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The skeleton is a common site for cancer metastases with the bone microenvironment
providing the appropriate conditions for cancer cell colonization. Once in bone, cancer
cells effectively manipulate their microenvironment to support their growth and survival.
Despite previous efforts to improve treatment modalities, skeletal metastases remain with
poor prognoses. This warrants an improved understanding of the mechanisms leading to
bone metastasis that will aid development of effective treatments. Macrophages in the
tumor microenvironment are termed tumor associated macrophages (TAMs) and their
crosstalk with cancer cells is critical in regulating tumorigenicity in multiple cancers. In
bone metastases, this crosstalk is also being increasingly implicated but the specific
signaling pathways remain incompletely understood. Here, we summarize the reported
functions, interactions, and signaling of macrophages with cancer cells during the
metastatic cascade to bone. Specifically, we review and discuss how these specific
interactions impact macrophages and their profiles to promote tumor development. We
also discuss the potential of targeting this crosstalk to inhibit disease progression. Finally,
we identify the remaining knowledge gaps that will need to be addressed in order to fully
consider therapeutic targeting to improve clinical outcomes in cancer patients.
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BURDEN OF BONE METASTASES

Bone metastases are common complications of solid tumors particularly in patients with cancers of
the breast, prostate or lung (1, 2). Despite previous efforts to improve cancer diagnosis and
treatment modalities, skeletal metastases remain with poor prognoses and high mortality and only
about 10% one-year survival after bone metastasis diagnosis e.g. in lung cancer patients (3).
Furthermore, such metastases result in considerable morbidity as they can cause limb dysfunction,
impaired mobility, pathological fractures, spinal cord compression, and severe pain, significantly
affecting patients’ quality of life (2, 4). Management of metastatic bone diseases imposes a huge
burden on health care systems due to the substantially high costs associated with extensive use of
medical resources (5, 6). Collectively, this warrants an improved understanding of the mechanisms
leading to bone metastasis and progression that will aid development of effective treatments to
prevent and alleviate the morbidity and mortality associated with bone metastases.
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METASTASIS AND THE BONE
MICROENVIRONMENT

While cancer cell formation is a product of genetic/epigenetic
aberrations in normal cells (7), development and progression
requires corruption of the normal microenvironment by cancer
cells to support their growth, survival and metastatic colonization.
The metastatic process begins with intravasation of cancer cells
from the primary site into the lymphatic or vascular system before
extravasation of these disseminated tumor cells (DTCs) into
compatible secondary sites that support their growth (8)
(Figure 1). Some tumors, such as prostate (9), pancreatic (10),
and oral squamous cell (11) cancers, have been shown to migrate
along nerves (12) or the abluminal surface of the endothelium
(13). The final stage of the metastatic cascade is colonization of the
distant organ which is usually achieved through three key steps:
colonization, dormancy and outgrowth (8). Despite bone being a
common site of metastasis in addition to liver and lung, the exact
mechanisms influencing metastatic progression to the skeleton
remain unclear. In accordance with the ‘seed and soil’ hypothesis
(14), it is widely accepted that the bone microenvironment
provides an ideal niche allowing metastatic tumor cells to thrive.

The bone microenvironment is a highly dynamic
compartment consisting of diverse cell types as well as an
extracellular matrix with a copious array of cytokines. Cells
within this microenvironment include the bona fide bone cells
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(osteoblasts, osteocytes and osteoclasts), hematopoietic and
immune cells (notably macrophages, natural killer (NK) cells,
B cells and T cells), stromal cells, adipocytes, fibroblasts and
endothelial cells (15). Interactions between these cells regulate
multiple physiological processes including hematopoiesis, bone
remodeling as well as bone and bone marrow homeostasis. Once
in bone, cancer cells secrete cytokines and growth factors to
interact with these cells, hijacking their normal functions to
provide tumor growth requirements. This creates a pathological
crosstalk causing lesions that are either osteoblastic (increased
bone formation), osteolytic (bone destruction) or mixed (16, 17)
depending on the primary mechanism of interference with
normal bone remodeling. There is mounting evidence
demonstrating that interaction between tumor cells and the
supportive stroma plays a crucial role in development and
progression of bone metastasis (18–22).
MACROPHAGES – KEY CELLS IN THE
BONE AND TUMOR
MICROENVIRONMENT

Macrophages are abundant immune cells in the bone
microenvironment. They are heterogeneous myeloid cells (23)
expressing diverse and adaptive transcriptomes (24, 25), and
FIGURE 1 | TAM and tumor crosstalk promotes the early metastatic cascade. TAMs contribute to tumor intravasation, extravasation and pre-metastatic niche
formation. Direct interaction between TAMs and tumor cells induce migration from primary tumor site to the vessel wall and subsequently, tumors egress into the
circulation where they generate fragments that recruit macrophages and monocytes required for successful early metastasis. Tumor-derived exosomes and factors
also trigger pre-metastatic niche formation directly or by enhancing monocyte/macrophage recruitment that serves as osteoclast precursors or stimulate osteoblast
function, both of which result to release of a myriad of tumor growth factors.
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thus, are capable of rapidly responding to environmental changes
(26). Macrophages are present within virtually all tissues (27)
throughout life (termed “tissue resident macrophages”)
contributing to tissue homeostasis, tissue specific physiology
and innate immune surveillance. They can be replenished
by the circulating monocyte pool (28) but some are
established during embryonic development, persist into
adulthood and have the ability to self-renew (29–31).
Both monocyte-derived (32–36) and tissue-resident
embryonic-derived (36, 37) macrophages have been shown to
contribute to tumor development. Three subsets of tissue
resident macrophages in the bone have been characterized;
erythroblastic island macrophages (EIM), hematopoietic stem
cell (HSC) niche macrophages and osteal macrophages
(osteomacs). EIM and HSC niche macrophages are located in
the bone marrow (38) while osteomacs are present on human
and mouse osteal tissues (39).

According to the conventional binary classification, upon
tissue insults, various signals may “activate” macrophages into
either classically activated pro-inflammatory “M1” [induced by
interferon- gamma (IFN-g), lipopolysaccharide (LPS), tumor-
necrosis factor-alpha (TNF-a)] or alternatively activated anti-
inflammatory “M2” (40). Based on in vitro studies, M2
macrophages can be subdivided into four distinct subtypes
depending on the nature of inducing agent and the expressed
markers: M2a, M2b, M2c and M2d (41, 42). However, whether
these subtypes occur in vivo remains unclear. It should also be
noted that the actual activation state of macrophages is much
more complex than the M1 and M2 classification – a concept
which originated from the significant biases in macrophage
polarization between C57Bl/6 and BALB/c mice (43, 44).
Macrophages from various mouse strains differ markedly in
their gene expression profiles (45, 46) however these
differences were not known at the time the concept was
proposed. Furthermore, the M1/M2 nomenclature is not
well-supported by large-scale transcriptomic data which
instead favors a broad spectrum of activation states (47, 48).
Hence for the remainder of this review, we will use “M1-like”
and “M2-like” to refer to these conventional activation states
rather than M1 or M2 alone which are considered
over-simplified.

