates. A. E. coli, B. K. pneumoniae.

Table 2
General statistics of the de novo assemblies.

Species Number of contigs [median (IQR)] Largest contig, bp
[mean ± stdev]

Total length, bp
[mean ± stdev]

GC,%
[mean ± stdev]

N50, bp
[mean ± stdev]

E. coli(n = 90) 199 (208) 412 016 ± 239 231 5 133 633 ± 1 156 150 51 ± 1 157 841 ± 114 466
K. pneumoniae(n = 76) 119 (381) 421 222 ± 312 860 4 848 755 ± 2 044 236 57 ± 2 149 514 ± 114 415
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3.2.2. Resistome analysis
For E. coli, TEM-1 was the most prevalent b-lactamase in Nor-

way, being detected in 69% of Norwegian isolates (Supplementary
Table B). TEM-1 was detected in 42% of the Indian isolates also.
However, in India, CTX-M-15 (73%) and non-carbapenemase-
OXAs (60.0%) were the most frequently detected b-lactamase-
encoding genes among the acquired ones. Twenty-one percent of
Indian isolates possessed NDM-5 metallo-b-lactamase (MBL),
whereas in Norway, NDM was not detected and VIM-1 MBL was
found only in one E. coli isolate.

As SHV genes are intrinsic in Klebsiella, they were the most fre-
quently detected b-lactamase-encoding genes in K. pneumoniae
(Supplementary Table C). Nearly all of the isolates where SHV
was not detected had genome coverage below 50% of the genome
size (Supplementary Table C). Prevalence of TEM-1, CTX-M-15, and
OXA-232 (OXA-48-like) exceeded 60% of Indian isolates and com-
prised 5–20% in the Norwegian isolates. Seven Indian isolates pos-
sessed NDM-1/5 MBL. None of the Norwegian isolates possessed
any carbapenemase encoding genes. Geographical differences
between resistome profiles of the isolates can be found in Supple-
mentary Fig. 3.
3.2.3. Multi locus sequence typing
The dataset comprised 37 sequence types of E. coli and 31

sequence types of K. pneumoniae (Supplementary Table A). The
most prevalent sequence types for E. coli were ST 131 (13 isolates
both from Norway and India), ST 95 (10 isolates from Norway), ST
405 (5 isolates from India), and ST 73 (5 isolates from Norway). For
K. pneumoniae, the most prevalent STs were ST 147 (8 isolates from
India) and ST 231 (7 isolates from India). No correlations between
1899
sequence types and isolation sources were observed (Supplemen-
tary Table A).

3.3. b-lactamase k-mers associated with wild type/non-wild type
delineation are drug class and species-specific

For each species-antibiotic combination, we searched for the
BLAKs that were associated with the phenotype using NCA, i.e., fea-
tured BLAKs. The number of featured BLAKs varied from 6 to 416,
and the majority of these BLAKs were located on NDM, CTX-M, LAT,
BIL, CMY gene families in case of E. coli, and on TEM, OXA, SHV, and
CTX-M gene families in case of K. pneumoniae (Fig. 1). Detailed
information on each gene variant that has featured BLAKs in its
sequence is given in Supplementary Tables F and G.

In E. coli, 99.9% BLAKs associated with ceftazidime resistance
were also associated with cefotaxime. These BLAKs nearly equally
stemmed from CTX-M, BIL, CMY, and LAT genes and covered all the
sequences (Supplementary Fig. 4). Thirteen BLAKs associated with
both cefotaxime and ceftazidime resistance stemmed from the 30-
end of the VIM-48 gene. The majority of BLAKs that were associ-
ated with E. coli resistance to meropenem (379 out of 395) were
also associated with resistance towards imipenem, and all of them
stemmed from NDM and spanned the whole gene (Supplementary
Fig. 4). Ertapenem resistance-associated BLAKs originated mostly
from the CMY genes, also spanning the entire gene.

For K. pneumoniae, 213 BLAKs were commonly associated with
3rd gen. cephalosporin resistance. The majority of them originated
from the TEM gene family, covering three distinct regions (Supple-
mentary Fig. 5). Meropenem and imipenem resistance was associ-
ated with BLAKs from SHV and OXA, and 30 of these BLAKs were
found in common, covering two loci in SHV (Supplementary



Fig. 1. Prevalence of featured BLAKs associated with antibiotic resistance in various gene groups in (A) E. coli and (B) K. pneumoniae. The number of featured BLAKs in each
species-antibiotic pair is given in brackets.
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Fig. 5) and one region of OXA (300bp-700 bp; Supplementary Fig. 4).
Interestingly, although ertapenem resistance-associated BLAKs
were also associated with the OXA gene family, all of these BLAKs
were located much further downstream (2100–2500 bp region).

Although the TEM-1 gene prevailed AMR-Diag dataset, nearly
all of the featured BLAKs that mapped to TEM genes mapped to
highly conserved regions of TEM genes since they were found in
all 193 TEM variants included in CARD and ResFinder (Supplemen-
tary Tables F and G). OXA, CTX-M, and SHV BLAKs were also
located in regions found in many, albeit not all, genes belonging
to these families. In VIM, however, all featured BLAKs were exclu-
sively located on the 30-end of the VIM-48 (Supplementary
Table F).

