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SUMMARY
Increasing evidence suggests Alzheimer’s disease (AD) pathophysiology is influenced by primary and sec-
ondary bile acids, the end product of cholesterol metabolism.We analyze 2,114 post-mortem brain transcrip-
tomes and identify genes in the alternative bile acid synthesis pathway to be expressed in the brain. A
targeted metabolomic analysis of primary and secondary bile acids measured from post-mortem brain
samples of 111 individuals supports these results. Our metabolic network analysis suggests that taurine
transport, bile acid synthesis, and cholesterol metabolism differ in AD and cognitively normal individuals.
We also identify putative transcription factors regulatingmetabolic genes and influencing alteredmetabolism
in AD. Intriguingly, some bile acids measured in brain tissue cannot be explained by the presence of enzymes
responsible for their synthesis, suggesting that they may originate from the gut microbiome and are trans-
ported to the brain. These findingsmotivate further research into bile acidmetabolism in AD to elucidate their
possible connection to cognitive decline.
INTRODUCTION

Alzheimer’s disease (AD), the leading cause of dementia, is a

progressive, multifactorial disease1,2 in which the onset and

progression of symptoms varies significantly among individuals.

Recent studies have shown that metabolic dysfunction is one of

the factors associated with neurodegenerative disorders.3,4

Various physiological processes such as lipid metabolism, im-

mune function, amyloid precursor protein metabolism, oxidative

stress, neurotransmitter function, and mitochondrial functions

are altered in AD, which can affect metabolism.5–7 Interest in

the transport of biochemical compounds between the brain

and the gut and their possible role in regulating metabolic

changes centrally and peripherally has increased recently across

several neurodegenerative diseases.8,9 There is increasing evi-

dence to suggest a role in AD for primary and secondary bile

acids (BAs).7,10,11 BAs are amphipathic molecules and primary
Cell Repor
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BAs are derived from cholesterol, mostly in the liver, whereas

secondary BAs are typically produced by bacteria in the gut.12

Increased levels of secondary BAs and ratios to their primary

BA educts have been linked to AD and cognitive decline.7

Cholesterol metabolism and transport have been studied

extensively and are clearly linked with AD.1,13,14 Cholesterol

clearance leads to the production of BAs that carry out lipid ab-

sorption and cholesterol homeostasis and also function as

signaling molecules.15 Primary BAs such as cholic acid (CA)

and chenodeoxycholic acid (CDCA) are synthesized as a result

of cholesterol efflux and then conjugated with glycine or taurine

for secretion into bile and later metabolized by gut bacteria.12

There are two major BA biosynthetic pathways: the classical

pathway (neutral pathway) and the alternative pathway (acidic

pathway). The classical pathway in mammalian liver is initiated

by cholesterol 7a-hydroxylase (CYP7A1) and subsequently

requires 12a-hydroxylase (CYP8B1), among numerous other
ts Medicine 1, 100138, November 17, 2020 ª 2020 The Authors. 1
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Figure 1. Graphical Overview of Analyses Described Herein to Study Altered Cholesterol and Bile Acid (BA) Metabolism in AD

Numbers of samples from each brain region are indicated along with AD and control samples and male/female breakdown in parentheses. We used the

post-mortem brain sample transcriptome data to generate region-specific metabolic networks. We used these networks to study BA and cholesterol

metabolism. Using the brain transcriptional regulatory network, we identified transcription factors that regulate genes in cholesterol and BAmetabolism. See also

Table S1.
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enzymes, for the synthesis of CA, whereas CDCA is produced in

the absence of CYP8B1.16 Sterol 27-hydroxylase (CYP27A1)

is required for the initiation of an alternative BA pathway.17

In the brain, sterol 24-hydroxylase (CYP46A1) converts choles-

terol to 24S-hydroxycholesterol (systematic name cholest-5-

en-3b,24S-diol), and subsequently, 7a-hydroxylation is carried

out by 24-hydroxycholesterol 7a-hydroxylase (CYP39A1)18 (Fig-

ure 1). Studies in human andmouse brain samples, aswell as cell

lines, have shown that BAs can cross the blood-brain barrier

(BBB) and bind to nuclear receptors, causing physiological

changes.19,20 There is limited information on the role of BAs in

the human brain and their association with cognitive decline in

AD pathophysiology. Systematic analysis of omics data derived

from blood and post-mortem brain samples of AD and cogni-

tively normal (CN) or control individuals has the potential to iden-

tify differences in cholesterol and BA metabolism and how they

contribute to AD pathogenesis.

In this study, we analyzed a large number of transcriptome

data from the Religious Orders Study and Memory and Aging

Project (ROSMAP), the Mayo Clinic, and the Mount Sinai Brain

Bank that had a total of 2,114 post-mortem brain samples

from 7 different brain regions. We reconstructed metabolic net-

works using the data from these 3 cohorts and studied the role
2 Cell Reports Medicine 1, 100138, November 17, 2020
of circulating BAs that may contribute to AD and altered choles-

terol metabolism in these individuals. We also generated tar-

geted metabolomics data of primary and secondary BAs from

the post-mortem brain samples of 111 AD patients and controls.

Various genomic studies have reported transcriptional regula-

tory changes in neurodegenerative diseases.21,22 The biological

significance of these transcription factors (TFs) regulating meta-

bolic changes is not completely understood. The brain-specific

metabolic and transcriptional regulatory networks proved useful

in identifying candidate metabolites and genes involved in the

disease manifestation. A schematic representation of the study

is represented in Figure 1. Our study used the following ap-

proaches to investigate the role of BAs in AD:

(1) Transcriptional profiling of genes that are involved in

cholesterol and BA metabolism using publicly available

data from post-mortem brain samples

(2) Reconstruction and analysis of genome-scale metabolic

networks of various brain regions to identify genes and re-

actions that are significant in AD versus CN

(3) Transcriptional regulatory network analysis of brain sam-

ples to predict candidate TFs regulating metabolically

important genes



Figure 2. Transcriptomic Analysis of Genes Associated with Cholesterol and BA Metabolism

Heatmap of cholesterol (A) and BA metabolism (B) genes. The color gradient is based on ubiquity scores calculated for the genes and the gray color represents

genes having no expression data in the brain regions from the 3 cohorts. Brain regions represented in the plot are cerebellum (CER), prefrontal cortex (FC),

temporal cortex (TC), frontal pole (FP), inferior frontal gyrus (IFG), parahippocampal gyrus (PHG), and superior temporal gyrus (STG). The function of genes is

indicated on the left side of each heatmap.
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In summary, our study addresses an important need to better

understand the potential roles of BAs in AD pathophysiology.

