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Abstract: After Saccharomyces cerevisiae cells cultured in a medium with glucose consume glucose,
the sub-populations of quiescent and non-quiescent cells develop in the budding yeast culture.
An age-related chronology of quiescent and non-quiescent yeast cells within this culture is discussed
here. We also describe various hallmarks of quiescent and non-quiescent yeast cells. A complex
aging-associated program underlies cellular quiescence in budding yeast. This quiescence program
includes a cascade of consecutive cellular events orchestrated by an intricate signaling network.
We examine here how caloric restriction, a low-calorie diet that extends lifespan and healthspan in
yeast and other eukaryotes, influences the cellular quiescence program in S. cerevisiae. One of the
main objectives of this review is to stimulate an exploration of the mechanisms that link cellular
quiescence to chronological aging of budding yeast. Yeast chronological aging is defined by the length
of time during which a yeast cell remains viable after its growth and division are arrested, and it
becomes quiescent. We propose a hypothesis on how caloric restriction can slow chronological aging
of S. cerevisiae by altering the chronology and properties of quiescent cells. Our hypothesis posits
that caloric restriction delays yeast chronological aging by targeting four different processes within
quiescent cells.

Keywords: yeast; cellular quiescence; cellular aging; cell cycle; properties of quiescent yeast;
quiescence entry; quiescence maintenance; metabolism; caloric restriction; yeast chronological aging

1. Introduction

When Saccharomyces cerevisiae cells are cultured under aerobic conditions in a nutrient-rich
liquid medium with 2% glucose, they are not limited in calorie supply [1–6]. They exist under
so-called non-caloric restriction (non-CR) conditions [1–6]. After these cells consume glucose as a
sole exogenous carbon source, they enter a diauxic shift period [3,4]. At the time of the diauxic shift,
yeast cells decelerate the growth and switch the mode of their metabolism from aerobic alcoholic
fermentation to aerobic ethanol catabolism and mitochondrial respiration [3,4]. During the diauxic
shift, some S. cerevisiae cells in the culture arrest their cell-division cycle at the nutrient-dependent
checkpoint “START A” in the late G1 phase [7–11]. At the time of such cell cycle arrest, the budding
yeast culture begins to accumulate the sub-populations of quiescent (Q) and non-quiescent (NQ)
cells [7–11]. The Q and NQ cells in yeast cultures under non-CR conditions differ from each other in
physical, morphological, reproductive, biochemical, and physiological properties [7–11]. A signaling
network that integrates a distinct set of the nutrient-sensing signaling pathways and protein kinases
orchestrates the development of properties characteristic of Q cells [4,9]. After S. cerevisiae cells cultured
under non-CR conditions consume ethanol as a carbon source, they enter the stationary (ST) phase
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of culturing and the process of their chronological aging begins [3–6]. The chronological aging of
S. cerevisiae is assessed by measuring the percentage of yeast cells that in liquid cultures remain viable
at different time points following the entry of a cell population into the non-proliferative ST phase of
culturing [5,6]. Here, we compare the properties of Q and NQ cells cultured under non-CR conditions.
Noteworthy, the pace of yeast chronological aging and the longevity of chronologically aging yeast
under non-CR conditions depend on the cell entry into and advancement through a quiescence program.
S. cerevisiae cells that are not limited in calorie supply enter this cellular quiescence program during the
diauxic shift and advance through it during the ST phase of culturing [7–12]. As any programmed
biological event, this cellular quiescence program (1) is a genetically defined, regulated process, (2) can
be accelerated or decelerated by genetic manipulations that alter the abundancies and/or activities of
only specific proteins, (3) integrates a cascade of consecutive cellular events that follow each other in a
particular order and are regulated by a specific signaling network, (4) is initiated in response to certain
stimuli (e.g., nutrient deprivation or chronological aging), and (5) provides a particular benefit for the
development, survival, and/or stress resistance of a cell population [7–17].

The chronological aging of S. cerevisiae can be slowed down, and its longevity can be extended by
CR [1,2], a low-calorie dietary regimen without malnutrition that prolongs lifespan and postpones the
onset of age-related pathologies in other yeast species, nematodes, fruit flies, fishes, dogs, rodents,
and primates [18–20]. The effects of CR on chronological aging of S. cerevisiae are usually investigated
in budding yeast cultured in a nutrient-rich or nutrient-limited synthetic minimal medium initially
containing 0.2% or 0.5% glucose [2,5,6]. In contrast to a nutrient-limited synthetic minimal medium,
a nutrient-rich medium has plenty of amino acids, nucleotides, vitamins, and other nutrients [21–23].
Therefore, the use of a nutrient-rich medium with 0.2% or 0.5% glucose for chronological aging studies
under CR conditions provides several important advantages as compared to the use of a minimal
synthetic medium [2].