Macrophages are a major component of the tumor
microenvironment, representing 50% of the tumor mass (49).
The original and early hypotheses proposed that macrophages
are involved in antitumor immunity, however there is substantial
clinical and experimental evidence that in majority of cases,
macrophages in the tumor microenvironment, termed tumor-
associated macrophages (TAMs), enhance progression to
malignancy. Once cancers leave the primary site, monocyte-
derived macrophages are recruited to support the metastatic
cascade. These macrophages have been termed metastasis-
associated macrophages (MAMs). Primary (50) and review
(51–53) articles have acknowledged the existence of both
macrophage types suggesting differences to be based on origin
with TAMs arising from resident macrophages at the primary
tumor site and MAMs differentiating from inflammatory
Frontiers in Endocrinology | www.frontiersin.org 3
monocytes/macrophages at the metastatic site. However, this
idea is challenged by recent evidence demonstrating that TAMs
can be sourced from both monocytes and resident macrophages
(36, 37, 54, 55). Furthermore, while TAMs and MAMs have been
proposed to be distinct, for example due to different fibroblast
activation protein alpha (FAP) expression (56), molecular
markers that fully differentiate TAMs and MAMs are still
lacking. Therefore, further studies are required to better
understand the similar/distinct phenotypes of TAMs and
MAMs and to clarify literature inconsistencies, although it is
likely that their molecular signatures vary across different
cancer types.

It is generally believed that M1-like macrophages have anti-
tumor activity while M2-like macrophages promote tumor
progression. In many types of human cancers, the density of
macrophages is strongly correlated with poor prognosis (57–61)
particularly those with M2-like polarization (60, 62–64).
Macrophage-derived exosomes have also been shown to
facilitate tumor metastasis and development (65–67).
Furthermore, macrophage proliferation, differentiation and
survival are regulated by colony stimulating factor 1 (CSF1)
receptor (CSF1R) which can be activated by two ligands: CSF1
and interleukin (IL)-34 both of which have been associated with
poor patient outcomes. For example, overexpression of CSF1 in
breast (68, 69), prostate (70), pancreatic (71), hepatocellular (72)
and colorectal (73) cancers, and IL-34 expression in hepatocellular
carcinoma (74), lung (75) and colorectal (76) cancers are
associated with disease progression and unfavorable prognosis.
Notably, serum levels of CSF1 are increased in prostate cancer
patients with bone metastasis (70). Consequently, targeting
macrophages and their tumor-promoting functions are major
areas of research in the pursuit of successful therapy (77).
MACROPHAGES AND CANCER
CROSSTALK IN BONE METASTASIS
PROGRESSION

Intravasation and Extravasation
Intravasation, and therefore generation of circulating tumor cells
(CTCs), is one the first key steps in the development of distant
metastases. This process can be separated into two stages: 1)
invasive migration of tumor cells through the extracellular
matrix to the vessel wall, and 2) penetration through the vessel
wall. Two TAM subsets have been identified that support these
processes: migratory macrophages guide cancer cells toward
blood vessels and perivascular macrophages assist their entry
into the circulation (Figure 1). A recent study showed that C-C
motif chemokine receptor type 2 (CCR2)-recruited monocytes
differentiate into migratory TAMs that assist with cancer cell
motility through the extracellular matrix before differentiating
into perivascular macrophages via C-X-C motif chemokine
receptor 4 (CXCR4)/CXCL12 signaling (78). CXCR4/CXCL12
has long been known as a key signaling pathway in breast and
prostate cancer metastasis to bone (79, 80). In vitro (81, 82) and
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in vivo (82) imaging demonstrated that direct contact between
macrophages and cancer cells facilitate cancer cell migration
from the primary tumor site. Upon physical contact,
macrophages induce RhoA signaling in tumor cells to form
invadopodia (82) - actin-rich membrane protrusions that
degrade the extracellular matrix. This interaction is further
promoted by a positive feedback loop whereby cancer cells
produce CSF1 and TAMs express epidermal growth factor
(EGF) (81, 83) which is a positive regulator of RhoA signaling
(84, 85). Once in the blood vessel, vascular endothelial growth
factor A (VEGFA) signaling from TIE2+ perivascular
macrophages (86, 87) causes vascular leakiness, allowing tumor
cell egress.

CTCs travel as single cells or in clusters (88) in the circulation
where they are exposed to various insults including immune
destruction and mechanical forces due to fluid shear stress. Very
little is known about the survival mechanisms that CTCs employ
while in the circulation, but putative mechanisms have been
proposed and reviewed elsewhere (89–91). Using an intravital
two-photon lung imaging model in mice, it has been shown that
CTCs generate fragments that serve as immune-interacting
intermediates to recruit phagocytic myeloid cells that were
predominantly macrophages and monocytes for successful
early metastasis (92) (Figure 1). Although CTCs use various
strategies to survive in the circulation, their metastatic potential
ultimately depends on rapid extravasation into another tissue.
Cancer cell extravasation appears to be one of the least studied
steps in the metastatic cascade perhaps due to the difficulty in
investigating this event that occurs well hidden within intact
organs. As CTCs encounter capillary beds, where extravasation
typically occurs (93, 94), they undergo physical arrest and are
thought to form adhesive interactions with their surface
receptors to the complementary sites on the endothelium (95,
96). CTCs then transmigrate via paracellular migration where
they extend projections between adjacent endothelial cells into
the extravascular space before moving their cell body, nucleus,
and trailing edge across the endothelium (93, 97–99). In the bone
marrow, the sinusoidal capillaries are lined with endothelial cells
and discontinuous basal lamina (100) which may facilitate
simpler extravasation and therefore contribute to high
metastatic incidence in bone (1, 2).

MAMs have been implicated in breast cancer cell
extravasation in the lung (50, 101). This population originated
from circulating monocytes and is characterized as F4/
80lowCD11bhighLy6Clow macrophage population (50, 102).
While the specific mechanism underlying the macrophage
contribution in CTC extravasation is not fully understood, it
has been shown that direct tumor cell-macrophage interaction is
required for this process (101) (Figure 1). Of note, elevated
peripheral blood monocytes (macrophage precursors) have been
associated with poorer disease prognosis in several cancer types
(103–108), which could be due to monocytes serving as MAMs
precursors. Furthermore, overexpression of the monocyte
chemoattractant protein-1 (MCP-1, also known as CC
chemokine ligand 2/CCL2 which is the ligand for CCR2) in
human prostate cancer cells increases macrophage accumulation
Frontiers in Endocrinology | www.frontiersin.org 4
and enhances bone metastasis (109). In breast cancer bone
metastasis, MAMs are largely derived from Ly6C+CCR2+

monocytes and they express high levels of CD204 and IL4R
(35). While it was shown that these MAMs promote bone
metastasis in an IL4R-dependent manner (35), it is unknown
whether they are directly involved in extravasation to bone or
other steps in the metastatic cascade.