RESULTS

In recent studies, cytotoxic and neuroprotective BAs were iden-

tified in AD and their probable link to cognitive decline in the

individuals was reported.7,23 To further investigate the role of pri-

mary and secondary BAs in AD and CN individuals, we analyzed

2,114 post-mortem brain samples from 3 independent cohorts

for 7 brain regions (Table S1) and selected genes involved in

cholesterol and BA metabolism.

Here, we studied the role of BAs in AD pathology in the context

of genome-scale metabolic and transcriptional regulatory net-

works (Figure 1).

Transcriptomic Analysis of Genes Encoding Enzymes
Associated with BA Metabolism
BAs are products of cholesterol metabolism. To identify choles-

terol and BA genes that are expressed in the brain, we curated a

list of regulators, transporters, and biosynthesis genes in these

three independent cohorts. Cholesterol biosynthesis regulators
SREBF1 and SREBF2 were expressed in post-mortem brain

samples, and recent studies have identified variants of SREBP2,

the protein encoded by SREBF2, and their probable link with

AD.14,24,25 The expression of genes involved in cholesterol trans-

port—ABCA1, ABCA5, ABCA7, APOE, LPL, and LCAT and

members of the low-density lipoprotein receptor (LDLR) gene

family (LDLR, VLDLR, LRP1, LRP2, LRP4, LRP5, LRP6, LRP8,

LRAD3) in the brain samples suggests the active transport of

cholesterol and cholesterol homeostasis in the brain (Figure 2).

ABCA7, a cholesterol transporter belonging to the class of

ATP-binding cassette transporters that has been identified as a

risk factor for late-onset AD,17 is not found in the existing Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways and

was manually curated into our models. ABCA7 was expressed

in the post-mortem brain samples. We also probed genes en-

coding for receptors linked with the classical and alternative

BA pathway and found expression of PPARA, PPARG, LXRa/

b, RAR, and RXRs (RXRA, RXRB, RXRG) in the samples but no

evidence of expression of the farnesoid X receptor/BA receptor

(FXR).

We observed the consistent expression of CYP27A1 and

CYP7B1, which are involved in the initial steps of the alternative
Cell Reports Medicine 1, 100138, November 17, 2020 3



Figure 3. Schematic Representation of BA Synthesis Pathway in Humans

Genes expressed in brain samples from our analysis are highlighted in pink. The order of enzymatic reactions can vary. Based on the results from Mahmou-

dianDehkordi et al.,7 BAs have been marked as neuroprotective or cytotoxic.
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BA pathway depicted in Figure 3, from the analysis of transcrip-

tomic data of post-mortem brain samples from three indepen-

dent cohorts (Table S1). In Figure 3, the BAs are marked as cyto-

toxic and neuroprotective,7,23 but all BAs become toxic at

elevated concentrations because of their ability to solubilize

membranes.23 We did not observe expressions of CYP7A1

and CYP8B1, suggesting that the classical BA biosynthesis

pathway is not prevalent in the brain samples. The classical

pathway is known to be most active in the liver.26 It has been re-

ported that neural cholesterol clearance through BA synthesis is

mediated by CYP46A1, and subsequently by CYP39A1 in the

liver, leading to the synthesis of CDCA.11,27 In addition to genes

involved in the alternative BA pathway, we also observed the

expression of brain-specific CYP46A1 and CYP39A1 genes in

all of the cohorts. This analysis suggested that the brain uses

an alternative and neural cholesterol clearance pathway of BA

synthesis11,27 and not the classical pathway.23

Metabolomics Analysis of Post-mortem Brain Samples
to Identify Levels of Primary and Secondary BAs
BAs were quantified from 111 post-mortem brain samples

from the dorsolateral prefrontal cortex of individuals with AD,
4 Cell Reports Medicine 1, 100138, November 17, 2020
mild cognitive impairment (MCI), and CN in the ROSMAP study

(https://www.synapse.org/#!Synapse:syn10235594) (Table S2).

Although the genes involved in the production of CA were not

expressed in the brain samples, the detection of CA from theme-

tabolomics analysis suggested that CA may enter the brain from

the periphery, as previously shown in other studies.20,28,29 We

compared the levels of primary and secondary BAs in individuals

with a Consortium to Establish a Registry for Alzheimer’s

Disease (CERAD) score of 1–4, in which 1, 2, 3, and 4 indicate

definitive AD, probable AD, possible AD, and no evidence of

AD, respectively. The ratio of primary conjugated and secondary

BAswith respect to CA showed that deoxycholic acid (DCA), lith-

ocholic acid (LCA), glycochenodeoxycholate (GCDCA), CDCA,

taurodeoxycholic acid (TDCA), glycodeoxycholic acid (GDCA),

ursodeoxycholic acid (UDCA), allolithocholate (alloLCA) and

taurocholic acid (TCA) were higher in individualswith AD (CERAD

score 1–3) compared to controls (Figure 4). Similar results were

reported in the serum metabolomics samples of AD and CN in-

dividuals.7,10 Allo-cholic acid (ACA) is a steroid BA that has

been studied in the context of signaling mechanisms related to

differentiation, proliferation, or apoptosis of hepatocytes.30 The

CDCA:CA ratio was calculated, and it showed a higher value

https://www.synapse.org/#!Synapse:syn10235594


Figure 4. Metabolomics Analysis of Post-

mortem Brain Samples to Identify Levels of

Primary and Secondary BAs

Bar plots representing the ratio of BAs with respect

to cholic acid (CA) (primary BA) are shown here.