3.4. Wild type vs. non-wild type phenotype prediction

3.4.1. Prediction of wild type vs non-wild type
Generally, AMR-Diag trained neural networks had higher pre-

diction rates for K. pneumoniae than E. coli (Table 3). Apart from
1900
the E. coli – ampicillin prediction network, the overall accuracy var-
ied from 94% to 100%. Ampicillin prediction in E. coli was relatively
low with an 80% precision (proportion of true NWT in all that are
assigned to NWT) and 80% recall (proportion of actual NWT that
was correctly assigned) in the test subset of data, therefore we
decided to exclude this network from further analysis. For K. pneu-
moniae, we did not attempt to create an ampicillin prediction net-
work since this species is intrinsically resistant towards ampicillin,
and only one K. pneumoniae isolate was susceptible to it. ROC
curves for trained models can be found in Supplementary Figs. 6
and 7 for E. coli and K. pneumoniae respectively. List of isolates that
were used in train/validation/test subsets, as well as their maxi-
mum pairwise identity to isolates from other subsets is given in
Supplementary Table H.

As expected, the number of featured BLAKs was significantly
lower in WT isolates (FDRp < 0.05; Fig. 2). In most cases, those iso-
lates assigned incorrectly on training or validation stages, had as
many featured BLAKs as isolates from the other class. Out of three
E. coli isolates wrongly predicted with regard to 3rd gen cephalos-



Table 3
Accuracy, precision and recall of 12 feed-forward neural networks for WT/NWT prediction of E.coli and K. pneumoniae isolates. *HLN – number of neurons in hidden layers.

Bacteria Antibiotic HLN* Number of isolates correct/all Accuracy, % Precision/Recall for NWT
isolates from test subset, %

Train [80%] Validate [10%] Test [10%]

WT NWT WT NWT WT NWT

E. coli AMP 24; 12 24/24 40/46 5/6 3/3 3/4 4/5 80/80
91 89 78

CTX 128; 64 44/44 25/26 6/7 2/2 7/7 4/4 100/100
99 90 100

TAZ 128; 64 42/43 25/27 6/6 3/3 8/8 3/3 100/100
96 100 100

MEM 192; 96 55/55 12/15 8/8 1/1 10/10 1/1 100/100
97 100 100

IMI 48; 24 63/63 3/7 7/7 1/2 8/8 3/3 100/100
94 89 100

ERT 24; 12 49/50 19/20 4/4 5/5 8/8 3/3 100/100
97 100 100

K. pneumoniae CTX 96; 48 27/27 33/33 5/5 2/3 5/5 3/3 100/100
100 87 100

TAZ 48; 24 25/25 32/34 6/6 2/2 5/5 3/3 100/100
97 100 100

MEM 24 41/41 18/19 6/6 1/2 6/6 2/2 100/100
98 87 100

IMI 24; 12 42/44 15/16 6/6 2/2 5/5 3/3 100/100
100 100 100

ERT 12 37/37 23/23 3/3 5/5 4/4 4/4 100/100
100 100 100
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porins WT/NWT, two of them have MIC values close to the ECOFF
threshold (Supplementary Table I). It may be highlighted that the
majority of wrongly predicted strains with regards to carbapenems
had MIC value far off the ECOFF threshold (Supplementary Table I).
In addition, all the incorrectly predicted isolates were also checked
for efflux pumps, OMP, and point mutations (Supplementary
Table I). Mutations in protein binding protein PBP3 (D350N,
S357N) were detected in all but one isolates, ompA and ompK37
porin genes were detected in K. pneumoniae. Various efflux pumps
associated with b-lactam resistance were detected in all isolates.
We have also attempted to train k-mer based neural networks
for colistin resistance prediction. All our isolates were colistin-
sensitive, so we downloaded publicly available data for colistin-
resistant isolates of E. coli and K. pneumoniae from the EMBL-EBI
European Nucleotide [31] and Macesic et al. [9]. However, this k-
mer based approach did not work for colistin resistance prediction
(Supplementary Tex 1).

3.4.2. Prediction of S/R phenotypes
Generally, all isolates fell into the ‘S’ or ‘R’ phenotype category

based on the EUCAST clinical breakpoints v10.0 (valid from
01.01.2020), so our WT/NWT prediction models could represent
‘S’/‘R’ prediction models. However, there were two strains of
E. coli that showed ‘I’ phenotype for ceftazidime and for merope-
nem and four strains of K. pneumoniae that exhibited ‘I’ phenotype
towards imipenem. Therefore we excluded these strains and cre-
ated new networks for ‘S’/‘R’ phenotype prediction (Supplementary
Table J). The accuracy for ‘S’/‘R’ networks ranged from 91 to 99%,
and they had a comparable number of featured BLAKs to the WT/
NWT models. The majority of these BLAKs also belonged to the
same genes (Supplementary Table K).