Colonization, Dormancy and Outgrowth
Bone marrow-derived macrophages (BMDMs) have been
implicated in tumor growth and metastasis such as in
metastatic lung cancer (110, 111). Using a murine model, Cho
et al. demonstrated that co-injection with mammary carcinoma
cells with bone marrow-derived M2-like macrophages promoted
tumor growth and lung metastasis (110). Given the bone and its
marrow are abundant in resident macrophages, it is likely that
they provide an attractive microenvironment for metastases
because bone and bone marrow macrophages can largely
contribute to formation of a pro-tumorigenic niche.

Pre-Metastatic Niche Formation
It is now being increasingly recognized that organs of future
metastasis are not passive receivers of CTCs; instead, they have
been primed and actively modified to support incoming cancer
cell needs even prior to metastatic spread. These primed sites are
termed “pre-metastatic niches” and they form as a result of
tumor-secreted factors and tumor-shed extracellular vesicles
(112) (Figure 1). Osteoclasts have been implicated in pre-
metastatic niche formation for bone metastases. They are
myeloid-derived cells commonly known as the bone-resorbing
cells. While some still regard osteoclasts as a resident
macrophage in bone, in vivo evidence support that osteomacs
and osteoclasts are distinct mature myeloid cell types (113, 114).
In metastatic breast cancer, tumors secrete lysyl oxidase (LOX)
that triggers osteoclastic bone resorption resulting to formation
of pre-metastatic lesions (115, 116) as well as release of bone-
matrix stored growth factors including insulin-like growth
factors (IGFs), transforming growth factor-b (TGFb), fibroblast
growth factor (FGFs), and bone morphogenetic proteins (BMPs)
which all have pro-tumorigenic effects (117–119). Recently,
Yuan et al. also demonstrated that breast cancer exosomes
contribute to pre-metastatic niche formation in the bone by
transferring exosomal miR-21 to osteoclasts (120) which triggers
their activation and survival (121). Osteoclastogenesis in
metastatic bone cancer has been suggested to be mediated by
CD137L-CD137 signaling pathway where CD137 enhances
monocyte/macrophage migration and differentiation to
osteoclasts (122) (Figure 1).

Immunosuppression
After arriving in the bone microenvironment, cancer cell survival
is determined by their ability to resist immunity and other bone
tissue defenses and settle within the specialized local niches.
Newly disseminated cancer cells are particularly vulnerable to
immune surveillance by macrophages and T cells (Figure 2). In a
colorectal cancer model, TAMs have been shown to be pivotal
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constructors of tumor collagenous extracellular matrix,
upregulating synthesis and assembly of collagens (collagen
types 1, VI, XIV), and instructing their deposition in areas of
tumor development (32). Coordinated tumor and tumor-stromal
cell interactions subsequently remodel these extracellular matrix
components forming a physical barrier to evade immune
surveillance (123).

The phagocytic function of macrophages plays an essential
role in bone homeostasis (124) where they clear pathogens,
debris as well as apoptotic cells (efferocytosis). Under normal
physiology, efferocytosis serves as a waste disposal mechanism
but also a pro-resolving phenotype in macrophages (125). In
bone metastasis, efferocytosis of apoptotic cancer cells via milk
fat globule-EGF facto 8 (MFG-E8) bridge protein induces an
M2-like phenotype in TAMs (126) which has a well-documented
crucial role in immunosuppression including influencing T cell
recruitment and function (127). Efferocytic M2-like
macrophages under normal circumstances (128, 129) and M2-
like TAMs in cancer setting (130) have been shown to secrete
TGF-b1 which can, 1) directly inhibit cytotoxic T cell (CTL)
expression of cytolytic gene products (perforin, granzyme A,
granzyme B, Fas ligand, IFN-g) required for cytotoxicity (131) or,
2) act indirectly by stimulating differentiation of regulatory T
cells (Tregs) (132) (Figure 2). In vitro, macrophage efferocytosis
of prostate cancer cells induced expression of inflammatory
cytokines including CCL5, CXCL1, CXCL5 and IL-6 (133)
Frontiers in Endocrinology | www.frontiersin.org 5
which can orchestrate growth of bone metastases (133–137). In
particular, CXCL5 has been shown to accelerate growth of
metastatic prostate cancer in bone (133).

Tumor cells are also well-known to hijack the programmed
cell death-1 (PD-1)/PD-1 ligand (PD-L1) pathway to escape
immunosurveillance (138). In fact, it is one of the best-studied
and most promising immune checkpoint drug targets with
benefits reported in different cancer types (139), although bone
metastases appear to impair its efficacy (140). PD-1 is an
immune checkpoint receptor expressed by activated T cells
while tumor cells frequently express PD-L1. PD-1/PD-L1
engagement has been shown to negatively affect CD8+ T cell
activity (141), allowing tumors to escape T cell-mediated cell
death. TAMs also express high levels of PD-L1 in different
types of cancers (142–145), indicating that they could also
directly suppress T cell cytotoxic functions which is reflected
by improved anti-tumor T cell activity following macrophage
depletion (145–147). Recently, Gordon et al. showed that
TAMs from human colorectal cancer samples and colon
cancer cell line CT26 also express high levels of PD-1 (148).
PD-1 expression in TAMs negatively correlated with
phagocytic potency against tumor cells while blockade of
PD-1/PD-L1 improved phagocytosis and reduced tumor
growth (148). Together, these suggest that the PD-1/PD-L1
pathway has a significant role in TAM function and
tumor survival.
FIGURE 2 | TAM and tumor crosstalk promotes tumor survival and outgrowth in bone. Efferocytosis of apoptotic tumor cells by TAMs results in TGFb secretion that
inhibits cytotoxic T cells and stimulates Tregs. TAMs and tumor cells can also directly hijack immune checkpoint pathways to negatively regulate T-cell anti-tumor
function. TAMs secrete a multitude of pro-angiogenic factors that induce tumor angiogenesis allowing delivery of oxygen, nutrients and growth factors. Tumor cells can
directly stimulate pro-tumorigenic osteoblastic or osteolytic lesion formation and/or recruit TAMs or osteoclast precursors to support these processes. In osteolytic
lesions, tumors secrete factors that directly stimulate osteoclastic-mediated resorption to release bone-derived tumor growth factors or stimulate osteoclastogenesis by
promoting osteoblast-derived RANKL. Osteoclastogenesis also releases TGFb from the bone matrix that directly stimulates tumor cells to secrete PTHrP that can
enhance osteoblasts function to form osteoblastic lesions or enhance osteoblast production of RANKL to form osteolytic lesions. Osteomacs which are abundant within
osteoblastic lesions also support osteoblast-mediated bone anabolism, suggesting that they could be a key driver of tumor-induced bone formation.
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Another immune checkpoint pathway that could negatively
regulate T-cell anti-tumor function in the setting of cancer is
cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) and
macrophage Clever-1. CTLA-4 upregulation and binding with
CD80/CD86 promotes T cell anergy (149), and cancer cells (150–
152) and TAMs (153) have been shown to express CD80 and
CD86. The macrophage Clever-1, a multifunctional adhesion
and scavenger receptor expressed by immunosuppressive
macrophages and TAMs, has also been shown to have
inhibitory effect on CD8+ T cells (154). Viitala et al. showed
that genetic deficiency of macrophage Clever-1 or its blockage
resulted in activation of CD8+ T cells and impaired tumor
growth (154). Interestingly, these immunostimulatory effects
were comparable with PD-1 checkpoint inhibition (154).
Overall, cancer cells can either suppress anti-tumor immune
responses directly or indirectly by employing other cells such as
TAMs (Figure 2).