The primary and secondary BAs measured from

111 brain samples from the ROSMAP study are

represented here. The blue bars represent AD

samples and the light orange bars represent con-

trol samples. See also Table S3.
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for AD compared to CN individuals in the study (Table S3). This

finding suggests that the alternative BA pathway is more active

in AD versus CN individuals. Also, the higher ratio of primary

BAs, like TCA, and secondary BAs, such as DCA, LCA, TDCA,

and GDCA, in AD individuals indicated that these BAs may be

associated with cognitive function.

The primary BAs are conjugated with glycine or taurine for

secretion into bile.17 In addition to the primary and secondary

BAs, we also measured levels of taurine in serum samples in

AD and CN individuals. In the serum, we observed that AD pa-

tients had higher levels of serum taurine compared to controls.

Taurine is required for the conjugation of primary and secondary

BAs. This is an interesting observation, and we need to explore

the transport and physiological levels of taurine in the brains of

individuals with AD.

Metabolic Reconstruction of Brain Regions and
Pathway-Level Analysis
We reconstructed metabolic networks for brain region-specific

samples in the three independent cohorts. The seven brain re-

gions in this study included cerebellum (CER), prefrontal cortex

(FC), temporal cortex (TC), frontal pole (FP), inferior frontal gyrus

(IFG), parahippocampal gyrus (PHG), and superior temporal gy-

rus (STG). We used transcriptome data from post-mortem brain

samples for reconstructing metabolic networks (see STAR

Methods for more details). The brain region-specific metabolic

networks consisted of �5,600–6,300 reactions, 2,800–4,000

metabolites, and each model had genes varying from 1,500 to

1,757 in these networks. Figure S1A provides information about

the numbers of reactions, metabolites, and genes present in

each of the brain region-specific networks, and Figure S1B com-

pares the gene content overlaps across each of these networks.

We have made the detailed content of all of these models avail-

able to the scientific community (Tables S4–S10).

We tested each model using 16 brain-specific in silico tests

meant to mimic the experimental evidence of metabolic func-

tions in the brain (‘‘metabolic tasks’’) (Table S11) that were

obtained from a recently published work on human reconstruc-

tion.31 These metabolic tasks represent a set of reactions that

are brain specific, and themetabolic networks generated passed
Cell Reports
65%–85% of the tasks (see STAR

Methods). The metabolic tasks are listed

in Table S11 and the models are provided

in SBML in https://github.com/PriceLab/

Bile_acid_AD. In addition to generating

brain region-specific metabolic networks,
we also used the transcriptome data of 2,114 post-mortem brain

samples and obtained personalized networks for each sample in

the study. Of the 2,114 brain samples, 818 samples corre-

sponded to individuals with AD, 138 to possible AD, 137 to prob-

able AD, and 617 controls. The dataset also consisted of 12 sam-

ples from other dementias, 163 samples with progressive

supranuclear palsy, 58 samples with pathologic aging, and 2

samples that were uncharacterized. From our metabolic net-

works, we identified 518 reactions that were involved in choles-

terol metabolism, BA synthesis, and transport of BAs between

different compartments in the metabolic networks. The person-

alized metabolic networks had distinct sets of BA reactions

active in the brain regions (details in STAR Methods). Since the

post-mortem brain samples for the brain regions were collected

by three independent cohorts having different sequencing proto-

cols and depth, the flux results were analyzed separately for

these cohorts. The data suggest that the CER and TC have

similar sets of BA reactions that can be active in the personalized

metabolic networks (Figure 5).

We analyzed the reaction fluxes and found a similar set of BA

reactions carrying fluxes in metabolic networks of these inde-

pendent cohorts. We used this information to carry out statistical

analyses and identify reactions that are significantly different (p <

0.05) in brain regions of AD versus theCN individuals and to iden-

tify reactions that were significant in males versus females with

AD. We found that reactions carrying out the transport of taurine

and cholesterol were significant in the dorsolateral prefrontal

cortex, TC and PHG. Taurine is an abundant amino acid present

at roughly 1.2 mM in the brain.32 SLC6A6 (TAUT) and SLC36A1

(PAT1) function as taurine transporters, and increased transport

of taurine across the BBB has been reported for oxidative stress

conditions.33We found expressions of both of these genes in the

brain transcriptome dataset, suggesting that these genes are

expressed in the brain and involved in the transport of taurine.

Table 1 provides details for significant BA reactions in brain re-

gions identified from our analysis.

From our analysis, we identified reactions with CYP27A1,

required by the neural cholesterol clearance pathway, the clas-

sical pathway, and the alternative BA pathway, as being signifi-

cant in AD versus CN brains. Other than BA synthesis, reactions
Medicine 1, 100138, November 17, 2020 5
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Figure 5. Metabolic Reconstruction of Brain Regions and Analysis of Reactions Involved in BA Metabolism

Clustergram for 518 reactions involved in BA metabolism.

(A) Mayo clinic cohort (CER and TC).

(B) ROSMAP cohort (FC).

(C) Mount Sinai Brain Bank (FP, IFG, STG, and PHG).

The rows correspond to BA reactions in the network and the columns are colored based on the brain regions.
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involving metabolites such as 7a-hydroxycholesterol (Virtual

Metabolic Human [VMH], www.vmh.life, VMH: xol7a), 7a-hy-

droxy-5b-cholestan-3-one (VMH: xol7ah), 3a,7a-dihydroxy-

5b-cholestane (VMH: xol7ah2), and 7a-hydroxy-cholestene-3-

one (VMH: xol7aone) were also identified as being significantly

different between AD and CN (p values for these reactions re-

ported in Table 1). The transport of BAs such as taurolithocholic

acid 3-sulfate (VMH: HC02198), UDCA (VMH: HC02194), TCA

(VMH: tchola), and 3-dehydroxychenodeoxycholic acid (VMH:

3dhchchol) can also be probed further to understand the role

of these BAs in AD. Thus, in silico analysis of brain region-

specific metabolic networks provides insights into reactions

that may be involved inmetabolic changes in AD that can be vali-

dated from experimental data.