3.5. Cross-performance of phenotype prediction machine learning
algorithms

To test how our networks would perform on external data, we
have used previously published datasets. For K. pneumoniae, we
downloaded 1491 genomes from Nguyen et al. (2018) [11], where
authors have trained models to predict MIC values. For E. coli, we
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have downloaded 134 randomly selected genomes from Kim
et al. (2020) [10], where authors have trained models for both
AMR gene content and phenotype prediction. Additionally, we
have tested how these previously published algorithms perform
on our isolates.

For E. coli, both algorithms tended to under-predict NWT phe-
notypes from each other’s datasets (Table 4). Both datasets had
genes from CTX-M, TEM, and OXA families among the most preva-
lent ones (Supplementary Table M). However, LAT genes were
prevalent in the AMR-Diag dataset, and VAMPr isolates contained
KPC genes, which were absent in AMR-Diag.

For K. pneumoniae, both studies had algorithms for three antibi-
otics – ceftazidime, meropenem, and imipenem. The networks
exhibited dataset-dependent performance (Table 5). AMR-Diag
networks missed out on the NWT phenotype of Nguyen et al.
[11] isolates, whereas Nguyen et al. [11] models failed to predict
WT isolates from our dataset. Same as in our dataset, the most
prevalent b-lactamase genes in K. pneumoniae isolates from
Nguyen et al. belonged to SHV, OXA, TEM, and CTX-M groups (Sup-
plementary Table N). However, unlike our isolates, genomes of K.
pneumoniae from Nguyen et al. [11] contained KPC. Besides, our
isolates had NDM genes that were not detected in Nguyen et al.
[11] dataset.

In addition, we have also tested 193 isolates of K. pneumoniae
(Supplementary Table O) and 126 isolates of E. coli (Supplementary
Table P) downloaded from the NCBI Pathogen Detection database
(https://www.ncbi.nlm.nih.gov/pathogens/). Same as in cross per-
formance tests, Nguyen models tended to over-predict NWT phe-
notype, whereas AMR-Diag over-predicted WT phenotype
(Supplementary Table Q). In case of E. coli, both models exhibited
comparable performance (Supplementary Table R).

3.6. Ensemble networks for prediction of phenotype across different
studies improve their performance on unseen data

We also trained separate neural networks for phenotype predic-
tion of 1491 K. pneumoniae isolates from Nguyen et al. [11] and
combined them with AMR-Diag networks into an ensemble net-
work. In the ensemble, a given isolate was assigned to an NWT

https://www.ncbi.nlm.nih.gov/pathogens/


Fig. 2. BLAKs distribution in E. coli and K. pneumoniae isolates for the different b-lactam antibiotics. Wild type (WT) and non-wild-type (NWT) isolates.

E. Avershina, P. Sharma, A.M. Taxt et al. Computational and Structural Biotechnology Journal 19 (2021) 1896–1906
class if either network classified it as NWT. Generally, this
approach improved the prediction for cross model performance
compared to the network alone (Table 6). However, we also
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observed that in the case of ceftazidime, for AMR-Diag dataset pre-
diction using the ensemble approach, the accuracy dropped to 52%.
Also, no ceftazidime WT was predicted in the Nguyen et al. [11]



Table 4
Cross-performance of neural networks for prediction of E. coli AMR phenotype. Precision/recall for WT and NWT classes are given below the count of isolates.

TAZ MEM IMI ERT

WT NWT WT NWT WT NWT WT NWT

VAMPr [10] models & AMR-Diag genomic data 51/56 25/30 71/71 7/15 73/73 7/13 55/59 7/17
91%/91% 83%/83% 90%/100% 47%/47% 92%/100% 54%/93% 85%/93% 64%/41%

AMR-Diag models & VAMPr [10] genomic data 24/38 56/66 90/90 3/10 13/13 0/4 79/79 0/14
71%/63% 80%/85% 93%/100% 100%/30% 76%/100% 0%/0% 85%/100% 0%/0%

Table 5
Cross-performance of ML algorithms and datasets for prediction of K. pneumoniae AMR phenotype. Precision/recall for WT and NWT classes are given below the count of isolates.

Models/datasets TAZ MEM IMI

WT NWT WT NWT WT NWT

Nguyen et al. [11] models & AMR-Diag genomic data 0/36 38/38 0/52 22/22 5/54 16/20
0%/0% 51%/100% 0%/0% 30%/100% 55%/9% 25%/80%

AMR-Diag models & Nguyen et al. [11] genomic data 7/10 1096/1481 1025/1025 0/352 1000/1088 1/482
2%/70% 99%/74% 74%/100% 0%/0% 68%/92% 1%/0%

Table 6
Performance of neural networks ensemble for prediction of K. pneumoniae AMR phenotype. Two networks used in the ensemble are a network trained on data from Nguyen et al.
and a network trained on AMR-Diag data. Precision/recall for WT and NWT classes are given below the count of isolates.

Models/datasets TAZ MEM IMI

WT NWT WT NWT WT NWT

Networks ensemble & Nguyen et al. [11] data 0/10 1481/1481 974/1025 319/352 983/1028 290/322
0%/0% 100%/99% 97%/95% 86%/91% 97%/96% 86%/90%

Networks ensemble & AMR-Diag data excluded* 53/53 22/22 55/55 20/20
100%/100% 100%/100% 100%/100% 100%/100%
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data. This is due to the fact that the network trained on Nguyen
et al. [11] data assigned all isolates as NWT. Only 10 out of 1491
isolates used from Nguyen et al. [11] data were susceptible to cef-
tazidime, which indicates a certain input bias in the training data.

