CORRECTION

Open Access

Correction: Path-level interpretation of Gaussian graphical models using the pair-path subscore

Nathan P. Gill¹, Raji Balasubramanian², James R. Bain^{3,4,5}, Michael J. Muehlbauer^{3,4,5}, William L. Lowe Jr.¹ and Denise M. Scholtens^{1*}

The original article can be found online at https://doi.org/10.1186/ s12859-021-04542-5.

*Correspondence: dscholtens@northwestern.edu

 Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
Department of Biostatistics and Epidemiology, University of Massachusetts - Amherst, Amherst, MA, USA
Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC, USA
Duke Molecular Physiology Institute, Durham, NC, USA
Duke University School of Medicine, Durham, NC, USA

Correction to: BMC Bioinformatics (2022) 23:12 https://doi.org/10.1186/s12859-021-04542-5

Following publication of the original article [1], the authors would like to add additional references and a paragraph under the heading Methods. The additional paragraph and references are given below.

Equation (9) had previously been stated in [2]. This paper goes on to use what we have called γp (equation (10), the unsigned numerator in PPS) as a measure of the contribution of a path to the correlation between its terminal nodes. Additional papers ([3] and [4]) discuss the interpretation of these path weights and expand the concept to path-level decompositions of other measures of association between network nodes. We note that, in these papers, the quantity of interest is γp , whereas in this paper the quantity of interest is the PPS (12), and we provide a detailed account of its properties and behavior when applied to real data. A key difference between the PPS and the γp is that the PPS measures the proportion of the correlation attributable to a path, whereas γp gives the raw contribution. Also distinctive in our paper is the availability of a software package to implement PPS. Our software can also be used to implement the methods of [2], [3], and [4], since the γp themselves are also available.

[2] Jones, B., West, M.: Covariance decomposition in undirected gaussian graphical models. Biometrika 92, 779–786 (2005)

[3] Roverato, A., Castelo, R.: The networked partial correlation and its ap- plication to the analysis of genetic interactions. Journal of the Royal Statistical Society Series *C*, 647–665 (2016)

[4] Roverato, A., Castelo, R.: Path weights in concentration graphs. Biometrika 107, 705–722 (2020)

The original article [1] has been corrected.

Published online: 04 November 2022

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, and indicate if changes were made. The images or other third party material is not included in the article's Creative Commons licence, and indicate otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdommain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reference

1. Gill NP, et al. Path-level interpretation of Gaussian graphical models using the pair-path subscore. BMC Bioinform. 2022;23:12. https://doi.org/10.1186/s12859-021-04542-5.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