Identifying Transcriptional Regulators Responsible for
Altered Metabolism in AD
TFs are one important aspect of metabolic regulation that

operate by adjusting the expression of genes encoding en-

zymes. Using a transcriptional regulatory network informed

from the same Mayo TC bulk RNA-seq samples used for the

metabolic reconstruction, we identified candidate TFs that

interact with metabolic genes in cholesterol and BA meta-

bolism. We selectively studied those genes that belonged to

reactions that were significantly differentially expressed in AD

versus controls to study their role in AD. For example, one

gene that came up from our metabolic analysis of AD and con-

trols was emopamil-binding protein (EBP) (Figure 6). EBP is

involved in cholesterol metabolism, as it is responsible for one

of the final steps in the production of cholesterol. Our brain tran-

scriptional regulatory network (TRN) analysis identified

POU6F2, IRF2, SMAD5, GABPA, and TBR1 as the top candi-

date TF regulators for EBP. Regulation by these TFs can help

in understanding their role in altered cholesterol metabolism

in AD, particularly in evaluating the summation of coordinated
6 Cell Reports Medicine 1, 100138, November 17, 2020
changes since these TFs control other genes as well.

CYP27A1, as mentioned earlier, is part of the alternative BA

synthesis pathway, and CREB3L2 and SOX8 are putative TFs

that regulate the expression of this gene. CREB3L2 (cyclic

AMP [cAMP]-responsive element binding protein 3-like 2) is

induced as a result of endoplasmic reticulum (ER) stress and

may function in unfolded protein response signaling in neu-

rons.34 Other than the metabolism-related genes, we also eval-

uated the interactions of BA transporters such as SLC6A6,

SLCO1A2, ABCC1, ABCA1, SLC36A1, and ABCA8 and their

transcriptional regulation. As seen in Figure 6, SREBF2 was

found to interact with ABCA1, and recently there were reports

of variants of SREBP2 that have been linked with AD.25

Increased SREBF2 expression leads to higher cholesterol

levels and presumably oxysterol and cholestenoic acid levels,

which are ligands of the liver X receptor (LXR). The peroxisome

proliferator-activated receptors (PPARs) regulate various phys-

iological processes and are expressed in the central nervous

system. PPARA regulates genes involved in fatty acid meta-

bolism and has been reported to regulate neuronal ADAM10

expression, in turn affecting the proteolysis of the amyloid pre-

cursor protein.35 PPARA was identified as a putative regulator

of ABCA1 in our brain transcriptional regulatory network.

ABCA1 plays a role in cholesterol metabolism and transport

and is a candidate risk gene for late-onset AD (LOAD).36

SLC6A6, involved in the transport of taurine, was found to

be putatively regulated by STAT1, a TF reported to play an

important role in spatial learning and memory formation,37

and RXRG, which forms heterodimers with retinoic acid (RA),

LXRs, and vitamin D receptors (VDRs).38 Neuronal differentia-

tion 6 (NEUROD6) functions in neuronal development, differen-

tiation, and survival in AD.39 The regulation of SLC36A1 by

NEUROD6 indicated that this TF plays a role in controlling the

transport of taurine in the brain. These interactions can be

probed further to understand their role in AD pathophysiology.

http://www.vmh.life


Table 1. List of Bile Acid (BA) Reactions from Our Metabolic

Analysis of Brain Regions

Reaction

(VMH ID)

Genes

Associated Subsystem p Value

Frontal Cortex

AKR1C41 AKR1C4 BA synthesis 0.033

r2505 ABCC1 transport, endoplasmic

reticular

0.030

r2146 SLCO1A2 transport, extracellular 0.023

TAUBETAtc SLC6A6 transport, extracellular 0.009

Temporal Cortex

HMR_1685 CYP27A1 BA synthesis 0.0067

CHSTEROLt ABCA1,

ABCG5,

ABCG8

transport, extracellular 0.0073

TAUPAT1c SLC36A1 transport, extracellular 0.0165

TCHOLABCtc ABCA8 transport, extracellular 0.0324

3DHCDCHOLt2 SLC10A1,

SLC10A2

transport, extracellular 0.0185

EBP1r EBP cholesterol metabolism 0.0433

HMGLx HMGCL cholesterol metabolism 0.0293

DHCR241r DHCR24 cholesterol metabolism 0.0413

EBP2r EBP cholesterol metabolism 0.0277

PHG

HSD3B7P HSD3B7 BA synthesis 0.003

r1051 transport, endoplasmic

reticular

0.047

r1052 transport, lysosomal 0.047

r2146 SLCO1A2 transport, extracellular 0.009

RE1796R HSD3B1,

HSD3B2

BA synthesis 0.003

TAUPAT1c SLC36A1 transport, extracellular 0.015

The reactions are represented in their VMH IDs, and information related to

the genes and subsystems are also shown in the table. p values calcu-

lated by Fisher’s exact test are indicated in the table, and only those

reactions with p < 0.05 are represented here.
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In summary, the brain transcriptional regulatory network anal-

ysis led to the identification of candidate TFs that regulate genes

in cholesterol and BA metabolism, providing clues toward

possible roles in BA dysregulation in AD.

DISCUSSION

Wecarried out a systematic study to identify alterations in choles-

terol and BA metabolism in AD versus CN controls using patient-

derived post-mortem transcriptomics and metabolomics data.

The primary findings of our study are (1) alternative and neural

cholesterol clearance pathway of BA synthesis pathway genes

were expressed in the brain samples included in this study, indi-

cating that thesepathways are prevalent in the brain as compared

to the classical BA synthesis pathway; (2) targeted metabolomics

analysis of post-mortem brain samples identified primary and

secondary BAs and higher ratios of GCDCA:CA, and secondary

BAs such as DCA, LCA, TDCA, CDCA, and GDCA in AD versus
controls suggest that these BAsmay be associatedwith cognitive

decline in AD; (3) the presence of secondary BAs inmetabolomics

data suggests a possible role of the gut microbiome in AD and

highlights the need to study the gut-brain axis to understand

changes in AD; (4) transporters associated with taurine and

cholesterol metabolism showed different usage based on our

genome-scale metabolic network analysis of three independent

cohorts; and (5) transcriptional regulatory network analysis iden-

tified TFs, including PPARA, RXRG, and SREBF2, regulating BA

and cholesterol genes in the brain.