3.7. AMR-Diag networks are independent of the sequencing platform,
sample type and don’t require high genome coverage

We selected three E. coli, and three K. pneumoniae isolates from
Norway and re-sequenced them on the ONT MinION platform
using previously published protocol [6]. Phenotypes of all tested
E. coli isolates were predicted correctly. In the case of K. pneumo-
niae, all except 3/30 antibiotic-bacteria combinations were
wrongly predicted, two as ceftazidime-WT and one - as
cefotaxime-WT (Supplementary Table S).

In addition, we have also tested the performance of AMR-Diag
networks on previously published MinION sequencing data of
blood cultures spiked with CTX-M-containing E. coli and K. pneu-
moniae [6]. Here we took both partial data, generated up to the
point when the first sequence containing target AMR genes (10 –
59 min from the sequencing start), and all data generated through-
Table 7
Phenotype prediction of partial ONT MinION data of spiked blood cultures, sequencing data
was detected, as well as from the whole sequencing run. Predictions that correspond to t

Blood culture spiked
with

Time when first ARG was
detected

Phenotype prediction
At the time of ARG d

CTX

E. coli A2-39 59 min WT; 1.0/WT; 1.0

K. pneumoniae A2-23 40 min NWT; 1.0/NWT;
1.0

K. pneumoniae A2-37 10 min WT; 1.0/WT; 1.0
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out the whole sequencing run. Prediction results were identical in
both cases (Table 7). Interestingly, already after 40 min of sequenc-
ing, K. pneumoniae A2-23 was correctly assigned as NWT using our
networks. In the case of E. coli A2-39, AMR-Diag networks assigned
this isolate to a WT with regards to its resistance towards cef-
tazidime. For this isolate, MIC was measured by disk diffusion test,
and its zone diameter was 19 mm, whereas EUCAST WT/NWT cut-
off is 21 mm.

Moreover, there were ten isolates with <500 kB raw WGS data
(Supplementary Table A). All of these isolates were correctly
assigned to a WT class with regards to tested antibiotics. We also
tested how K. pneumoniae-AMR-Diag networks would perform
with closely related K. quasipneumoniae species. In 15 out of 18
antibiotic-bacteria combinations, they were correctly assigned to
their correct class (Supplementary Table T), which shows that
the network could potentially be used for K. quasipneumoniae.

3.8. Genotype-to-phenotype prediction takes <10 min

Timing tests were performed on a personal laptop with a com-
mon configuration (Core i7 CPU, 16 Gb RAM). The k-mer count is
were taken from the sequencing start-up to the time point, where the first target ARG
he correct phenotypic data are highlighted in bold.

(class; score)
etection/all sequence data included

TAZ MEM IMI ERT

WT; 1.0/WT; 1.0 WT; 0.99/WT;
0.99

WT; 1.0/WT;
1.0

WT; 0.98/WT;
0.99

NWT; 1.0/NWT;
1.0

WT; 1.0/WT; 1.0 WT; 1.0/WT;
1.0

WT; 1.0/WT; 1.0

WT; 1.0/WT; 0.98 WT; 1.0/WT; 1.0 WT; 1.0/WT;
1.0

WT; 1.0/WT; 1.0
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done outside of the AMR-Diag and can be performed using any pre-
ferred algorithm. We have used the script available from BBMap
[30], and in this case, it takes around 3 min per sequence data file.
Extraction of featured k-mers and genotype-to-phenotype predic-
tion are performed within the AMR-Diag algorithm, and on aver-
age, it also takes about 3 min per file, whereas prediction itself
requires only few seconds.
4. Discussion

With antibiotic resistance on the rise, we are steadily approach-
ing when we go back to the pre-antibiotic era, where any infection
that is now easily curable could become lethal [32]. Globally,
antibiotic resistance is not evenly distributed, and there is a large
gap between different countries. In a recent report from 2019,
Klein et al. have investigated the drug resistance index (DRI) for
41 countries [17]. They have compared the reported data on the
use of antibiotics and their resistance for the treatment of infec-
tions caused by microorganisms from the WHO priority list
(E. coli, K. pneumoniae, Acinetobacter baumanii, Pseudomonas aerug-
inosa, Staphylococcus aureus, Enterococcus faecium, and E. faecalis)
[4]. Overall, there was around four-fold difference between India
(highest DRI) and Norway (third-lowest DRI). In this study, we
report data on isolates both from Norway and India. To our knowl-
edge, this is the first study where these two geographical locations
across different ends of the spectrum are included for genotype-to-
phenotype prediction.

Different techniques were used for MIC assay in Indian and Nor-
wegian isolates. We did not compare these techniques directly, but
in a recent study performed on Campylobacter spp., authors com-
pared Sensititre (used in Norway) with E-test strips (used in India)
and found concordant results using these two methods [33]. Sim-
ilar results were reported by Canton et al. in S. aureus where they
observed good correlation for MRSA determination [34]. Bulik
et al. compared the MIC results for E-test, Sensititre and broth dilu-
tion assay in K. pneumoniae and also found promising concordance
between the three, recommending the use of Sensititre and E-test
for hospital settings where broth dilution test cannot be performed
manually [35].

