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Abstract: Extracellular vesicles (EVs) are sophisticated and sensitive messengers released by cells
to communicate with and influence distant and neighboring cells via selective transfer of bioactive
content, including protein lipids and nucleic acids. EVs have therefore attracted broad interest as
new and refined potential therapeutic systems in many diseases, including cancer, due to their low
immunogenicity, non-toxicity, and elevated bioavailability. They might serve as safe and effective
vehicles for the transport of therapeutic molecules to specific tissues and cells. In this review, we focus
on EVs as a vehicle for gene therapy in cancer. We describe recent developments in EV engineering to
achieve efficient intracellular delivery of cancer therapeutics and avoid off-target effects, to provide
an overview of the potential applications of EV-mediated gene therapy and the most promising
biomedical advances.

Keywords: extracellular vesicles; nucleic acid delivery; gene therapy; cancer

1. Introduction

Extracellular vesicles (EVs) are nanoscale particles released by producing cells in the extracellular
environment to interact with and act on distant and neighboring cells. EVs can transfer an assorted
cellular cargo including DNA, messenger RNA (mRNA), microRNA (miRNA), and proteins to target
recipient cells in the micro- and macroenvironment. Content heterogeneity is dependent not only on
origin cell type but also on cell state (healthy, stressed, transformed, in replication) and may be modified
by chemical or physical agents [1]. EVs have attracted growing interest within the scientific community
in recent years [1], as their functional content is able to regulate or impair human physiological processes.
EVs are in fact found in multiple types of extracellular fluids such as blood [2], saliva [3], urine [4],
amniotic fluid [5], cerebrospinal fluid [6], and breast milk [7]. The physiological involvement of EVs has
been gradually elucidated in immune response [8], signal transduction [9], angiogenesis [10], and cell
proliferation [11]. Furthermore, several reports described the role of EVs as pathological effectors in
cancer, where they appear to mediate virtually all aspects of tumorigenesis, including angiogenesis,
immune suppression, metastasis formation, and drug resistance [12–14]. A better understanding of the
functional mechanisms of EVs prompted the scientific community to explore the advantages of using
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EVs in the clinic for diagnostic [15], therapeutic [16], and prognostic [17] purposes. Primarily, researchers
hypothesized introducing a desired cargo (drugs, proteins, nucleic acids) [18,19] into EVs to exploit
their promising potential in cancer therapy. EVs preserve their content from degradation by keeping the
cargo in a soluble phase in aqueous cytoplasm [20], and also resist enzymes in biological fluids in order
to shield the cargo until it reaches target cells [21]. In addition, human EVs from HEK293 cells showed
no toxicity and only weak immunogenicity when implanted in mice [22], both systemically and in the
liver (one of most frequent site of non-engineered EVs accumulation) [23]. Therefore, one of the greatest
advantages in the therapeutic use of EVs derives from their low-grade immunogenicity; for instance,
EVs derived from mesenchymal stem cells (MSCs) are known to have a very low risk of immunogenicity.
This particular ability could derive from the characteristics of the cells that originate them (MSC),
showing a low expression of MHCII and other costimulatory molecules [24]. The use of these vesicles
has been extensively studied in regenerative and anti-inflammatory therapy through the use of animal
models such as for traumatic and perinatal brain injury [25]. Moreover, the MSC-EVs are widely used
as therapeutic agents for different immunological disorders [26] and their use has shown incredibly
promising results in clinical trials on severe forms of graft-versus-host disease (GvHD; Grade II–IV) [27];
chronic kidney diseases [28]; and Type I Diabetes Mellitus (T1DM) [29]. Another example of how EVs
are able to negatively regulate immunoresponse is given by immature dendritic cell (DC)-derived EVs
devoid of immunostimulatory molecules (MHC-I and -II) [30] and carrying co-regulatory proteins
that suppress immune reactions. Further, DCs treated with immunosuppressive drugs or specific
cytokines release EVs that negatively regulate immune cells, as shown by Kim SH et al., who found
that EVs from DCs exposed to IL-10 suppressed inflammation and immune response [31]. Due to
their size, EVs are able to avoid mononuclear phagocytic cell-mediated removal [32]. This contributes
to increasing the longevity of EVs [33] and enhancing cargo bioavailability, as demonstrated in
a very recent study by Carobolante et al. investigating the utility of EVs in improving the poor
oral bioavailability of many drugs [34]. Additionally, the use of autologous vesicles likely avoids
adverse reactions [35] and increases uptake efficiency by receiving cells [36]. EV uptake is highly
efficient due to membrane proteins such as tetraspanins [37], fibronectin [38], and proteoglycans [37],
but can also be customized depending on target cells. Vascular cell adhesion molecule 1- and integrin
α4-enriched EVs enhance vesicle docking and uptake through endothelial cells [39]. Because of their
small size, EVs also may cross the blood–brain barrier in a bi-directional manner, either by transcytosis
(endocytosis followed by multivesicular body formation and release on the other side) [40,41] or
through junctions between endothelial cells [40]. This passage is safe for EV cargo, as suggested by
Alvarez-Erviti et al., who observed that EV-mediated small interfering RNAs (siRNAs) remain active
after crossing the blood–brain barrier [42].