Role of BAs in AD Pathophysiology and Use of Genome-
Scale Metabolic Models
BAs are derived from cholesterol, and their synthesis is regulated

by complex feedback mechanisms.12,18 Recent studies have

identified BAs in brain samples and linked them with cognitive

decline in AD.7,10,19 To understand the physiological role of

BAs in the brain of AD and CN individuals, we analyzed transcrip-

tome data from post-mortem brain samples obtained from three

independent cohorts and identified that genes involved in the

alternative BA pathway were expressed compared to the clas-

sical pathway in the brain. The alternative BA pathway is initiated

by CYP27A1, which catalyzes the steroid side-chain oxidation

and in the subsequent step forms C24-BAs. It is also known

that cholesterol is converted to 24-hydroxycholesterol by

cholesterol 24-hydroxylase (CYP46A1) in the brain, and the

gene was found to be expressed in the brain samples. The pri-

mary BAs conjugate with glycine and taurine to form conjugated

BAs. Taurine plays a neuroprotective role in the brain, and BAs

conjugated with taurine are found to be present in the brain. Me-

tabolomics data of serum samples showed that AD patients had

higher levels of serum taurine compared to controls, indicating

that taurine transport across the BBB may be affected in AD.

The presence of secondary BAs in the post-mortem brain sam-

ples suggests that these BAs are either endogenously present in

the brain or they are transported through the BBB. BAs such as

UDCA, TCA, taurolithocholic acid 3-sulfate, and 3-dehydroche-

nodeoxycholic acid were also identified from our analysis, and

the role of these BAs can be probed further. Based on an asso-

ciation study, taurolithocholic acid was predicted to be a cyto-

toxic BA, whereas chenodeoxycholic acid and UDCA were

predicted to be neuroprotective BAs.7 Our analysis of the

transcriptome data of 2,114 samples mapped into the metabolic

networks of brain regions implicated reactions involved in the

production of metabolites such as 7a-hydroxycholesterol,

7a-hydroxy-5b-cholestan-3-one, 7a-hydroxycholestene-3-one,

and other derivatives that are formed through CYP7A1 being

significantly different (p values for these reactions reported in

Table 1) between AD and CN. Although CYP7A1 was not ex-

pressed in the post-mortem brain samples, the difference in

abundance of these metabolites in AD versus CN suggests

that we should explore the possibility of these metabolites

entering the brain through the periphery. Our brain-tissue meta-

bolic models can be used by the community to capture in silico

changes and possibly identify metabolic biomarkers ahead of

disease manifestation, making them useful in understanding

interactions and mechanisms between different classes of

metabolites and AD pathophysiology.
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Figure 6. Transcriptional Regulators Responsible for Altered Cholesterol and BA Metabolism in AD

Transcriptional regulatory network of brain highlighting transcription factors (TFs) and metabolic genes involved in cholesterol and BA metabolism. TFs are

represented as blue triangles, BAmetabolism genes as yellow circles, and cholesterol metabolism genes as pink rectangles. The significant genes are highlighted

with a red border and TFs in a darker shade of blue. The red edges represent interactions between genes and TFs.
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Transcriptional Regulation of BA and Cholesterol Genes
Metabolism is influenced by the regulation of TFs and metabolic

genes. In this study, we used a transcriptional regulatory network

of brain (and selected brain regions) to identify candidate TFs

that may interact with genes in cholesterol and BA metabolism.

We identified SREBF2, PPARA, RXRG, and other TFs, some of

which have been studied and implicated in AD. SREBF2 expres-
8 Cell Reports Medicine 1, 100138, November 17, 2020
sion enhances cholesterol levels40 and presumably oxysterol

and cholestenoic acid levels, which are ligands of LXR.41 LXRs

and the genes regulated by LXRs such as ABCA1, ABCG1,

and APOE, modulate intracellular cholesterol content and

cholesterol efflux and have been associated with AD pathogen-

esis.42 Our analysis also identified PPARA as a putative regulator

of ABCA1, and recent studies have demonstrated that PPAR
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pathway activation increases ABCA1 levels, which in turn led to

APOE lipidation and amyloid b clearance.43 We also identified

the transport of taurine as an important factor from themetabolic

analysis. SLC6A6 (neurotransmitter transporter, taurine) and

SLC36A1 (neutral amino acid/proton symporter) play a role in

taurine transport. Although there was a 1.02- to 1.3-fold

change in the expression of these transporters in AD compared

with control samples of the three cohorts across four tested brain

regions, this difference was only found to be statistically signifi-

cant in CER (Table S1). The integration of expression data with

the metabolic networks of brain regions identified reactions

involving taurine transporters that were statistically significant

in AD versus controls, further supporting their potential role.

We had also identified STAT1 as a putative TF of SLC6A6 from

our analysis of brain regulatory networks. Studies have sug-

gested that the increased STAT1 may be involved in inflamma-

tion in the AD brain.37,44 NEUROD6 regulates the activity of

SLC36A1, a proton-coupled amino acid transporter. NEUROD6

is a basic helix-loop-helix TF, and SNPs in NEUROD6 have been

associated with AD, especially in APOE4+ women.45 Our anal-

ysis has been able to capture metabolic genes and putative

TFs that regulate them. These findings can be further strength-

ened by the generation of higher-quality footprint data from brain

samples.