In this study, there was a very good overlap between BLAKs that
were characteristic of phenotypic resistance towards antibiotics of
the same class for most cases. In all cases apart from E. coli – 3rd
gen. cephalosporin models, these BLAKs were characteristic of
the whole gene family, indicating that they target conserved
regions of these genes rather than specific variant-dependent
mutations. In the case of E. coli – carbapenem models, the majority
of BLAKs spanned the whole sequence of NDM genes (Supplemen-
tary Fig. 4), whereas for K. pneumoniae – carbapenem models, the
majority of BLAKs were located on the transpeptidase domain of
the OXA gene family (including both OXA-181 group carbapene-
mases and OXA-1 group cephalosporinases) (https://www.ebi.ac.
uk/interpro/protein/UniProt/P13661/) (Supplementary Fig. 5).
BLAKs from the TEM gene family spanned three distinct regions
of these genes, including a signal peptide, b-lactamase print, and
non-cytoplasmic domain (https://www.ebi.ac.uk/interpro/pro-
tein/unreviewed/Q6SJ61/) (Supplementary Fig. 5).

Previous studies [11] have suggested that a logical next step for
genotype-to-phenotype prediction will be to train a deeper model
to determine if the accuracy of ML methods can be further
improved. Moreover, a deep learning method could potentially
have more efficient memory usage and reduced computational
times [11]. We have built neural networks based on raw unassem-
bled data, which allows rapid phenotype prediction within min-
utes after the sequencing file is ready.
1904
Further analyses directly from real-time sequencing of blood
cultures, rather than the pure culture, would also provide more
rapid results but require algorithms for identifying pathogens
and eliminating host DNA and other contaminants. In a recently
published paper on rapid AMR detection from positive blood cul-
tures [6], we have shown that the use of MinION sequencing can
reduce the time needed for bacteria identification and AMR detec-
tion to less than four hours from the time when blood culture is
flagged positive. Here we have tested AMR-Diag networks on a
whole run MinION data from this publication [6] and on partial
data that corresponded to the first detected ARG and ranged from
10 to 59 min from the sequencing start. Interestingly, prediction
rates were independent of the sequencing data amount as long
as one ARG was detected. We have also previously shown that in
most cases, it takes around 6–8 h of MinION sequencing to cover
99.9% of the genome at least once. Given this estimate, we specu-
late that using AMR-Diag networks coupled with MinION sequenc-
ing of blood cultures, AMR-Diag networks can predict phenotype
as fast as around 1 to 6–8 h from the sequencing start, i.e., 4–
11 h after the blood culture is flagged positive.

It has also been previously suggested that error rates of ONT
may be too high for effective MIC prediction with an ML method,
and it would need to either incorporate an error correction model
for processing MinION data or regenerate the model using gen-
omes sequenced with nanopore sequencing [11]. Although AMR-
Diag networks were trained using Illumina data solely, they per-
formed well with ONT MinION generated data showing the flexi-
bility of the method and possibility of direct use of MinION reads
without any specific preprocessing. However, few MinION-
sequenced strains were classified wrong, and it would be interest-
ing to address whether incorporation of error-correcting algo-
rithms prior to phenotype prediction would increase sensitivity.
Moreover, for some beta-lactamases (f.ex. SHV, OXA), a single point
mutation can completely modify the phenotype [36,37]. Therefore,
a low coverage approach with a relatively high error rate might
present a high risk of interpretation mistakes. This limitation
should in future be addressed with additional experiments on ESBL
E. coli or K. pneumoniae negative for CTX-M enzymes and with dif-
ferent carbapenemase-producing strains.

Recently, ResFinder [25] has been updated enabling researchers
to search for antibiotic resistance genes using raw unassembled
data. They also now provide phenotype prediction based on the
detected ARGs [38]. In our data, for example, isolates E12 and
E19 possessed OXA-181 gene and were thus assumed resistant
towards imipenem by ResFinder. These isolates, however, were
sensitive towards this drug. AMR-Diag network, on the other hand,
correctly classified the isolate as WT (S). Isolates K21 and E15 did
not possess ARGs for resistance towards meropenem according to
ResFinder, although they were phenotypically resistant and pre-
dicted as NWT by AMR-Diag networks. Unlike search for ARGs,
AMR-Diag networks are based not on the gene detection per se,
but rather on detection of a few 21 bp k-mers from a combination
of various ARGs. These examples highlight the usefulness of ML
approaches for phenotypic prediction over more simple techniques
that focus on resistance gene detection.