Dormancy and Reactivation
The location of DTCs in the bone could be the key to their fate.
Tumor cells delivered to the bone remodeling compartments
(metaphyseal trabecular bone regions) will be exposed to a
microenvironment rich in growth factors that promote growth
and survival and thus, they may proliferate immediately (155).
Conversely, those arriving in the quiescent region (endosteal
surface) will encounter a microenvironment that promotes
tumor cell dormancy (155). Given that the inactive endosteal
surface predominates (156), it is conceivable that DTCs mainly
undergo dormancy once arrested in bone. Indeed, DTCs are
detected in the bone marrow of breast (157–159) or prostate
(160) cancer patients that neither correlated with tumor stage nor
size which could indicate tumor cells have entered dormancy.
Similarly, DTCs have been detected in bone marrow aspirates of
patients with ovarian and endometrial cancer that did not
correlate with established clinicopathological factors (161).
Moreover, the metaphyseal trabecular region of long bones is
normoxic while the diaphyseal region is more hypoxic (162) and
hypoxia regulates key tumor dormancy factors (163). Hypoxia also
supports macrophage recruitment via hypoxic tumor-derived
cytokines (164, 165) and modifies polarization of macrophages,
selectively promoting M2-like phenotype in multiple cancers
(166–169) through activation of ERK signaling (166).

Recently, an in vitro study showed that macrophage exosomes
regulate dormancy of breast cancer cells in bone marrow stroma
(170). Exosomes from M2-like macrophages were shown to
sustain quiescence and reduce proliferation of cancer cells
while M1-like macrophage-derived exosomes reversed
dormancy by NFkB activation (170). In mice with
subcutaneous tumors and patients with non-small cell lung
cancer (NSCLC), TAMs have been shown to exacerbate tumor
hypoxia via AMP-activated protein kinase (AMPK) and
peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC1a) activation (171) which could perpetuate
tumor dormancy.

Tumor dormancy can last for years and decades, but what is
perhaps the most clinically relevant phase is the exit from
dormancy, also termed the “reactivation” phase, that requires
Frontiers in Endocrinology | www.frontiersin.org 6
escape from the dormant state to proliferate actively and form
micrometastases. This process is nursed by the surrounding
supportive niches (172). The osteoblastic niche has been
shown to play an important role in controlling tumor cell
dormancy (173, 174) through the Wnt5a/ROR2/SIAH2
signaling axis (174) while remodeling of the endosteal niche by
osteoclasts have been shown to induce reactivation (173). Data is
lacking that directly demonstrates the role of TAMs in tumor
reactivation in bone metastasis setting. However, this would not
be surprising given it has been shown that: 1) the tumor
dormancy-reactivation process is reversible (173), 2) TAMs
provide or stimulate tumor dormancy signals, and 3)
inhibition of dormancy signals reawakens dormant cancer cells
(175). Of note, tumor-derived vascular cell adhesion molecule 1
(VCAM-1) has been shown to promote transition from
indolence to overt metastasis by recruiting CD11b+ monocytes
and increasing osteoclast activity (176). Recently, abscisic acid
was reported to regulate dormancy of prostate cancer
disseminated tumor cells in the bone marrow (177) and
separately studies identified abscisic acid as an inducer of the
M1 phenotype (178). Further studies that investigate the
contribution of TAMs in dormancy and tumor reactivation
are warranted.

Angiogenesis
Following reactivation, the final step of metastasis occurs when
DTCs proliferate, becoming independent of the microenvironment
and ultimately modifying it to support outgrowth. While a hypoxic
environment induces dormancy, angiogenesis is required for
tumor proliferation as it allows delivery of oxygen, nutrients and
growth factors. For decades, macrophages have been implicated in
neovascularization of tumors (179). In healthy tissues, blood vessels
are in a quiescent state and angiogenesis is only transiently
activated in response to certain stimuli. Conversely, in tumor
progression, an “angiogenic switch” results with continuous
sprouting of de novo vessels. The tumor vasculature differs from
a normal vascular network as it is characterized by
hyperpermeability, excessive and convoluted branching and
erratic blood flow (180). TAMs are important for this angiogenic
switch as they represent a potent source of a multitude of other
pro-angiogenic factors including those from the EF-hand calcium-
binding cytosolic (S100A) protein family, semaphorins family and
chitinase-like proteins (181). They have also been shown to
promote angiogenesis in human tumors (182, 183) and in
animal models of breast (184) and prostate (185) cancers. Tumor
cells, under hypoxic conditions, have been proposed to produce
oncometabolites including lactate and succinate that induce a pro-
angiogenetic phenotype in TAMs (186). M2-like TAMs secrete
VEGF-A (183) which is considered a major mediator of tumor
angiogenesis (187) and an indicator of metastatic potential to bone
in malignant prostate cancer (188). Conversely, repolarization of
TAMs towards an M1-like phenotype leads to tumor vessel
normalization (189, 190). For new capillaries to sprout,
degradation of the host vessel at specific sites needs to occur and
this process is mediated by proteinases such as matrix
metalloproteinases (MMPs). In some tumors, TAMs have
appeared to be a major source of MMP9 which mediates
November 2021 | Volume 12 | Article 763846
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extracellular matrix degradation and releases VEGF-A from the
extracellular matrix reservoir (18, 191–193). The release of VEGF-
A can then induce a positive feedback loop on angiogenesis by
further recruiting pro-angiogenic and immunosuppressive
macrophages through their VEGF receptor (VEGFR1) (194, 195).