We previously purified the Q and NQ cell populations from budding yeast cultured in a
nutrient-rich medium under CR or non-CR conditions [24,25]. We recovered these cell populations
at different stages of the chronological aging process and compared their properties [24,25]. Here,
we discuss how CR slows the conversion of Q cells into NQ cells because this low-calorie diet alters
the specific properties of Q cells. We also examine the evidence that the ability of CR to alter these
properties of Q cells is responsible for the CR-dependent delay of chronological aging in budding yeast.

2. Traits of Q and NQ Cells Found in Yeast Populations Cultured Under Non-CR Conditions

Those cells in a budding yeast population cultured under non-CR conditions that undergo cell-cycle
arrest enter a non-proliferative state called G0 [7–12]. They form the Q cell sub-population [7–12].
In contrast, those cells in the budding yeast population not limited in calorie supply that does not
arrest their cell cycle give rise to at least three sub-populations of NQ cells [7–12]. The Q and NQ
cell sub-populations differ from each other in many traits. These traits are discussed below and
schematically depicted in Figure 1.

2.1. Traits of Q Cells under Non-CR Conditions

Q cells of S. cerevisiae cultured under non-CR conditions are mostly unbudded and uniformly
sized daughter cells that are surrounded by a thick cell wall, refract light when viewed through a
phase-contrast microscope, and have a high buoyant density (Figure 1) [7,8,10–12,24]. These cells
display a high rate of metabolism, amass glycogen and trehalose, have actively respiring mitochondria
capable of maintaining a high electrochemical potential across the inner membrane, exhibit low
concentrations of reactive oxygen species (ROS), and sustain a low extent of oxidative damage to
cellular proteins and lipids (Figure 1) [7–12,24]. Q cells of S. cerevisiae cultured under non-CR conditions
can synchronously re-enter mitosis and reproduce after being transferred from a nutrient-depleted liquid
medium to a surface of a nutrient-rich solid medium or a fresh liquid medium (Figure 1) [7,8,10–12,24].
These cells exhibit low susceptibility to chronic (long-term) thermal and oxidative stresses, rarely
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undergo mutations that affect mitochondrial and other cellular functions, and postpone an age-related
onset of the apoptotic and necrotic forms of regulated cell death (RCD) (Figure 1) [7–12,24].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 14 

 

 
Figure 1. At the time of the diauxic shift, a Saccharomyces cerevisiae culture under non-caloric restriction 
(CR) conditions begins to accumulate a sub-population of quiescent (Q) cells and a sub-population 1 
of non-quiescent (NQ) cells. NQ cells of the sub-population 1 undergo a stepwise conversion into NQ 
cells of the sub-population 3. The Q and NQ cell sub-populations differ from each other in many 
distinct traits. In chronologically aging S. cerevisiae cultures, Q cells undergo conversion into NQ cells 
of the sub-population 1 in an age-related manner. See the text for more details. Abbreviations: IMM, 
the inner mitochondrial membrane; IPODs, insoluble protein deposits; PSGs, proteasome storage 
granules; RCD, regulated cell death; ROS, reactive oxygen species. 

NQ cells in the sub-population 2 are first- and higher-generation mother cells of low buoyant 
density that are replicatively old (Figure 1) [7–12]. These NQ cells exhibit a high rate of metabolism, 
like NQ cells in sub-population 1 (Figure 1) [7–12]. Unlike NQ cells in the sub-population 1, NQ cells 
in the sub-population 2 cannot reproduce if transferred from a nutrient-depleted medium to a 
nutrient-rich medium (Figure 1) [7–12]. It is conceivable, therefore, that NQ cells in the sub-
population 2 may originate from NQ cells in the sub-population 1 (Figure 1) [7–12]. 

Most NQ cells in the sub-population 3 are reproductively incompetent cells displaying the 
characteristic traits of the apoptotic and necrotic forms of RCD (Figure 1) [7–12]. These cells are 
believed to be descendants of NQ cells in sub-population 2 (Figure 1) [7–12]. 

It is feasible that in chronologically aging S. cerevisiae cultures under non-CR conditions the 
pathway of a stepwise transformation of NQ cells in the sub-population 1 into NQ cells in the sub-
population 3 is sustained via an age-related conversion of Q cells into NQ cells that compose the sub-
population 1 (Figure 1, red arrow) [7–12,24]. Mechanisms regulating such age-related conversion of 
Q cells of the sub-population 1 of NQ cells remain unknown. 