Studying theGut-Brain Axis to Understand Physiological
Changes in AD
Increasing evidence from experimental and clinical data suggests

the influence of the gut-brain axis and gut microbiota in neurode-

generative diseases.46,47 From our metabolic analysis, we identi-

fied taurolithocholic, 3-dehydrochenodeoxycholic, and UDCA,

secondary BAs, that are significant in AD compared to CN,48 sug-

gesting a possible connection to the gut microbiome. Recently,

the BA deconjugation and biotransformation pathways have

been reconstructed in a resource of genome-scale reconstruc-

tions of >800 human gut microbes.49,50 Of these, only 23 species

could synthesize 3-dehydrochenodeoxycholic acid, only 4 could

synthesize LCA, and only 3 could synthesize UDCA.50 For

instance, the species Ruminococcus (Blautia) gnavus and

Collinsella aerofaciens synthesize 3-dehydroxychenodeoxycholic

and UDCA, Eggerthella lenta synthesizes 3-dehydrochenodeoxy-

cholic, and several Clostridiales representatives synthesize

LCA,50 indicating that these species may play a role in AD. Inter-

estingly, increased LCA in plasma has recently been proposed as

a potential biomarker for AD.51 Recent reports have shown the

influence of BAs in the host metabolism via alterations of the

bacterial community structure.52 The personalized brain models

developed in this study could be joined with the personalized

microbial community models established previously.50,53 In

future efforts, such combined host-microbe metabolic modeling

will yield more insight into mechanisms underlying altered BA

metabolism in AD.

Limitations of Study
Despite using three independent cohorts, transcriptomics data

are insufficient to fully parametrize the metabolic models. If

denser longitudinal omics data become available, then they will

help improve the predictions from these in silico models.
Although our analysis identifies reactions that are significant in

these conditions, the directionality of the reactions can only be

solidly determined if we have additional time-series metabolo-

mics data (and ideally, isotopic labeling experiments). Methods

are being developed to obtain cell-type-specific data54,55 from

which we can gain additional information regarding distinct

cell-type specific metabolic changes in AD. These studies

have shown that microglia and neuronal cells had different

transcriptional responses in AD versus control. Integrating

such cell-specific data will help in refining the models and

making more accurate predictions.
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Haraldsdóttir, H.S., Wachowiak, J., Keating, S.M., Vlasov, V., et al. (2019).
12 Cell Reports Medicine 1, 100138, November 17, 2020
Creation and analysis of biochemical constraint-based models using the

COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702.

78. Funk, C.C., Jung, S., Richards, M.A., Rodriguez, A., Shannon, P., Dono-

van-Maiye, R., Heavner, B., Chard, K., Xiao, Y., Glusman, G., et al.

(2020). Atlas of Transcription Factor Binding Sites from ENCODE DNase

Hypersensitivity Data Across 27 Tissue Types. Cell Rep. 32, 108029.

79. Zaharia, M., Bolosky, W.J., Curtis, K., Fox, A., Patterson, D., Shenker, S.,

Stoica, I., Karp, R.M., and Sittler, T. (2011). Faster and More Accurate

Sequence Alignment with SNAP. arXiv, 1111.5572v1. http://arxiv.org/

abs/1111.5572.

80. Boyle, A.P., Guinney, J., Crawford, G.E., and Furey, T.S. (2008). F-Seq: a

feature density estimator for high-throughput sequence tags. Bioinformat-

ics 24, 2537–2538.

81. Piper, J., Elze, M.C., Cauchy, P., Cockerill, P.N., Bonifer, C., and Ott, S.

(2013). Wellington: a novel method for the accurate identification of digital

genomic footprints from DNase-seq data. Nucleic Acids Res. 41, e201.

82. Gusmao, E.G., Dieterich, C., Zenke, M., and Costa, I.G. (2014). Detection

of active transcription factor binding sites with the combination of DNase

hypersensitivity and histone modifications. Bioinformatics 30, 3143–3151.

83. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D.,

Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software

environment for integrated models of biomolecular interaction networks.

Genome Res. 13, 2498–2504.

http://refhub.elsevier.com/S2666-3791(20)30182-8/sref69
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref69
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref70
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref70
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref71
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref71
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref71
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref71
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref72
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref72
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref72
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref73
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref73
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref73
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref73
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref74
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref74
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref75
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref75
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref76
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref76
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref76
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref76
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref77
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref77
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref77
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref77
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref78
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref78
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref78
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref78
http://arxiv.org/abs/1111.5572
http://arxiv.org/abs/1111.5572
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref80
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref80
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref80
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref81
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref81
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref81
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref82
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref82
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref82
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref83
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref83
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref83
http://refhub.elsevier.com/S2666-3791(20)30182-8/sref83


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Extracts of brain tissue Rush Alzheimer’s Disease Center

(RADC) Research Resource Sharing Hub

https://www.radc.rush.edu/

Extracts of brain tissue NIH Brain Tissue Repository, Ichan

School of Medicine at Mount Sinai

https://icahn.mssm.edu/research/nih-brain-

tissue-repository

Extracts of brain tissue Mayo Clinic Brain Bank https://www.brainsupportnetwork.org/brain-

donation/mayo-clinic/

Deposited Data

Post-mortem brain transcriptome data Synapse https://www.synapse.org/#!Synapse:syn2580853/

Metabolomics data Synapse https://www.synapse.org/#!Synapse:syn10235594/

Software and Algorithms

MATLAB R2018a MathWorks https://www.mathworks.com/products/matlab.html

COBRA toolbox v3.0 Heirendt et al.77 https://opencobra.github.io/cobratoolbox/stable/

Gurobi optimizer v7.5 Gurobi https://www.gurobi.com/academia/

IBM CPLEX v12.7.1 IBM https://www.ibm.com/analytics/cplex-optimizer

mCADRE algorithm Wang et al.63 http://bmcsystbiol.biomedcentral.com/articles/

10.1186/1752-0509-6-153

iMAT algorithm Zur et al.74 https://doi.org/10.1093/bioinformatics/btq602

TReNA package Bioconductor https://rdrr.io/bioc/TReNA/

Cytoscape 3.7.1 Cytoscape https://cytoscape.org/

Other

Codes for model generation and

simulation

GitHub https://github.com/PriceLab/Bile_acid_AD
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Nathan Price (nathan.

price@systemsbiology.org)

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The post-mortem brain transcriptome data used in this study can be downloaded from https://www.synapse.org/#!