To assess the AMR-Diag networks’ performance with regards to
previously published ML models, we have used data from VAMPr
[10] and Nguyen et al. [11] and cross-checked how the models
would perform on the isolates from a different dataset. Generally,
all models, including AMR-Diag, tended to have lower accuracy for
the unseen data as compared to their respective datasets. The rea-
son for that lies most likely in different antibiotic resistance mech-
anisms that are presented in different datasets. For example, the
most notable difference was seen in the carbapenemase resistance
genes of K. pneumoniae. Nguyen et al. K. pneumoniae isolate con-
tained the KPC gene, whereas, in AMR-Diag, NDM genes were pre-

https://www.ebi.ac.uk/interpro/protein/UniProt/P13661/
https://www.ebi.ac.uk/interpro/protein/UniProt/P13661/
https://www.ebi.ac.uk/interpro/protein/unreviewed/Q6SJ61/
https://www.ebi.ac.uk/interpro/protein/unreviewed/Q6SJ61/
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sent. Since both of these genes are paramount for carbapenem
resistance, we decided to train a separate network based on
Nguyen et al. data and ensemble with AMR-Diag trained models.
This approach largely increased the overall accuracy for both data-
sets. Given the abundance of various resistance mechanisms and
scarcity of sequencing data of phenotypically characterized bacte-
rial isolates, building a universal phenotype prediction network is
still a big challenge. However, we believe that this is not an impos-
sible task, and it can be done whenmore and diverse genotypic and
phenotypic linked data becomes publicly available. Medical data
are also prone to bias problem due to unequal number of samples
in each class [39]. Therefore, ideal dataset should probably include
even number of representatives of a) various resistance mecha-
nisms and b) various genotypes of isolates that are susceptible to
the given drug. Until then, we believe that the employment of sev-
eral carefully trained models that cover various mechanisms in the
ensemble could be a good option for more accurate phenotype pre-
diction. Since resistance towards b-lactams can also be caused by
higher activity of efflux pumps or loss of porins [40], inclusion of
these mechanisms to the prediction model may also improve the
discussed models. Another limitation of the AMR-Diag approach
and other approaches based on in-built databases is its lack of plas-
ticity with regards to updates from CARD and ResFinder. Therefore,
exploring self-retraining systems capable of adding new features
once ARG database updates are available would also be a big step
towards faster and more reliable AST prediction.
5. Conclusion

In this work, we have trained neural networks for phenotype
prediction of AST from genomic data of E. coli, and K. pneumoniae
isolates from blood, urine, pus, sputum, and other biological fluids
of Norwegian and Indian patients. Apart from ampicillin resistance,
networks exhibited overall accuracy from 94% to 100% and were
capturing resistance mostly caused by TEM, OXA, CTX-M, and
NDM genes. Comparison of AMR-Diag networks to previously pub-
lished genotype to phenotype prediction algorithms that target
other mechanisms revealed dataset-dependent performance of all
algorithms. However, the accuracy for cross-datasets was
increased when they were used in the ensemble. In this work,
we also demonstrate the successful use of AMR-Diag networks
with ONT MinION data, both from the whole sequencing run of
bacterial isolates and from a subset of sequencing data of spiked
blood cultures (from the sequencing start to the first output file
where the target ARGs were detected). This approach allows
genotype-to-phenotype prediction as fast as around 1–8 h from
the sequencing start.
6. Data availability

The AMR-Diag isolates genomic data, and phenotypic informa-
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com/rafiahmad-lab/AMR-Diag.
Authors contributions

R.A., P.K, U.N., K.P., A.K., conceived the study; A.M.T., A.K., and P.
S. collected clinical isolates; P.S. and S.A.F. performed the experi-
mental work; E.A. performed data analysis in discussion with R.
A. and K.P.; E.A. and R.A. drafted the manuscript. All authors partic-
ipated in the design of the experiment and edited the manuscript.
All authors agree with the final version of the manuscript.
1905
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgments

This work was funded by the Research Council of Norway (grant
nr. 273609 to AMR-Diag) and the Indian Council of Medical
Research (sanction nr. AMR/IN/120/2017-ECD-II). The authors
would like to thank Helene Clementine Bouras for performing
the MIC determination and Ørjan Samuelsen for fruitful scientific
discussions and reviewing the manuscript.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2021.03.027.
References

[1] Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS,
et al. Attributable deaths and disability-adjusted life-years caused by
infections with antibiotic-resistant bacteria in the EU and the European
Economic Area in 2015: a population-level modelling analysis. Lancet Infect
Dis 2019;19(1):56–66.

[2] IACG. No time to wait: securing the future from drug-resistant infections.
Report to the Secretary-General of the United Nations, 2019.

[3] Thakuria B, Lahon K. The Beta Lactam Antibiotics as an Empirical Therapy in a
Developing Country: An Update on Their Current Status and
Recommendations to Counter the Resistance against Them. J Clin Diagn Res
2013;7(6):1207–14.

[4] WHO, Global Priority list of antibiotic-resistant bacteria to guide research,
discovery, and development of new antibiotics. 2017.

[5] WHO. Health-care associated infections. Fact Sheet. 2015; Available from:
https://www.who.int/gpsc/country_work/gpsc_ccisc_fact_sheet_en.pdf.

[6] Taxt AM, Avershina E, Frye SA, Naseer U, Ahmad R. Rapid identification of
pathogens, antibiotic resistance genes and plasmids in blood cultures by
nanopore sequencing. Sci Rep 2020;10(1). https://doi.org/10.1038/s41598-
020-64616-x.