3. CR Diet Alters an Age-Related Chronology and Properties of Q and NQ Cells Found in Yeast 
Populations 

In a recent study, the Q and NQ cell sub-populations were purified from differently aged S. 
cerevisiae populations cultured in a nutrient-rich medium under CR or non-CR conditions [24]. A 
comparative analysis of these cell sub-populations has shown that the CR diet revises an age-related 

Figure 1. At the time of the diauxic shift, a Saccharomyces cerevisiae culture under non-caloric restriction
(CR) conditions begins to accumulate a sub-population of quiescent (Q) cells and a sub-population 1 of
non-quiescent (NQ) cells. NQ cells of the sub-population 1 undergo a stepwise conversion into NQ cells
of the sub-population 3. The Q and NQ cell sub-populations differ from each other in many distinct
traits. In chronologically aging S. cerevisiae cultures, Q cells undergo conversion into NQ cells of the
sub-population 1 in an age-related manner. See the text for more details. Abbreviations: IMM, the inner
mitochondrial membrane; IPODs, insoluble protein deposits; PSGs, proteasome storage granules; RCD,
regulated cell death; ROS, reactive oxygen species.

Recent findings revealed many other traits characteristic of Q cells in S. cerevisiae cultures not
limited in calorie supply. Because these traits have been comprehensively discussed elsewhere [17],
we outline them below only briefly. Q cells of budding yeast cultured under non-CR conditions have
some heat-shock proteins relocated from the cytosol to the nucleus; they amass other heat-shock
proteins and many metabolic and non-metabolic enzymes within multiple cytosolic foci or filaments
(Figure 1) [17,26–32]. These cells also display altered nuclear organization, global changes in the
topography of nuclear chromosomes, and substantial alterations in the transcription pattern for
many nuclear genes (Figure 1) [17,33–41]. Q cells of S. cerevisiae under non-CR conditions enhance
their ability to sustain cellular proteostasis by employing the following three mechanisms: (1) by
assembling P-bodies and stress granules for mRNA stabilization and storage (respectively) in the
cytosol (Figure 1) [32,42–44], (2) by routing dysfunctional proteasome subunits from the nucleus
to the so-called insoluble protein deposits (IPODs) for quality control (Figure 1) [45], and (3) by
sorting functional proteasome subunits from the nucleus to the so-called proteasome storage granules
(PSGs) for the protection from degradation (Figure 1) [46–49]. Q cells of budding yeast under non-CR
conditions re-arrange their cytoskeleton. These cells dismantle an elaborate network of dynamic
actin cables and develop spheroid actin bodies, which consist of stable actin filaments (Figure 1) [50].
Q cells also disassemble a cytosolic array of dynamic microtubules and build a long bundle of stable
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microtubules in the nucleus (Figure 1) [34]. Q cells of S. cerevisiae under non-CR conditions undergo
a fragmentation of their dynamic network of tubular mitochondria into many small and globular
mitochondria concentrated at the cell periphery (Figure 1) [51].

Although mechanisms underlying the regulated establishment of many traits characteristic of Q cells
under non-CR conditions remain unknown, some of these traits are essential contributors to the abilities of Q
cells to exit quiescence, re-enter the cell cycle, and resume proliferation [9–12,17,24,26,29,34,47–50]. Moreover,
some of these traits (but not all of them) also contribute to longevity assurance in chronologically aging
budding yeast [9–12,24,34,39,47–50]. Mechanisms that link these essential traits of Q cells to their exit
from quiescence, proliferation, and chronological aging are presently unexplored.

2.2. Traits of NQ Cells under Non-CR Conditions

Three distinct sub-populations of NQ cells exist in an S. cerevisiae culture under non-CR
conditions [7–12].

Most NQ cells present in the sub-population 1 are first- and higher-generation mother cells,
although some daughter cells can also be found there (Figure 1) [7–12]. Most NQ cells in the
sub-population 1 have one or more bud scars on their surface [7–12]. Because each bud scar is formed
on the surface of a mother cell when it buds off a new daughter cell [52–54], the NQ cells in the
sub-population 1 are mainly replicatively older than the daughter Q cells (Figure 1) [7–12,24,55–57].
Akin to Q cells, the NQ cells in the sub-population 1 are metabolically active (Figure 1) [7–12,24].
These NQ cells can reproduce after being transferred from a nutrient-depleted medium to a nutrient-rich
medium (Figure 1) [7–12,24]. Unlike Q cells, the NQ cells in the sub-population 1 have a low buoyant
density and display impaired mitochondrial respiration, high concentrations of ROS, and elevated
frequencies of mutations that impair mitochondrial and other cellular functions (Figure 1) [7–12,24].