EVs may thus represent an optimal and safe alternative approach in current gene therapy.
Gene therapy involves reverting aberrant gene expression, inducing the expression of suicide genes,
modulating immune response, and inhibiting angiogenesis [43] by introducing DNA fragments, miRNA,
siRNA, and lncRNA in target cells by different means such as viral vectors (human immunodeficiency
virus (HIV), adeno-associated viruses) or naked plasmid DNA. Initial limited clinical success led
to the development of a wide spectrum of safer, yet not fully efficient, gene-targeting delivery
systems. Attractive nanoscale approaches in cancer gene therapy include polymeric, inorganic,
lipid nanoparticles, and hybrid nanoparticles [44]. However, major attempts have been made to design
and evaluate nanomaterials and nanotechnology to overcome delivery-related limitations such as
adverse side effects, bio-accessibility, enzymatic degradation, non-selectivity, and premature release of
therapeutics [45].

In this review, we describe the potential use of EVs as a tool for therapeutic nucleic acid delivery
to target cells, to improve treatment efficacy and avoid side effects. We discuss the current state
of and recent advancements in EV engineering, and the adoption of EVs as therapeutic vectors in
tumor-targeted therapy.
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2. Extracellular Vesicles (EVs) as a Delivery System for Nucleic Acids

The innate and unique proprieties of EVs in cell–cell communication strongly encourage studies
into their usage as a therapeutic delivery system. EV-mediated transport seems to be highly effective,
allowing the release of a greater amount of therapeutics into the tumor [46], thereby ensuring a lower
amount in blood and reducing side effects [46]. EVs have a multifunctional utility in delivering
therapeutics: they can signal through different modalities, by activating receptors on the surface of
cells, delivering their content inside the cytoplasm, to carry hydrophilic molecules in their interior,
lipophilic molecules in their lipid bilayers, and amphiphilic molecules on their surface.

A wide range of methods and technologies have been optimized in EV engineering [47].
Several strategies to load therapeutics inside EVs and functionalize them to cell targeting have
been developed. A simplified schematic representation of how engineered therapeutic-containing EVs
act is shown in Figure 1. Increasing evidence points to the compelling advantages over EV-producing
cells [48,49], including no risk of transformation and lower immunogenicity. MSC-derived EVs
were recently described as a novel cell-free therapy in liver, kidney, cardiovascular, and neurological
diseases [50–56]. In addition, immature DCs were described as a major source of EVs [57] and as
innovative cell-free vaccines, reverting cancer immune escape [58–60].
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Figure 1. Therapeutic delivery: from source to target cell.

2.1. EV Therapeutic Engineering

Major benefits can be achieved through effective loading of EVs with therapeutic products.
EV loading can be performed by two different means: either directly on purified vesicles or by
engineering the mother cell to allow the release of modified EVs.