Synapse:syn2580853. The targeted metabolomics data of bile acids used in this study can be downloaded from https://www.

synapse.org/#!Synapse:syn10235594. The code used for reconstruction and model generation and simulation are provided in

GitHub https://github.com/PriceLab/Bile_acid_AD

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Details of sample collection, description of post-mortem brain samples, RNA extraction, library preparation and sequencing are pro-

vided in previously published work.56–58 The combined samples from three independent cohorts consisted of 2114 post-mortem

samples (Table S1). There were 265 samples of temporal cortex (TC) and cerebellum (CER), 632 samples of frontal cortex (FC),

303 samples of frontal pole (FP), superior temporal gyrus (STG), inferior frontal gyrus (IFG) and parahippocampal gyrus (PHG) with

pathologies such as AD, MCI, Parkinson’s and control. Summary of sample sizes of AD cases and controls are shown in Table

S1 and represented in Figure 1. Details of sample collection, preparation, and metabolite quantification are provided in previously

published work.59 Sample details and quantified bile acids are provided in Table S2.
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METHOD DETAILS

Transcriptome analysis of post-mortem brain samples
Transcriptome data was obtained from post-mortem brain samples of AD patients and cognitively normal individuals from Religious

Orders Study and Memory and Aging Project (ROSMAP), Mayo Clinic, University of Florida, Institute for Systems Biology and Mount

Sinai Brain Bank (MSBB). 265 samples of temporal cortex (TC) and cerebellum (CER), 632 samples of frontal cortex (FC), 303 samples

of frontal pole (FP), superior temporal gyrus (STG), inferior frontal gyrus (IFG) and parahippocampal gyrus (PHG) with pathologies

such as AD, MCI, Parkinson’s and control were analyzed and used for construction of brain region-specific metabolic models.

ROSMAP data can be requested via the Rush Alzheimer’s Disease Center website (https://www.radc.rush.edu/). RNA-seq libraries

were prepared by different methods such as poly-A enriched, strand-specific and ribo-zero. The RNaseq data from different centers

were uniformly processed using a consensus set of tools as described in Logsdon et al.,60 with only library type-specific parameters

varying between pipelines. The authors performed library normalization using fixed/mixed effects modeling. To summarize the

method in Logsdon et al.60 for normalization, the genes were filtered and only those genes that had more than 1 CPM in 50% of sam-

ples were retained for analysis. Conditional quantile normalization was done to account for variations in gene length and GC content

and principal component analysis was used to detect sample outliers. Weighted linear models were used to estimate the confidence

of sampling abundance by using the voom-limma package in Bioconductor. This workflow was used to account for differences be-

tween the samples, experimental batch effects, and technical variations due to RNA-Seq. We have used these uniformly-processed

data for analysis in our study. Table S1 has information on the number of patients with various pathologies and controls andmethods

used for RNA-sequencing. The data used in the preparation of this article were downloaded from Synapse (https://www.synapse.

org/#!Synapse:syn2580853/). We performed two-tailed t test with Benjamini-Hochberg correction to identify differentially expressed

genes with corresponding p values. The differential expression analysis for transcriptome data from three independent cohorts is

presented in Table S1.

Bile acid sample preparation and analysis
Participants of the Religious Orders Study (ROS) are comprised of Catholic brothers, nuns, and priests who were cognitively normal

at study entry and agreed to annual clinical examinations and brain donation at time of death. The Rush Memory and Aging Project

(MAP) is a companion study that includes community-dwelling older adults that all agreed to evaluations similar to ROS. Quantifica-

tion of bile acid concentration was performed at the University of Hawaii cancer center. The bile acid-free matrix (BAFM) was used to

prepare bile acid calibrators. Extracts of brain tissue along with bile acid reference standards were subjected to instrumental anal-

ysis.61,62 All of the 57 bile acid standards were obtained from Steraloids Inc. (Newport, RI) and TRCChemicals (Toronto, ON, Canada)

and 9 stable isotope-labeled standards were obtained from C/D/N Isotopes Inc. (Quebec, Canada) and Steraloids Inc. (Newport, RI).

A Waters ACQUITY ultra performance LC system coupled with a Waters XEVO TQ-S mass spectrometer was used for all analyses.

Chromatographic separations were performedwith an ACQUITY BEHC18 column. UPLC-MS raw data obtainedwith negativemode

were analyzed using TargetLynx applications manager to obtain calibration equations and the quantitative concentration (mM) of

each bile acid. Bile acids were measured from the dorsolateral prefrontal cortex of 111 individuals with brain pathology (28, 33,

10, 22 and 18 with CERAD score of 1, 2, 3, 4 and 9 (missing), respectively). Metabolomics data can be accessed with permission

at https://www.synapse.org/#!Synapse:syn10235594. We calculated the ratio of primary and secondary bile acids measured in

metabolomics study and performed two-tailed t test to calculate p value for each bile acid.

Brain region-specific metabolic reconstruction
We used transcriptome data (https://www.synapse.org/#!Synapse:syn2580853/) derived from post-mortem brain samples of three

independent cohorts: Mayo clinic, ROSMAP and Mount Sinai Brain Bank. These cohorts contained information of different brain

regions (CER, FC, TC, FP, STG, IFG and PHG) and the data was used to generate brain region-specific metabolic networks. We con-

verted the transcriptome data to binary by considering transcripts with expression values less than 25th percentile in the matrix as

0 otherwise 1. We calculated ubiquity scores for genes in each brain region separately and used those for implementing mCADRE

workflow.63 The ubiquity score of a gene is equal to the sum of samples in which the gene is expressed divided by the total number of

samples. The Recon 3D model31 of human metabolism was used as template to reconstruct brain region-specific metabolic

networks as this model had information of reactions related to the primary and conjugated primary acids additionally added to refine

the model. The mCADRE workflow required two inputs to build region-specific metabolic models: (1) a global metabolic reconstruc-

tion, which in this case was the Recon 3D model, and (2) region-specific gene expression data from many individuals. Using the

mCADRE workflow, we generated the draft reconstructions for each brain region. We used functions in COBRA toolbox such as

detectDeadEnds to identify dead endmetabolites and identifyBlockedRxns to compute all blocked reactions in the draft reconstruc-

tions. We used reactions from the Recon 3D model for filling gaps in the metabolic network. We carried out this step for each

metabolic network reconstructed for brain regions. We also removed the reactions belonging to drug metabolism from the network

as they were not related to functions in the brain. Only the partial urea cycle is reported to be active in the brain, and so we identified

enzymes in the urea cycle that are present in the brain64 and included the reactions related to these genes in the metabolic networks.