NQ cells in the sub-population 2 are first- and higher-generation mother cells of low buoyant
density that are replicatively old (Figure 1) [7–12]. These NQ cells exhibit a high rate of metabolism,
like NQ cells in sub-population 1 (Figure 1) [7–12]. Unlike NQ cells in the sub-population 1, NQ
cells in the sub-population 2 cannot reproduce if transferred from a nutrient-depleted medium to a
nutrient-rich medium (Figure 1) [7–12]. It is conceivable, therefore, that NQ cells in the sub-population
2 may originate from NQ cells in the sub-population 1 (Figure 1) [7–12].

Most NQ cells in the sub-population 3 are reproductively incompetent cells displaying the
characteristic traits of the apoptotic and necrotic forms of RCD (Figure 1) [7–12]. These cells are
believed to be descendants of NQ cells in sub-population 2 (Figure 1) [7–12].

It is feasible that in chronologically aging S. cerevisiae cultures under non-CR conditions the
pathway of a stepwise transformation of NQ cells in the sub-population 1 into NQ cells in the
sub-population 3 is sustained via an age-related conversion of Q cells into NQ cells that compose the
sub-population 1 (Figure 1, red arrow) [7–12,24]. Mechanisms regulating such age-related conversion
of Q cells of the sub-population 1 of NQ cells remain unknown.

3. CR Diet Alters an Age-Related Chronology and Properties of Q and NQ Cells Found in
Yeast Populations

In a recent study, the Q and NQ cell sub-populations were purified from differently aged S. cerevisiae
populations cultured in a nutrient-rich medium under CR or non-CR conditions [24]. A comparative
analysis of these cell sub-populations has shown that the CR diet revises an age-related chronology
of Q and NQ cells and alters several traits characteristic of these cells [24]. The effects of CR on the
chronology and traits of Q and NQ cells are discussed below and schematically depicted in Figure 2.

CR creates a sub-population of high-density Q cells by arresting the cell-division cycle at a
different checkpoint in the G1 phase than the one responsible for the formation of high-density Q
cells under non-CR conditions [24,25]. After cells consume glucose under non-CR conditions, the
formation of the high-density Q cell sub-population and entry into the G0 state occur in late G1 [7–11].
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In contrast, after cells consume glucose under CR conditions, the formation of the high-density Q cell
sub-population and entry into the G0 state happen at a checkpoint in early G1 (Figure 2A) [24].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 14 
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Figure 2. The caloric restriction (CR) diet alters an age-related chronology and specific traits of
quiescent (Q) and non-quiescent (NQ) cell sub-populations. These aspects of an age-related chronology
and these specific traits are named in different panels of the figure. They include the following:
cell cycle arrest and the formation of high-density Q cells (A), maximal abundance of low-density
Q cells (B), a colony-forming ability of a cell (C), an ability of a cell population to synchronously
re-enter mitosis (D), glycogen and trehalose concentrations (E), triacylglycerol (TAG) concentration (F),
cardiolipin (CL) concentration (G), mitochondrial respiration and the electrochemical potential across
the inner mitochondrial membrane (∆Ψm) (H), cellular reactive oxygen species (ROS) concentrations
(I), oxidative damage to proteins, lipids and DNA (J), resistance to chronic thermal and oxidative
stresses (K), an age-related onset of an apoptotic or necrotic form of regulated cell death (RCD) (L) and
cell susceptibility to the exogenously induced apoptotic and necrotic RCD (M). See the text for more
details. Other abbreviations: CL, cardiolipins; LD, lipid droplets; POA, palmitoleic acid.

CR accelerates an age-related buildup of low-density Q cell sub-population in chronologically
aging yeast cultures [24,25]. Indeed, the abundance of low-density Q cells in non-CR yeast cultures
reaches a plateau in the ST growth phase, while the abundance of low-density Q cells in CR yeast
cultures attains a steady-state level already in the post-diauxic (PD) growth phase (Figure 2B) [24].