Osteoblastic and Osteolytic Bone Lesions
Significant effort has been made into characterizing the
mechanisms associated with overt tumor growth in the
skeleton – a paradigm commonly referred to as the “vicious
cycle” (196). Herein, tumor cells can stimulate excessive bone
formation (osteoblastic) or resorption (osteolytic) leading to
disruption of bone integrity and production of factors that fuel
cancer proliferation which then results to further bone formation
or destruction (118). Osteolytic bone lesions are usually
characteristic of the majority of breast cancers and non-small
cell lung cancer while osteoblastic lesions are common in
prostate and small cell lung cancers (197). Of note, in breast
(198) and prostate (199) cancer patients, both type of lesions can
be present. Tumor cells can instigate bone formation by
producing osteogenic factors (Figure 2) including BMPs,
EGFs, endothelin-1 and platelet derived growth factor (PDGF)
(200). In turn, activated osteoblasts can produce pro-
tumorigenic factors (Figure 2) including IL-6, CCL2 and
VEGF (201). Prostate cancer cell exosomes have been shown
to stimulate bone formation by inhibiting osteoclast fusion and
differentiation (202) causing remodeling imbalance that
ultimately results in net bone formation. Prostate cancer cells
also produce CCL2 to recruit macrophages/TAMs or osteoclasts
(109) that assist with pro-tumorigenic lesion formation. In vitro,
bone marrow macrophages and prostate tumor cell interaction
upregulates cathepsin K expression in macrophages which
promotes tumor progression in bone (203).

CD68+ TAMs are present within patients’ prostate cancer
skeletal lesions where they are directly associated with woven
bone (204). Similarly, in a mouse model of prostate cancer bone
metastasis, F4/80+ macrophages were abundant within the
skeletal lesions and osteomacs were directly associated with de
novo pathological bone (204). Osteomacs, including their
efferocytic function, support osteoblast-mediated bone
anabolism (113), suggesting that they could be a key driver of
tumor-induced bone formation. This idea is strongly supported
by the significant reduction in pathological woven bone
deposition when CD169+ osteomacs/TAMs were depleted
(204). Nonetheless, further investigation into the specific
molecular interaction between osteoblasts and osteomacs are
required to understand how these pathways are modulated in the
tumor setting.

In metastatic cancers with osteolytic lesions, tumors secrete
factors such as IL-8, IL-11, CSF1 and TNFa which directly
stimulate osteoclastic-mediated resorption (Figure 2) to release
bone-derived tumor growth factors (117). Recently, tumor-
derived monoamine oxidase A (MAOA) was also shown to
stimulate osteoclastogenesis by promoting osteoblast-derived
receptor activator nuclear kappa B ligand (RANKL) and IL6
expression (22). As a result of osteoclastic bone resorption, TGFb
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is released from the bone matrix and directly stimulates tumor
cells to secrete parathyroid hormone–related protein (PTHrP)
(205) (Figure 2). PTHrP has dual effects on bone remodeling. It
stimulates osteoblasts which can result in osteoblastic lesion
formation (206, 207) but it is also a potent stimulator of
osteoclastogenesis by enhancing osteoblast production of
RANKL (Figure 2) and CCL2 (208, 209). There is currently
very limited literature on the contribution of TAMs in the
formation of osteolytic lesions, but CD68+ macrophages have
been reported within osteolytic lesions of prostate cancer
patients (210). Furthermore, Movila et al. demonstrated that
macrophage migration inhibitory factor (MIF) mainly produced
by macrophages within the bone lytic site acts as a
chemoattractant to osteoclast precursors, leading to further
recruitment of osteoclasts to sustain bone destruction (211).
THERAPEUTICALLY TARGETING
MACROPHAGE AND CANCER
CROSSTALK IN BONE METASTASES

Bone metastases remain incurable and current management are
focused on minimizing pain, resolving or minimizing the risk of
developing skeletal related events (SREs) and inhibiting tumor
progression. Current treatment usually includes palliative
radiotherapy (212) and systemic chemotherapy which directly
targets malignant cells. Bone metastasis harbors resistance to
chemotherapeutic drugs perhaps contributed to by bone being
less perfused than other organs and thus, drugs which are
administered intravenously do not reach the site in sufficient
doses. In addit ion, pre-cl inical work suggests that
chemotherapies could condition the microenvironment via
macrophage influx to be more receptive to metastasis (213).
Efforts have been made in the utilization of bone-targeted
nanoparticles loaded with anti-cancer drug which have
demonstrated potential in inhibiting bone metastases (214–
216). Extensive research aimed at understanding the “vicious
cycle” that occurs in metastatic bone diseases has also led to
approval of drugs that target the remodeling imbalance including
bisphosphonates and the RANKL inhibitor denosumab, both of
which target osteoclast function (217). However, while these
drugs improve patients’ quality of life by reducing pain, fractures
and inhibiting development of new lesions (218–220), metastatic
bone cancer still progresses and thus, they have little or no
benefit in overall survival (218–221). Therefore, management of
bone metastases remains a significant clinical challenge and
effective treatments are still an unmet clinical need. TAMs are
involved in all steps of the metastatic cascade to the skeleton and
have tumor-permissive and immunosuppressive characteristics.
Therefore, targeting TAMs and their pro-tumorigenic functions
has a promis ing potent ia l in ant i -cancer therapy
(222) (Figure 3).

TAM Depletion Strategies
Targeting the CSF1/CSF1R inhibitors has gained the most
attention in this context with various approaches currently
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under clinical development for treatment of several cancer types
including advanced castration-resistant prostate cancer (CRPC)
with bone metastases (223). Most of the agents targeting the
CSF1/CSF1R signaling axis are CSF1R inhibitors (224) with only
two current clinical-stage programs targeting CSF1 and none
targeting IL-34 thus far (223). Emerging data on the tolerability
of CSF1/CSF1R-targeting agents indicate a relatively safe profile,
with some studies reporting no dose-limiting toxicities (225–
227). CSF1/CSF1R inhibitors have been shown to deplete TAMs
(224, 226, 228) and reduce M2-like macrophage recruitment
(229, 230). While these agents are not under clinical trial for
metastatic bone disease other than advanced CRPC
(NCT01499043), preclinical outcomes have been promising
especially given CSF1R inhibitors have an additional benefit of
targeting osteoclasts (231, 232). In a mouse model of metastatic
lung cancer with osteolytic bone lesions, knockdown of CSF1
reduced the incidence of bone metastases (233). Similarly, in a rat
model of mammary adenocarcinoma (234) and mouse models of
breast cancer (232, 235, 236), treatment with CSF1R inhibitors
prevented bone metastases and formation of osteolytic lesions.
CSF1R targeting has also been demonstrated to successfully
abrogate TAM infiltration and thus disrupt tumor promotion
in animal models of prostate cancer (237, 238), however, whether
these drugs have a role in inhibiting osteoblastic lesion formation
remains underexplored. Overall, targeting the CSF1-CSF1R axis
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appear to be a promising strategy, however, it would be
problematic to systemically deplete macrophages for a long
period and thus, a more targeted approach would be ideal.