2.1.1. EV Loading Methods

Purified EVs can be used to direct cargo loading with therapeutics in several ways. One of the
most commonly used techniques for loading nucleic acids is electroporation [42]. The limitations
of this approach are: (i) the aggregation of small RNAs, which can be partially prevented by using
acidic citrate, found to work better than EDTA [61]; (ii) the low loading efficiency [55], even more
pronounced for nucleic acids larger than 1000bp [62]. Consequently, alternative methods have been
attempted to improve the loading efficiency of the molecule of interest. Hydrophobically modified
siRNAs could be loaded into EVs: a cholesterol moiety (triethylene glycol (TEG)) was conjugated
to the 3′-end of the desired siRNA, which was then co-incubated with purified EVs. As expected,
modified siRNAs were found on the surface of purified vesicles, but a large percentage was also found
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inside EVs. Furthermore, modified siRNAs reduced the expression of their targets in receiving cells,
thus proving functionality [63].

An advanced system was subsequently developed to load large nucleic acids into EVs by fusing
exosomes with liposomes, obtaining a hybrid with the load-bearing capacity of liposomes and the
ability of EVs to interact with and enter recipient cells. For example, CRISPR-Cas9 expression vectors
were encapsulated in EVs in MSCs by co-incubation of exosomes, liposomes, and the plasmid of
interest for 12 h at 37 ◦C. The loaded hybrid exosomes were taken up by MSCs and negative expression
regulation of the target gene (Runx2) was observed in receiving cells, indicating functional delivery.
However, some toxicity was detected due to the liposome component, which was not observed with
EVs [64].

2.1.2. Parental Cell-Based Engineering

The low loading efficiency of the above-mentioned methods for some large molecules can be
overcome by engineering donor cells to release modified EVs [65]. Although several attempts have
been made to better understand the intracellular system of EV sorting and loading, further studies
are still required. EVs are known to be enriched in small RNAs [66], but the sorting mechanisms that
actively and selectively incorporate RNAs into EVs are yet to be elucidated. Annexin A2 was reported
to be involved in miRNA loading inside EVs [67]; sumoylated hnRNAPA2B1 binds to sequence motifs
enriched in EV-associated miRNAs, mediating the loading of bound RNAs into EVs [68]. However,
a “zipcode” sequence, involved in mRNA loading, was found in the 3′ UTR of mRNAs enriched in
EVs [69]. Interestingly, miRNAs seem to play a role in mRNA loading into EVs. Binding of miR-1289
to the zipcode of its targets allows mRNAs to be loaded into EVs to reduce the cellular expression of
these targets [69–71].

Overexpression of a desired gene in donor cells seems to prompt gene loading into EVs at both
mRNA and protein level [72]. Significant therapeutic results were obtained using EVs derived from
these cells against pancreatic cancer cells [73]. Recently, Yang et al. used an alternative method to
produce therapeutic mRNA-containing EVs. In brief, using a cellular-nanoporation technique the
authors transfected various source cells with plasmid DNAs and stimulated cells with an electrical
stimulus to encourage the release of EVs loaded with the desired mRNAs. This method produced
up to 50-fold more EVs and an over 103-fold increase in vesicular mRNA transcripts compared to
previous strategies [74].

Active and specific RNA loading into EVs can also be performed using the Targeted and Modular
EV Loading (TAMEL) platform (Figure 2). In this case, a plasmid encoding for the fusion protein
composed of Lamp2b (an EV-enriched protein) and the RNA-binding domain (RBD) MS2 was
transfected. This fusion protein was able to bind engineering RNAs-cargo (with RBD loops in the
3′ UTR) in the interior of EVs, enhancing the specific recognition. When using this method, it was
observed that shorter RNAs were loaded into EVs with higher efficiency than longer molecules,
confirming that loading capacity is inversely proportional to size [68].