Both Q and NQ cells formed under CR conditions retain their abilities to reproduce for a longer
period of their chronological lifespans than age-matched Q and NQ cells formed under non-CR
conditions [24,25]. This chronological extension by the CR diet was observed for two different aspects
of the reproductive ability, including (1) the ability of a cell to form a colony after being transferred
from a nutrient-depleted liquid medium to a surface of a nutrient-rich solid medium (Figure 2C) [24],
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and (2) the ability of a cell population to synchronously re-enter the mitotic cell cycle after being
transferred from a nutrient-depleted liquid medium to a nutrient-rich liquid medium (Figure 2D) [24].

Glycogen and trehalose are the two major glucose storage molecules in S. cerevisiae [3,4,58].
Trehalose in budding yeast also contributes to the protection of the entire cell and its protein constituents
from various stresses, maintenance of cellular proteostasis, and mitotic division of Q cells under
non-CR conditions [59–67]. A substantial rise in the concentrations of glycogen and trehalose is a
characteristic trait of Q and NQ cell sub-populations developed in yeast cultures that are limited in
calorie supply (Figure 2E) [24,25]. Indeed, CR significantly increases the concentrations of glycogen
and trehalose in both Q and NQ cells beginning of the PD phase of culturing (Figure 2E) [24]. Of note,
glycogen and trehalose concentrations within Q cells formed in yeast cultures under CR conditions
considerably exceed those within age-matched NQ cells developed in these cultures [24].

After the neutral lipids triacylglycerols (TAG) are synthesized in the endoplasmic reticulum
(ER), they are stored in lipid droplets (LD) as the source of free (non-esterified) fatty acids for energy
metabolism and phospholipid biosynthesis [68–74]. One of the characteristic traits of Q and NQ cell
sub-populations formed in S. cerevisiae cultured under CR conditions is a considerable decline in
TAG concentration, as compared to age-matched Q and NQ cell sub-populations developed in this
yeast cultured under non-CR conditions (Figure 2F) [24,25]. Such a decline in TAG concentration is
observed through the entire chronological lifespan [24]. Notably, there is no significant difference
between age-matched Q and NQ cells regarding TAG concentration in these cells at any stage of the
chronological aging process in S. cerevisiae [24].

Cardiolipins (CL) are signature lipids of the inner mitochondrial membrane essential for the
maintenance of proper morphology and functionality of yeast mitochondria [68,75–79]. Mitochondria
of both Q and NQ cell sub-populations in S. cerevisiae limited in calorie supply exhibit an increase in CL
concentration beginning of the PD growth phase (Figure 2G) [24,25]. The increase in CL concentration
is a characteristic trait of mitochondria present in Q and NQ cells under CR conditions, as compared to
mitochondria found in Q and NQ cells (respectively) under non-CR conditions [24,25]. However, CL
concentration in mitochondria of Q cells does not significantly differ from those in mitochondria of
age-matched NQ cells regardless of the extent of calorie supply [24].

The rate of mitochondrial respiration and electrochemical potential across the inner mitochondrial
membrane (∆Ψm) are essential contributors to longevity assurance in chronologically aging S.
cerevisiae [2,6,80–86]. CR substantially increases the rate of mitochondrial respiration and ∆Ψm

in both Q and NQ cells through the chronological lifespan of budding yeast (Figure 2H) [24,25].
The increase in these key aspects of mitochondrial functionality is one of the characteristic traits of Q
and NQ cells limited in calorie supply, in comparison with Q and NQ cells (respectively) not limited in
calorie supply [24,25]. Of note, the rate of respiration and ∆Ψm in mitochondria of Q cells cultured
under CR conditions exceed those in mitochondria of age-matched NQ cells in these cultures, especially
during the ST growth phase [24].

An age-related dynamic of changes in cellular ROS concentrations within Q and NQ cells
under CR conditions differs from the one within each of these cell sub-populations under non-CR
conditions. Early in chronological lifespan, before the entry of cell culture into the ST growth
phase, ROS concentrations within Q and NQ cells under CR conditions are significantly lower than
those within age-matched Q and NQ cells (respectively) under non-CR conditions (Figure 2I) [24,25].
In contrast, late in chronological lifespan, before the entry of cell culture into the ST growth phase, ROS
concentrations within Q and NQ cells under CR conditions are substantially higher than those within
age-matched Q and NQ cells (respectively) under non-CR conditions (Figure 2I) [24,25]. The distinct
age-related dynamic of changes in cellular ROS concentrations is a characteristic trait of Q and NQ cells
of S. cerevisiae that are cultured under CR conditions. Of note, ROS are generated mostly as by-products
of mitochondrial respiration [3,87] and play essential roles in regulating longevity of chronologically
aging S. cerevisiae [2,6,84,85,88–93].
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Age-related accumulation of oxidatively damaged cellular macromolecules contributes to the
process of chronological aging in budding yeast [6,84,85,88,93–95]. One of the characteristic traits
of Q and NQ cells in S. cerevisiae cultured under CR conditions is a significant decline in the
extent of ROS-inflicted and age-related oxidative damage to proteins, lipids, nuclear DNA (nDNA),
and mitochondrial DNA (mtDNA) (Figure 2J) [24,25]. A degree of such a CR-dependent decline in
oxidative macromolecular damage varies for different macromolecules and stages of the chronological
aging process [24]. Furthermore, the concentrations of all these oxidatively damaged macromolecules
within Q cells limited in calorie supply are lower than within calorically restricted NQ cells of the same
chronological age [24].