An example of a more directed approach are bisphosphonates
which are bone-targeted drugs routinely used in metastatic
disease with bone involvement to prevent or delay SREs and
improve quality of life (219, 239). Given they effectively inhibit
osteoclasts (240), bisphosphonates could have direct effect on
preventing premetastatic niche formation and tumor
proliferation by interfering with the “vicious cycle” .
Interestingly, real-time intravital imaging has shown that
bisphosphonates in extra-skeletal tumors are mainly taken up
by TAMs (241). Moreover, bisphosphonates have been shown to
inhibit macrophage proliferation and induce apoptosis in vitro
(242, 243). Such effect on TAMs/macrophages could therefore
contribute to the anti-tumor effects of these drugs.

The most investigated bisphosphonate to target TAMs in
preclinical studies is the encapsulated clodronate (clodronate
liposomes) which are preferentially taken up by macrophages
owing to their phagocytic activities. In fact, clodronate
(BONEFOS®) is approved for use in treatment of tumor-
induced osteolysis in 67 counties though it remains
commercially underdeveloped in the United States. This
strategy has shown promise in inhibiting bone metastases in
animal models of metastatic lung (243, 244), prostate (204) and
FIGURE 3 | TAM factors and markers that facilitate tumor bone metastasis and strategies to suppress TAM-mediated promotion of metastasis. TAMs influence
tumor intravasation, extravasation, angiogenesis, dormancy, reactivation, formation of osteolytic and osteoblastic lesions, and immunosuppression by expressing or
releasing pro-tumorigenic factors. For example, TAMs are a potent source of a multitude of pro-angiogenic factors including VEGFA, MMP9 and those from the EF-
hand calcium-binding cytosolic (S100A) protein family, semaphorins family and chitinase-like proteins. Strategies to target TAM pro-tumorigenic functions
summarized in this schematic include broad macrophage depletion strategies, targeting pro-angiogenic factors from TAMs, inhibiting TAM recruitment, TAM
repolarization and inhibiting tumor-derived exosomes or factors that instigate TAM and tumor pathological crosstalk.
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breast cancers (245). In metastatic liver cancer model,
macrophage depletion by clodronate liposomes significantly
inhibited tumor progression, angiogenesis and lung metastasis
(246). In mouse models of breast cancer, Zoledronic acid,
another type of bisphosphonate, was shown to reduce TAM
number and repolarized TAMs to M1-like anti-tumoral
phenotype, reduce mammary carcinogenesis (247) and skeletal
metastases (245). While these preclinical studies were promising,
the clinical benefit of bisphosphonates is still limited to
managing skeletal complications without improving patient’s
overall survival. Current efforts are focused on utilizing
bisphosphonates for a more targeted delivery of anti-cancer
drugs to bone. While most studies on bisphosphonate-drug
conjugates have been conducted in vitro, preliminary results
are promising and reviewed elsewhere (248).

Targeting TAM Recruitment
and Polarization
Targeting the CCL2-CCR2 axis has also been attractive given its
role in TAM recruitment. CCL2 promotes bone metastasis in
experimental models of prostate cancer (249, 250) while its
inhibition hinders TAM recruitment (251, 252) and correlates
with reduced tumor burden (253). In in vivomodels of metastatic
prostate cancer, treatment with neutralizing anti-CCL2 antibodies
either reduced systemic tumor burden including bone lesions
(254) or completely inhibit bone metastases (255). CCL2 is
increased by treatment with the chemotherapeutic drug
docetaxel and protects prostate cancer cells from docetaxel-
induced toxicity (256) but when combined with CCL2 blockade,
docetaxel had striking impact on tumor suppression (254, 255).
This anti-tumor efficacy demonstrated in preclinical studies were
preceded by establishment of clinical trials in solid and metastatic
cancers (257), however, the outcomes have somewhat been
disappointing. The anti-CCL2 monoclonal antibody carlumab
failed to inhibit tumor growth in early-stage clinical trials in
prostate cancer as it was unable to sustain CCL2 blockade due
to induction of compensatory mechanisms (258). A humanized
neutralizing anti-CCR2 monoclonal antibody also went through a
clinical trial for treatment of bone metastasis from solid tumors
(NCT01015560). While the treatment was well-tolerated, only 14
out of 43 patients had considerable reduction in urine n-
telopeptide, a biomarker of bone turnover rate, and the anti-
tumor outcomes have not been disclosed despite study
completion. Therefore, there is not enough evidence to support
efficacy of CCL2/CCR2 targeting in skeletal metastases. Of note,
interruption of CCL2 inhibition in models of metastatic breast
cancer accelerated metastases and death (259). This highlights our
incomplete understanding of the CCL2-CCR2 signaling network
and that caution should be taken when considering targeting this
axis in metastatic diseases.

Macrophages are extremely plastic; they can have pro-
tumoral characteristics or be tumoricidal. This indicate that
strategies which indiscriminately target TAMs/macrophages
might only be partially effective, could induce undesirable side
effects and long-term toxicities. Reprogramming TAMs could
therefore be a more efficacious approach, providing a strategy
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where pro-tumoral macrophages can be re-educated towards an
anti-tumoral phenotype to create a microenvironment that reject
rather than nurture tumor cells. There are several strategies
currently used to reprogram TAMs to be anti-tumorigenic in
preclinical and clinical investigation including toll-like receptor
agonists and monoclonal antibodies that induce TAM anti-
tumor effects (260), and Hu et al. have recently identified
many more (261). Trabectedin is an anti-cancer agent that in
addition to directly targeting certain types of cancer cells, it also
induces apoptosis in monocytes and macrophages. In an
experimental model of prostate cancer, it was found to reduce
M2-like macrophages in the marrow and skeletal metastatic
tumor growth in bone (262). There is a paucity of clinical
trials that investigate macrophage targeting strategies in the
context of metastatic bone disease, though macrophage
reprogramming in the context of efferocytosis has shown
promise in preclinical studies. Uptake of apoptotic prostate
cancer cells by BMDMs induced an inflammatory response
that promoted bone metastatic growth but treatment with
IFN-g reprogrammed macrophages towards an M1-like state
that mitigated the pro-tumoral inflammatory response (263).
Chemotherapy and radiotherapy induce apoptosis in cancer
cells, resulting to increased efferocytosis and subsequent
suppression of inflammatory responses. Therefore, combining
conventional chemotherapy and radiotherapy with an
efferocytosis-targeted treatment could be a promising
therapeutic approach that should be the focus of future
research. While re-educating TAMs hold promise in several
cancer types (260), further studies are required to fully
understand its efficacy in metastatic bone diseases especially
given very recent report on transcriptomically-defined “M1”
macrophages associated with an aggressive cancer biology
(264). Interestingly, blockade of PD-1/PD-L1, the most
commonly used immune checkpoint blockage therapy in the
clinic that has achieved resolution of malignancies (265),
polarizes macrophage towards an M1-like phenotype (266–
268) and increases TAM phagocytic potency against tumor
cells (148). In addition, combining anti-PD1 therapy with
metformin-loaded macrophage-derived microparticles that
potently polarized TAMs from M2-like to M1-like state, boosts
anti-cancer efficacy (269). Recently, PD-1 blockage was also
demonstrated to have an added benefit of inhibiting
osteoclastogenesis resulting in reduced bone destruction and
pain (193). Of note, there are also reports indicating that
TAMs might limit anti-PD-1 treatments for example through
preventing CD8+ T cells from reaching tumor cells (147) or by
removing anti-PD-1 antibodies from T cells through Fc-Fcg
receptors binding (270), though the latter can be prevented by
blocking Fc/Fcg receptor interactions (270).