[7] Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, et al. Initiation of
inappropriate antimicrobial therapy results in a fivefold reduction of survival
in human septic shock. Chest 2009;136(5):1237–48.

[8] Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, et al.
The role of whole genome sequencing in antimicrobial susceptibility testing of
bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect 2017;23
(1):2–22.

[9] Macesic N, Bear Don’t Walk OJ, Pe’er I, Tatonetti NP, Peleg AY, Uhlemann A-C,
et al. Predicting Phenotypic Polymyxin Resistance in Klebsiella pneumoniae
through Machine Learning Analysis of Genomic Data. mSystems 2020;5(3).
https://doi.org/10.1128/mSystems.00656-19.

[10] Kim J, Greenberg DE, Pifer R, Jiang S, Xiao G, Shelburne SA, et al. VAMPr:
VAriant Mapping and Prediction of antibiotic resistance via explainable
features and machine learning. PLoS Comput Biol 2020;16(1):e1007511.

[11] Nguyen M, Brettin T, Long SW, Musser JM, Olsen RJ, Olson R, et al. Developing
an in silico minimum inhibitory concentration panel test for Klebsiella
pneumoniae. Sci Rep 2018;8(1). https://doi.org/10.1038/s41598-017-18972-
w.

[12] Su M, Satola SW, Read TD, McAdam AJ. Genome-Based Prediction of Bacterial
Antibiotic Resistance. J Clin Microbiol 2019;57(3). https://doi.org/10.1128/
JCM.01405-18.

[13] Davis JJ et al. Antimicrobial Resistance Prediction in PATRIC and RAST. Sci Rep
2016;6:27930.

[14] Yang, Y., et al. RiBoSOM: rapid bacterial genome identification using self-
organizing map implemented on the synchoros SiLago platform. in
Proceedings of the 18th International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation. 2018.

[15] Stathis, D., et al. Approximate Computing Applied to Bacterial Genome
Identification using Self-Organizing Maps. in 2019 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). 2019. IEEE.

[16] Pataki BÁ, Matamoros S, van der Putten BCL, Remondini D, Giampieri E, Aytan-
Aktug D, et al. Understanding and predicting ciprofloxacin minimum
inhibitory concentration in Escherichia coli with machine learning. Sci Rep
2020;10(1). https://doi.org/10.1038/s41598-020-71693-5.

[17] Klein EY, Tseng KK, Pant S, Laxminarayan R. Tracking global trends in the
effectiveness of antibiotic therapy using the Drug Resistance Index. BMJ Glob
Health 2019;4(2):e001315. https://doi.org/10.1136/bmjgh-2018-001315.

https://github.com/rafiahmad-lab/AMR-Diag
https://github.com/rafiahmad-lab/AMR-Diag
https://doi.org/10.1016/j.csbj.2021.03.027
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0005
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0005
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0005
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0005
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0005
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0010
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0010
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0015
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0015
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0015
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0015
https://www.who.int/gpsc/country_work/gpsc_ccisc_fact_sheet_en.pdf
https://doi.org/10.1038/s41598-020-64616-x
https://doi.org/10.1038/s41598-020-64616-x
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0035
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0035
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0035
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0040
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0040
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0040
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0040
https://doi.org/10.1128/mSystems.00656-19
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0050
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0050
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0050
https://doi.org/10.1038/s41598-017-18972-w
https://doi.org/10.1038/s41598-017-18972-w
https://doi.org/10.1128/JCM.01405-18
https://doi.org/10.1128/JCM.01405-18
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0065
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0065
https://doi.org/10.1038/s41598-020-71693-5
https://doi.org/10.1136/bmjgh-2018-001315


E. Avershina, P. Sharma, A.M. Taxt et al. Computational and Structural Biotechnology Journal 19 (2021) 1896–1906
[18] Harstad H, Ahmad R, Bredberg A. Nanopore-based DNA sequencing in clinical
microbiology: preliminary assessment of basic requirements. bioRxiv
2018:382580.

[19] CLSI, Performance standards for antimicrobial susceptibility testing: 25th
international supplement. CLSI document M100-S29. 2019, Clinical and
Laboratory Standards Institute (Wayne, PA).

[20] EUCAST. MIC- and Inhibition zone diameter distributions of microorganisms
without and with resistance mechanisms. 2020; Available from: http://mic.
eucast.org/Eucast2.

[21] Wilson, K., Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol,
2001. Chapter 2: p. Unit 2 4.

[22] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics 2014;30(15):2114–20.

[23] Bankevich Anton, Nurk Sergey, Antipov Dmitry, Gurevich Alexey A, Dvorkin
Mikhail, Kulikov Alexander S, et al. SPAdes: a new genome assembly algorithm
and its applications to single-cell sequencing. J Comput Biol 2012;19
(5):455–77.

[24] Jia Baofeng, Raphenya Amogelang R, Alcock Brian, Waglechner Nicholas, Guo
Peiyao, Tsang Kara K, et al. CARD 2017: expansion and model-centric curation
of the comprehensive antibiotic resistance database. Nucleic Acids Res
2017;45(D1):D566–73.