One of the characteristic traits of Q and NQ cells of S. cerevisiae cultured under CR conditions is a
significant rise in the resistance to chronic (long-term) thermal and oxidative stresses, as compared
to age-matched Q and NQ cells of this yeast cultured under non-CR conditions (Figure 2K) [24,25].
CR promotes the resistance of Q cells to both types of chronic stresses late in chronological lifespan,
in the ST growth phase [24]. The stimulatory effect of CR on the tolerance of NQ cells to these stresses
is observed early in chronological lifespan, in the PD growth phase [24]. Of note, the longevity of
chronologically aging yeast can be extended by the interventions that enhance cell tolerance to chronic
thermal and oxidative stresses [2,6,84,88,94,96–100].

Apoptotic and/or necrotic forms of RCD are hallmark processes taking place in chronologically
“old” S. cerevisiae cells not limited in calorie supply [6,101–112]. CR postpones an age-related onset
of apoptotic and necrotic RCD in both Q and NQ cell sub-populations (Figure 2L) [24,25]. In Q
cells limited in calorie supply, a significant delay of the onsets of both forms of RCD occurs late in
chronological lifespan in the ST growth phase [24]. In NQ cells of yeast cultures under CR conditions,
the onsets of both forms of RCD are prolonged earlier in chronological lifespan, already when these
cultures enter the PD growth phase [24]. Notably, the percentage of cells exhibiting characteristic traits
of an apoptotic or necrotic form of RCD in NQ cell sub-populations from CR cultures exceeds that in
age-matched Q cell sub-populations from these cultures [24].

CR not only delays an age-related onset of apoptotic and necrotic RCD in Q and NQ cells.
This low-calorie diet also makes both cell sub-populations less susceptible to the exogenously induced
apoptotic and necrotic forms of RCD (Figure 2M) [24,25]. The apoptotic form of RCD can be induced by
a short-term treatment of yeast with exogenous hydrogen peroxide [102,105,110,113,114]. In contrast,
the so-called “liponecrotic” form of RCD can occur in response to brief exposure of yeast to exogenous
palmitoleic acid [109–112]. Q cells cultured under CR conditions become less susceptible to both forms
of exogenously induced RCD than Q cells under non-CR conditions late in chronological lifespan,
after the culture enters the ST growth phase [24]. Yet, NQ cells cultured under CR conditions exhibit
lower susceptibility to both forms of exogenously induced RCD than NQ cells under non-CR conditions
early life, after entry of the culture into the PD phase of culturing [24].

4. A Hypothesis: The CR Diet Slows Yeast Chronological Aging Because It Alters an Age-Related
Chronology and Certain Properties of Q Cells

We analyzed changes in an age-related chronology and various properties of Q and NQ cells that
were purified from yeast populations cultured under CR or non-CR conditions. Our analysis suggests
a hypothesis on how CR can slow yeast chronological aging by altering the chronology and properties
of Q cells. This hypothesis is discussed below and schematically depicted in Figure 3.

Our hypothesis posits that CR slows yeast chronological aging by targeting the following four
processes within Q cells.

First, because under CR conditions the cell cycle is arrested earlier in G1 than it is under non-CR
conditions, high-density Q (QHD) cells in CR cultures are significantly smaller than QHD cells in non-CR
cultures (Figure 3, process 1) [24]. Future studies will need to examine if the ability of CR to create
small QHD cells by arresting the cell cycle at a checkpoint in early G1 contributes to the ability of CR to
delay yeast chronological aging. It is conceivable that some of the pro-longevity properties of QHD cells
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formed under CR conditions (such as an improved reproductive ability and/or other properties named
in Figure 3) are due to the ability of CR to arrest the cell cycle in early G1, thus creating small QHD cells.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 14 
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Figure 3. A hypothesis on how caloric restriction (CR) can slow chronological aging of budding yeast by
altering the chronology and properties of quiescent (Q) cells. The hypothesis postulates that CR delays
yeast chronological aging by targeting four processes within Q cells. See the text for more details. Other
abbreviations: HD, high-density cells; LD, low-density cells; QHD, quiescent cell of high density; QLD,
quiescent cell of low density; NQHD, non-quiescent cell of high density; NQLD, non-quiescent cell of
low density; RCD, regulated cell death; ROS, reactive oxygen species.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 14 