Targeting Tumor Angiogenesis
Other strategies are focused on inhibiting the tumor-promoting
functions of TAMs including angiogenesis (Figure 3). Anti-
angiogenic therapies which are largely VEGF inhibitors are
used in the clinic for several cancers (271) with the first anti-
angiogenic drug Bevacixumab (Avastin®) approved for use in
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2004 by the Food and Drug Administration (FDA). While short-
term relief from tumor growth is achieved in many patients,
primary or acquired resistance is not uncommon and this is
currently under intensive investigation (272). The existence of
several novel angiogenesis regulators, such as those secreted by
TAMs (181), that were not considered in the therapeutic
approaches might explain the limited efficacy of current anti-
angiogenic therapy. Recent studies implicate TAMs in decreased
efficacy of anti-angiogenic therapy (273, 274) suggesting that
targeting angiogenesis is more complex than originally thought.
Findings from in vivo studies suggest that combinatory targeting
of VEGF and other alternative effectors (275, 276) or combining
anti-angiogenic drugs with TAM-targeted agents are more
effective approaches (252, 277, 278), however, these are yet to
be examined in metastatic bone diseases.
CONCLUSION

TAMs promote skeletal metastases via crosstalk with tumor
cells which occurs at all stages of the metastatic cascade.
Therefore, whilst cure of metastatic bone diseases remains
elusive, research to date strongly support that TAMs are an
attractive target. Knowledge is still lacking on how they can be
appropriately targeted to effectively “cure” bone metastases.
Research efforts should be focused on further understanding
the underlying cellular and molecular mechanisms governing
TAM and cancer interactions and how these can be directed to
prevent metastatic progression. Once tumor cells are
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established in the bone, it is clear that a cure cannot be
developed until the fundamental drivers of dormancy,
resistant mechanisms, reactivation and outgrowth are
discovered. Although there is increasing appreciation of TAM
participation in these events, further investigation of the
associated complex processes is crucia l . Improved
understanding of TAM contribution to these events could
potentially identify effective strategies that can be used to
rebalance the bone microenvironment to allow conventional
cancer therapies to destroy metastatic tumor cells without
compromising the skeleton, ul t imately curing this
terminal pathology.
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8. Obenauf AC, Massagué J. Surviving at a Distance: Organ-Specific Metastasis.
Trends Cancer (2015) 1(1):76–91. doi: 10.1016/j.trecan.2015.07.009
9. Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic
Nerve Development Contributes to Prostate Cancer Progression. Science
(2013) 341(6142):1236361. doi: 10.1126/science.1236361

10. Marchesi F, Piemonti L, Mantovani A, Allavena P. Molecular Mechanisms of
Perineural Invasion, a Forgotten Pathway of Dissemination and Metastasis.
Cytokine Growth Factor Rev (2010) 21(1):77–82. doi: 10.1016/j.cytogfr.2009.11.001

11. Schmitd LB, Beesley LJ, Russo N, Bellile EL, Inglehart RC, Liu M, et al.
Redefining Perineural Invasion: Integration of Biology With Clinical
Outcome. Neoplasia (2018) 20(7):657–67. doi: 10.1016/j.neo.2018.04.005

12. Roh J, Muelleman T, Tawfik O, Thomas SM. Perineural Growth in Head and
Neck Squamous Cell Carcinoma: A Review. Oral Oncol (2015) 51(1):16–23.
doi: 10.1016/j.oraloncology.2014.10.004

13. Lugassy C, Kleinman HK, Engbring JA, Welch DR, Harms JF, Rufner R,
et al. Pericyte-Like Location of GFP-Tagged Melanoma Cells: Ex Vivo and
In Vivo Studies of Extravascular Migratory Metastasis. Am J Pathol (2004)
164(4):1191–8. doi: 10.1016/s0002-9440(10)63207-5

14. Fidler IJ. The Pathogenesis of Cancer Metastasis: The 'Seed and Soil' Hypothesis
Revisited. Nat Rev Cancer (2003) 3(6):453–8. doi: 10.1038/nrc1098

15. Buenrostro D, Mulcrone PL, Owens P, Sterling JA. The Bone
Microenvironment: A Fertile Soil for Tumor Growth. Curr Osteoporos
Rep (2016) 14(4):151–8. doi: 10.1007/s11914-016-0315-2

16. Gurkan G, Sarikaya I, Sarikaya A. Semiquantitative Assessment of
Osteoblastic, Osteolytic, and Mixed Lytic-Sclerotic Bone Lesions on
Fluorodeoxyglucose Positron Emission Tomography/Computed
Tomography and Bone Scintigraphy. World J Nucl Med (2019) 18(2):132–
6. doi: 10.4103/wjnm.WJNM_31_18

17. Suzuki A, Kashiwagi N, Doi H, Ishii K, Doi K, Kitano M, et al. Patterns of
Bone Metastases From Head and Neck Squamous Cell Carcinoma. Auris
Nasus Larynx (2020) 47(2):262–7. doi: 10.1016/j.anl.2019.08.001
November 2021 | Volume 12 | Article 763846

https://doi.org/10.1093/annonc/mds009
https://doi.org/10.1700/1248.13780
https://doi.org/10.1136/bmjopen-2017-016022
https://doi.org/10.1371/journal.pone.0234927
https://doi.org/10.1371/journal.pone.0234927
https://doi.org/10.1002/cncr.30784
https://doi.org/10.2147/clep.S78301
https://doi.org/10.1038/nrc3486
https://doi.org/10.1016/j.trecan.2015.07.009
https://doi.org/10.1126/science.1236361
https://doi.org/10.1016/j.cytogfr.2009.11.001
https://doi.org/10.1016/j.neo.2018.04.005
https://doi.org/10.1016/j.oraloncology.2014.10.004
https://doi.org/10.1016/s0002-9440(10)63207-5
https://doi.org/10.1038/nrc1098
https://doi.org/10.1007/s11914-016-0315-2
https://doi.org/10.4103/wjnm.WJNM_31_18
https://doi.org/10.1016/j.anl.2019.08.001
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Batoon and McCauley Macrophages and Skeletal Metastasis
18. Liu H, He J, Koh SP, Zhong Y, Liu Z, Wang Z, et al. Reprogrammed Marrow
Adipocytes Contribute to Myeloma-Induced Bone Disease. Sci Transl Med
(2019) 11(494):eaau9087. doi: 10.1126/scitranslmed.aau9087