[25] Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al.
Identification of acquired antimicrobial resistance genes. J Antimicrob
Chemother 2012;67(11):2640–4.

[26] Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics
2014;30(14):2068–9.

[27] Page Andrew J, Cummins Carla A, Hunt Martin, Wong Vanessa K, Reuter
Sandra, Holden Matthew TG, et al. Roary: rapid large-scale prokaryote pan
genome analysis. Bioinformatics 2015;31(22):3691–3.

[28] Katoh, K. and D.M. Standley, MAFFT multiple sequence alignment software
version 7: improvements in performance and usability. Mol Biol Evol, 2013. 30
(4): p. 772-80.
1906
[29] Minh, B.Q., et al., IQ-TREE 2: New Models and Efficient Methods for
Phylogenetic Inference in the Genomic Era. Mol Biol Evol, 2020. 37(5): p.
1530-1534.

[30] Bushnell, B. BBMap short read aligner, and other bioinformatic tools.;
Available from: https://jgi.doe.gov/data-and-tools/bbtools/.

[31] Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-Tarraga A, Cheng Y, et al. The
European Nucleotide Archive. Nucleic Acids Res 2011;39(Database):D28–31.

[32] O’Neill, J., Resistance: Tackling a crisis for the health and wealth of nations.
2014.

[33] Azrad Maya, Tkhawkho Linda, Isakovich Natalia, Nitzan Orna, Peretz Avi.
Antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli:
comparison between Etest and a broth dilution method. Ann Clin Microbiol
Antimicrob 2018;17(1). https://doi.org/10.1186/s12941-018-0275-8.

[34] Canton R et al. Etest(R) versus broth microdilution for ceftaroline MIC
determination with Staphylococcus aureus: results from PREMIUM, a
European multicentre study. J Antimicrob Chemother 2017;72(2):431–6.

[35] Bulik, C.C., et al., Comparison of meropenem MICs and susceptibilities for
carbapenemase-producing Klebsiella pneumoniae isolates by various testing
methods. J Clin Microbiol, 2010. 48(7): p. 2402-6.

[36] Evans BA, Amyes SG. OXA beta-lactamases. Clin Microbiol Rev 2014;27
(2):241–63.

[37] Liakopoulos A, Mevius D, Ceccarelli D. A Review of SHV Extended-Spectrum
beta-Lactamases: Neglected Yet Ubiquitous. Front Microbiol 2016;7:1374.

[38] Bortolaia, V., et al., ResFinder 4.0 for predictions of phenotypes from
genotypes. J Antimicrob Chemother, 2020. 75(12): p. 3491-3500.

[39] Mac Namee B, Cunningham P, Byrne S, Corrigan OI. The problem of bias in
training data in regression problems in medical decision support. Artif Intell
Med 2002;24(1):51–70.

[40] Fernandez, L. and R.E. Hancock, Adaptive and mutational resistance: role of
porins and efflux pumps in drug resistance. Clin Microbiol Rev, 2012. 25(4): p.
661-81.

http://refhub.elsevier.com/S2001-0370(21)00099-4/h0090
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0090
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0090
http://mic.eucast.org/Eucast2
http://mic.eucast.org/Eucast2
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0110
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0110
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0115
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0115
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0115
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0115
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0120
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0120
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0120
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0120
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0125
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0125
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0125
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0130
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0130
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0135
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0135
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0135
https://jgi.doe.gov/data-and-tools/bbtools/
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0155
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0155
https://doi.org/10.1186/s12941-018-0275-8
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0170
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0170
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0170
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0180
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0180
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0185
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0185
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0195
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0195
http://refhub.elsevier.com/S2001-0370(21)00099-4/h0195

	AMR-Diag: Neural network based genotype-to-phenotype prediction �of resistance towards β-lactams in Escherichia coli and Klebsiella pneumoniae
	1 Introduction
	2 Materials and methods
	2.1 Bacterial strains
	2.2 DNA isolation and sequencing
	2.3 Assembly-dependent genotyping
	2.4 Assembly-free genotyping
	2.4.1 β-lactamase associated k-mers (BLAKs) database development
	2.4.2 Mapping of bacterial genomes to BLAKs database
	2.4.3 Neural network modeling


	3 Results
	3.1 Phenotypic characteristics of the dataset
	3.2 Genotypic characteristics of the dataset
	3.2.1 WGS stats
	3.2.2 Resistome analysis
	3.2.3 Multi locus sequence typing

	3.3 β-lactamase k-mers associated with wild type/non-wild type delineation are drug class and species-specific
	3.4 Wild type vs. non-wild type phenotype prediction
	3.4.1 Prediction of wild type vs non-wild type
	3.4.2 Prediction of S/R phenotypes

	3.5 Cross-performance of phenotype prediction machine learning algorithms
	3.6 Ensemble networks for prediction of phenotype across different studies improve their performance on unseen data
	3.7 AMR-Diag networks are independent of the sequencing platform, sample type and don’t require high genome coverage
	3.8 Genotype-to-phenotype prediction takes <10 min

	4 Discussion
	5 Conclusion
	6 Data availability
	Authors contributions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