 

 

Figure 3. A hypothesis on how caloric restriction (CR) can slow chronological aging of budding yeast 

by altering the chronology and properties of quiescent (Q) cells. The hypothesis postulates that CR 

delays yeast chronological aging by targeting four processes within Q cells. See the text for more 

details. Other abbreviations: HD, high-density cells; LD, low-density cells; QHD, quiescent cell of high 

density; QLD, quiescent cell of low density; NQHD, non-quiescent cell of high density; NQLD, non-

quiescent cell of low density; RCD, regulated cell death; ROS, reactive oxygen species.  Increased 

by CR;  Decreased by CR; ˧ Slows the conversion of QLD cells into NQLD cells or the QHD-into-

NQHD cell conversion. 

5. Conclusions 

In this review, we discussed mechanisms linking chronological aging to a program of cellular 

quiescence in the yeast S. cerevisiae. Our discussion indicates that the pace of yeast chronological 

aging depends on a complex program underlying cellular quiescence entry, maintenance, and exit. 

A CR diet remodels the cellular quiescence program, and such remodeling could contribute to the 

CR-dependent delay of yeast chronological aging. A challenge for the future is to define mechanisms 

by which the CR-driven remodeling of the cellular quiescence program could be linked to the CR-

dependent delay of yeast chronological aging. Because the mechanisms of cellular aging and cellular 

quiescence have been conserved in the evolution, addressing these challenges in the future will 

increase our understanding of how the knowledge-based targeting of the cellular quiescence 

program can be used for delaying cellular and organismal aging and for postponing the onset of 

aging-associated diseases.  

Author Contributions: K.M., J.A.B.J., T.T., E.O. and V.I.T. wrote the text. V.I.T. prepared the figures. All authors 

have read and agreed to the published version of the manuscript. 

Increased by CR;

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 14 

 

 

Figure 3. A hypothesis on how caloric restriction (CR) can slow chronological aging of budding yeast 

by altering the chronology and properties of quiescent (Q) cells. The hypothesis postulates that CR 

delays yeast chronological aging by targeting four processes within Q cells. See the text for more 

details. Other abbreviations: HD, high-density cells; LD, low-density cells; QHD, quiescent cell of high 

density; QLD, quiescent cell of low density; NQHD, non-quiescent cell of high density; NQLD, non-

quiescent cell of low density; RCD, regulated cell death; ROS, reactive oxygen species.  Increased 

by CR;  Decreased by CR; ˧ Slows the conversion of QLD cells into NQLD cells or the QHD-into-

NQHD cell conversion. 

5. Conclusions 

In this review, we discussed mechanisms linking chronological aging to a program of cellular 

quiescence in the yeast S. cerevisiae. Our discussion indicates that the pace of yeast chronological 

aging depends on a complex program underlying cellular quiescence entry, maintenance, and exit. 

A CR diet remodels the cellular quiescence program, and such remodeling could contribute to the 

CR-dependent delay of yeast chronological aging. A challenge for the future is to define mechanisms 

by which the CR-driven remodeling of the cellular quiescence program could be linked to the CR-

dependent delay of yeast chronological aging. Because the mechanisms of cellular aging and cellular 

quiescence have been conserved in the evolution, addressing these challenges in the future will 

increase our understanding of how the knowledge-based targeting of the cellular quiescence 

program can be used for delaying cellular and organismal aging and for postponing the onset of 

aging-associated diseases.  

Author Contributions: K.M., J.A.B.J., T.T., E.O. and V.I.T. wrote the text. V.I.T. prepared the figures. All authors 

have read and agreed to the published version of the manuscript. 

Decreased
by CR;

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 14 

 

 

Figure 3. A hypothesis on how caloric restriction (CR) can slow chronological aging of budding yeast 

by altering the chronology and properties of quiescent (Q) cells. The hypothesis postulates that CR 

delays yeast chronological aging by targeting four processes within Q cells. See the text for more 

details. Other abbreviations: HD, high-density cells; LD, low-density cells; QHD, quiescent cell of high 

density; QLD, quiescent cell of low density; NQHD, non-quiescent cell of high density; NQLD, non-

quiescent cell of low density; RCD, regulated cell death; ROS, reactive oxygen species.  Increased 

by CR;  Decreased by CR; ˧ Slows the conversion of QLD cells into NQLD cells or the QHD-into-

NQHD cell conversion. 