19. Price TT, Burness ML, Sivan A, Warner MJ, Cheng R, Lee CH, et al.
Dormant Breast Cancer Micrometastases Reside in Specific Bone Marrow
Niches That Regulate Their Transit to and From Bone. Sci Transl Med
(2016) 8(340):340ra73–ra73. doi: 10.1126/scitranslmed.aad4059

20. Sethi N, Dai X, Winter CG, Kang Y. Tumor-Derived Jagged1 Promotes
Osteolytic Bone Metastasis of Breast Cancer by Engaging Notch Signaling in
Bone Cells. Cancer Cell (2011) 19(2):192–205. doi: 10.1016/j.ccr.2010.12.022

21. Wang H, Yu C, Gao X, Welte T, Muscarella Aaron M, Tian L, et al. The
Osteogenic Niche Promotes Early-Stage Bone Colonization of Disseminated
Breast Cancer Cells. Cancer Cell (2015) 27(2):193–210. doi: 10.1016/
j.ccell.2014.11.017

22. Wu JB, Yin L, Shi C, Li Q, Duan P, Huang J-M, et al. MAOA-Dependent
Activation of Shh-IL6-RANKL Signaling Network Promotes Prostate
Cancer Metastasis by Engaging Tumor-Stromal Cell Interactions. Cancer
Cell (2017) 31(3):368–82. doi: 10.1016/j.ccell.2017.02.003

23. Gordon S, Martinez FO. Alternative Activation of Macrophages: Mechanism
and Functions. Immunity (2010) 32:593-604.

24. Randolph GJ, Mowat AM, Gordon S, Hume DA, Geissmann F. Unravelling
Mononuclear Phagocyte Heterogeneity. Nat Reviews Immunol (2010)
10:453-60.

25. Wynn TA, Murray PJ. Protective and Pathogenic Functions of
Macrophagesubsets. Nat Rev Immunol (2011) 11:723-37. doi: . doi:
10.1038/nri3073

26. Liddiard K, Taylor PR. Understanding Local Macrophage Phenotypes In
Disease: Shape-Shifting Macrophages. Nat Med (2015) 21:119-20.

27. Grabert K, Sehgal A, Irvine KM, Wollscheid-Lengeling E, Ozdemir DD,
Stables J, et al. A Transgenic Line That Reports CSF1R Protein Expression
Provides a Definitive Marker for the Mouse Mononuclear Phagocyte System.
J Immunol (2020) 205(11):3154–66. doi: 10.4049/jimmunol.2000835

28. Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The
Relationship Between Monocytes andMacrophages. Trends Immunol (2019)
40(2):98–112. doi: 10.1016/j.it.2018.11.007

29. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L,
et al. Tissue-Resident Macrophages Originate From Yolk-Sac-Derived
Erythro-Myeloid Progenitors. Nature (2015) 518(7540):547–51.
doi: 10.1038/nature13989

30. Hoeffel G, Chen J, Lavin Y, Low D, Almeida Francisca F, See P, et al. C-Myb+
Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to Adult
Tissue-Resident Macrophages. Immunity (2015) 42(4):665–78. doi: 10.1016/
j.immuni.2015.03.011

31. Schulz C, Perdiguero EG, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf
K, et al. A Lineage of Myeloid Cells Independent of Myb and Hematopoietic
Stem Cells. Science (2012) 336(6077):86–90. doi: 10.1126/science.1219179

32. Afik R, Zigmond E, Vugman M, Klepfish M, Shimshoni E, Pasmanik-Chor
M, et al. Tumor Macrophages Are Pivotal Constructors of Tumor
Collagenous Matrix. J Exp Med (2016) 213(11):2315–31. doi: 10.1084/
jem.20151193

33. Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, et al. The
Cellular and Molecular Origin of Tumor-Associated Macrophages. Science
(2014) 344(6186):921–5. doi: 10.1126/science.1252510

34. Qian B-Z, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2
Recruits Inflammatory Monocytes to Facilitate Breast-Tumour Metastasis.
Nature (2011) 475(7355):222–5. doi: 10.1038/nature10138

35. Ma RY, Zhang H, Li XF, Zhang CB, Selli C, Tagliavini G, et al. Monocyte-
Derived Macrophages Promote Breast Cancer Bone Metastasis Outgrowth.
J Exp Med (2020) 217(11):e20191820. doi: 10.1084/jem.20191820

36. Loyher PL, Hamon P, Laviron M, Meghraoui-Kheddar A, Goncalves E,
Deng Z, et al. Macrophages of Distinct Origins Contribute to Tumor
Development in the Lung. J Exp Med (2018) 215(10):2536–53.
doi: 10.1084/jem.20180534

37. Zhu Y, Herndon JM, Sojka DK, Kim K-W, Knolhoff BL, Zuo C, et al. Tissue-
Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate
From Embryonic Hematopoiesis and Promote Tumor Progression.
Immunity (2017) 47(2):323–38.e6. doi: 10.1016/j.immuni.2017.07.014
Frontiers in Endocrinology | www.frontiersin.org 11
38. Kaur S, Raggatt LJ, Batoon L, Hume DA, Levesque J-P, Pettit AR. Role of
Bone Marrow Macrophages in Controlling Homeostasis and Repair in Bone
and Bone Marrow Niches. Semin Cell Dev Biol (2017) 61:12–21.
doi: 10.1016/j.semcdb.2016.08.009

39. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder
K, et al. Osteal Tissue Macrophages are Intercalated Throughout Human
and Mouse Bone Lining Tissues and Regulate Osteoblast Function In Vitro
and In Vivo. J Immunol (2008) 181(2):1232–44. doi: 10.4049/jimmunol.
181.2.1232

40. Sica A, Mantovani A. Macrophage Plasticity and Polarization: In Vivo
Veritas. J Clin Invest (2012) 122(3):787–95. doi: 10.1172/JCI59643

41. Colin S, Chinetti-Gbaguidi G, Staels B. Macrophage Phenotypes in
Atherosclerosis. Immunol Rev (2014) 262(1):153–66. doi: 10.1111/imr.12218
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Kedra B, Szmitkowski M. Serum Levels of Granulocyte Colony-Stimulating
Factor (G-CSF) and Macrophage Colony-Stimulating Factor (M-CSF) in
Pancreatic Cancer Patients. Clin Chem Lab Med (2007) 45(1):30–4.
doi: 10.1515/cclm.2007.025

72. Zhu XD, Zhang JB, Zhuang PY, Zhu HG, Zhang W, Xiong YQ, et al. High
Expression of Macrophage Colony-Stimulating Factor in Peritumoral Liver
Tissue Is Associated With Poor Survival After Curative Resection of
Hepatocellular Carcinoma. J Clin Oncol (2008) 26(16):2707–16.
doi: 10.1200/jco.2007.15.6521

73. Mroczko B, Groblewska M, Wereszczyńska-Siemiatkowska U, Okulczyk B,
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