We also included exchange reactions for metabolites identified in the cerebrospinal fluid (CSF) (by metabolomics data as well as the

whole-body metabolism reconstruction53 and metabolites that can be taken up across the blood brain barrier (BBB) from blood into
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the CSF.65–70 The list of metabolites known to pass the BBB is provided in Table S12. Using the removeUnusedGenes function in the

COBRA toolbox we removed genes that were not used in any reaction in the reconstructions. Thenwe carried out manual curation for

genes present in the metabolic network using information from Human Protein Atlas71 for genes expressed in the brain. This effort

helped in providing further evidence for genes being present in the metabolic networks for brain regions. The information for reac-

tions, metabolites and genes inmetabolic networks of brain regions is provided in Tables S4–S10.We tested our models for 16meta-

bolic tasks (Table S11) that are brain specific and the models passed 65%–85% of those tests. As astrocytes are predominantly

involved inmaintaining brain physiology,72 we used objective function of astrocytes for our brainmetabolic networks.We constrained

bounds of exchange reactions using information from a published work on metabolic interactions between cell types in the brain.73

Details of metabolites involved in objective function and bounds for constrained reactions are given in Tables S4–S10. We integrated

expression data with the brain region-specific metabolic networks and generated context-specific personalized metabolic networks

for each sample in the study using iMAT algorithm.74 Flux variability analysis75 was carried out to evaluate minimum and maximum

flux for each reaction in the metabolic networks. The context-specific metabolic networks were sampled using Markov Chain Monte

Carlo (MCMC) sampling method as described in Bordbar et al.76 The sampling distribution for each reaction in the network was

considered as significantly different between AD and CN if the two distributions overlapped by less than 5%. Table S13 has the

results of sampling analysis. The codes used for reconstruction and model generation and simulation are provided in GitHub

(https://github.com/PriceLab/Bile_acid_AD). We used COBRA toolbox v3.077 for metabolic analysis that was implemented in

MATLABR2018a and academic licenses of Gurobi optimizer v7.5 and IBMCPLEX v12.7.1 were used to solve LP andMILP problems.

Reaction and pathway-level analysis
We carried out flux variability analysis75 for each context-specific personalized metabolic network and used the values for predicting

metabolic changes in AD versus CN individuals and sex of the individuals. FVA results were used to generate a matrix in which re-

actions for which bothminimum (vmin) andmaximum (vmax) FVA flux are 0, were considered to be non-active and assigned a state of

0, while the remaining reactions were assigned a state of 1. We carried out this analysis for all context-specific metabolic networks.

Thus, our matrix contained binary values for all reactions in 2114 context-specific personalized metabolic networks for seven brain

regions. We used this scheme to classify the reactions and obtain information not only on the basis of flux measurements but also

their activity in each network. From all the reactions in the metabolic networks, we selected only those that belonged to cholesterol

metabolism, bile acid synthesis and transport reactions associated with the bile acid metabolites. We applied Fisher’s exact test on

the binarized values of reactions to identify those reactions with p value < 0.05 in AD versus CN. These reactions were identified as

significant reactions in these groups.

Metabolic regulatory network
The transcriptional regulatory network analysis (TReNA) package (https://rdrr.io/bioc/TReNA/) was used for identifying transcription

factors (TFs) that are part of the co-expression modules of interest. Brain-specific transcriptional regulatory network was con-

structed78 using information from ENCODE. We downloaded the DNase Hypersensitivity (DHS) fastq files from ENCODE for all avail-

able brain samples and aligned the sequences using the SNAP method.79 We performed two alignments using seed size of 16 and

20bp. The length of sequence data was > 50 bp. The regions of open chromatin were identified using peak calling algorithm, F-Seq.80

Footprints were generated using default parameters for Wellington81 and HINT.82 Our method generated individual genemodels and

those footprints that are within the proximal promoter region (+/�5 kb of the transcription start site) are considered as priors in as-

sessing the relationship between the expression of the TF and target genes. We prioritized putative TF regulators for each gene in the

model using LASSO regression techniques, Pearson andSpearman correlation and random forest methods and projected the scores

from these approaches into PCA space. The principal components were summed together to obtain a single composite score called

pcaMax. This process is part of the trena package in Bioconductor (https://rdrr.io/bioc/TReNA/) and we applied the method to the

post-mortem samples from the temporal cortex from Mayo Clinic. We used metabolic genes identified from reaction-level analysis

involved in bile acid and cholesterol metabolism and mapped top five transcription factors that interact with these metabolic genes

and created an interaction network. These interaction networks gave information for transcription factors that regulate metabolic

genes and are involved in significant reactions in AD versus cognitively normal individuals. Cytoscape 3.7.183 was used for visualizing

the brain transcriptional regulatory network.

QUANTIFICATION AND STATISTICAL ANALYSIS

For DEG analysis, two-tailed t test with Benjamini-Hochberg correction was used for comparison between AD and CN samples. For

targeted metabolomics data, we used the ratio of primary and secondary bile acids and performed two-tailed t test to calculate

p values. Fisher’s exact test was used on the binarized values of reactions and p value was calculated. A p value of < 0.05 is consid-

ered statistically significant. We used LASSO regression, Pearson and Spearman correlation and random forest for calculating

scores for putative TF regulators for each gene in the model,
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