5. Conclusions 

In this review, we discussed mechanisms linking chronological aging to a program of cellular 

quiescence in the yeast S. cerevisiae. Our discussion indicates that the pace of yeast chronological 

aging depends on a complex program underlying cellular quiescence entry, maintenance, and exit. 

A CR diet remodels the cellular quiescence program, and such remodeling could contribute to the 

CR-dependent delay of yeast chronological aging. A challenge for the future is to define mechanisms 

by which the CR-driven remodeling of the cellular quiescence program could be linked to the CR-

dependent delay of yeast chronological aging. Because the mechanisms of cellular aging and cellular 

quiescence have been conserved in the evolution, addressing these challenges in the future will 

increase our understanding of how the knowledge-based targeting of the cellular quiescence 

program can be used for delaying cellular and organismal aging and for postponing the onset of 

aging-associated diseases.  

Author Contributions: K.M., J.A.B.J., T.T., E.O. and V.I.T. wrote the text. V.I.T. prepared the figures. All authors 

have read and agreed to the published version of the manuscript. 

Slows the conversion of QLD cells into NQLD cells or the QHD-into-NQHD cell conversion.

Second, CR speeds up an age-related conversion of QHD cells into (QLD) cells in chronologically
aging yeast cultures (Figure 3, process 2) [24,25]. A challenge for the future is to examine if the ability
of CR to promote such conversion is an essential contributor to the CR-dependent delay of yeast
chronological aging. It is plausible that a stimulating effect of CR on the QHD-into-QLD cell conversion
contributes to the pro-longevity properties of QLD cells formed under CR conditions. These properties
of QLD cells might include their enhanced reproductive potential and/or other traits characteristic of
QLD cells (Figure 3).

Third, a conversion of long-lived QLD cells into short-lived non-quiescent cells of low density
(which we call NQLD) under CR conditions occurs slower than under non-CR conditions (Figure 3,
process 3) [24]. In our hypothesis, the ability of CR to decelerate the QLD-into-NQLD cell conversion
might contribute to the CR-dependent delay of yeast chronological aging because it allows QLD



Int. J. Mol. Sci. 2020, 21, 4717 9 of 14

cells to maintain the pro-longevity cellular traits. These pro-longevity traits of QLD cells include an
enhanced reproductive competence, increased glycogen and trehalose concentrations, a declined TAG
concentration, an elevated concentration of CL, improved functionality of mitochondria, a reduced
concentration of ROS, a decline in oxidative damage to macromolecules, postponed onsets of apoptotic
and necrotic modes of RCD, and decreased susceptibilities to apoptotic and liponecrotic forms of RCD
(Figure 3, process 3) [24].

Fourth, QHD cells formed under CR conditions maintain quiescence longer than QHD cells
developed under non-CR conditions (Figure 3, process 4) [24]. Thus, CR slows the conversion of
long-lived QHD cells into short-lived non-quiescent cells of high density (which we call NQHD).
According to our hypothesis, the CR-dependent deceleration of the QHD-into-NQHD cell conversion
might contribute to the delay of yeast chronological aging by this low-calorie diet because it allows QHD

cells to sustain a pro-longevity cellular pattern. Such pro-longevity cellular pattern is maintained under
CR conditions longer than under non-CR conditions because CR has similar effects on the pro-longevity
cellular traits of QHD cells as the ones described above for QLD cells (Figure 3, process 4) [24].

5. Conclusions

In this review, we discussed mechanisms linking chronological aging to a program of cellular
quiescence in the yeast S. cerevisiae. Our discussion indicates that the pace of yeast chronological aging
depends on a complex program underlying cellular quiescence entry, maintenance, and exit. A CR diet
remodels the cellular quiescence program, and such remodeling could contribute to the CR-dependent
delay of yeast chronological aging. A challenge for the future is to define mechanisms by which the
CR-driven remodeling of the cellular quiescence program could be linked to the CR-dependent delay of
yeast chronological aging. Because the mechanisms of cellular aging and cellular quiescence have been
conserved in the evolution, addressing these challenges in the future will increase our understanding
of how the knowledge-based targeting of the cellular quiescence program can be used for delaying
cellular and organismal aging and for postponing the onset of aging-associated diseases.
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