In 2018, a novel parental cell-based strategy for loading mRNAs, known as EXOtic (Exosomal transfer
into cells) was designed (Figure 3) and used to treat Parkinson’s disease-derived inflammation with
encouraging results [75]. EXOtic aimed to achieve specific packaging/delivery of RNA and targeting.
For specific RNA packaging, the RNA binding protein L7Ae was conjugated with CD63 and the RNA of
interest was modified to allow L7Ae recognition. In order for EVs to reach only brain cells, rabies viral
glycoprotein (RVG)-Lamp2b fusion protein was expressed in donor cells. Overexpression of the gap
junction protein connexin 43 (Cx43) enhanced EV docking/uptake by receiving cells and further helped
EV content to pass directly to receiving cells. Remarkably, subcutaneous implanting of engineered donor
cells into a mouse resulted in reduced brain inflammation, confirming the promising potential of this
method [75]. Another approach to achieve loading of miRNAs into EVs is the TAT–TAR protein–RNA
interaction [76]. The authors fused a pre-miR-199a to a transactivating response (TAR) sequence and a
transactivator of transcription (TAT) peptide of HIV-1 to Lamp2a (Lamp2a-TAT). When expressed in
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parental cells, miR-199a-TAR binds to Lamp2a-TAT and the interaction on the luminal C-terminal of
Lamp2a leads to the effective loading of miR-199a into the lumen of EVs. RNA-binding modules seem
to be an efficient method for loading RNA into EVs. For example, the RNA-binding protein HuR was
fused to the C-terminal of CD9 in order to be localized in the exosomal lumen. Thus, HuR strongly binds
to miR-155 and simultaneously they localize inside EVs [77].
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Figure 2. Active loading of cargo RNA into extracellular vesicles (EVs) via TAMEL. TAMEL EV-loading
protein comprises an EV-enriched protein (EEP, violet) fused to an RNA-binding domain (RBD, red),
which localizes to EVs. Actively loaded RNA contains a motif that binds to the RBD, resulting in
enhanced loading into EVs.

 

2 

 

Figure 3. mRNA delivery by Exosomal transfer into cells (EXOtic). EV containing the RNA packaging
device CD63-L7Ae (which can bind to the C/Dbox in the 3′ UTR of any RNA structure), targeting
module (RVG-Lamp2b to target CHRNA7), cytosolic delivery helper (Cx43 S368A), and mRNA
(e.g., nluc-C/Dbox) efficiently produced from EV donor cells. Engineered EVs will be delivered to target
cells, expressing CHRNA7, with the help of Cx43.

2.2. EV Surface Functionalization

In 1986, Matsumura and Maeda described the “enhanced permeability and retention” (EPR) effect,
which represented a passive delivery of carriers and/or therapeutics [78]. A major flaw of this effect
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was the lack of specificity that drove therapeutics towards off-target sites. EV surface modifications
might overcome this limitation by displaying ligands onto the vesicle surface that recognize unique
markers or abnormally expressed proteins on target cells, such as CD34 in AML blasts [79] and CD49
in prostate cancer cells [80]. Table 1 lists the most used ligands in therapeutic delivery against cancers.
Based on this development, EVs were functionalized using a fusion protein composed of Lamp2b and
the iRGD peptide to recognize αv integrins on the surface of breast cancer cells. Modified EVs were
loaded with therapeutics and successfully reached the target cells [81]. However, an easier way to favor
therapeutic delivery to cancer cells might be the use of cancer cell-derived EVs themselves, given their
membrane composition comparable to that of donor cells [82] and high vesicle uptake [83]. However,
rational reservations and unsafe implications suggest care in cancer cell-derived EVs therapeutic use.
Chemistry methods were also applied in this field. Table 2 lists chemical reactions performed for
ligand applications on vesicles, specifically with regard to cross-linkers. Polyethylene glycol (PEG)
is the most commonly used cross-linker in therapeutic delivery [84–86]. CP05 is a CD63-specific
peptide that acts as an anchor between vesicle membrane and ligand. It has been shown that is
possible not only to isolate exosomes from human serum but also to modify the cargo (e.g., binding
phosphorodiamidate morpholino oligomer (PMO)) for a specific therapeutic use [82]. TEG and C7
(2-aminobutyl-1-3-propanediol) were applied to attach molecules on the EV surface due to their
affinity for phospholipid membrane [87,88]. An outdated physical method was employed to add
antibodies to the EV surface through sonication. This technique allowed binding to the vesicle
of a low percentage of antibodies (4–40%). Binding efficiency depends on the time and power of
sonication and on the lipidic composition carried by EVs [89]. It was also recently reported that the
presence of nucleases inside EVs might degrade therapeutic nucleic acids and impair their action [88].
Another possibility could be loading therapeutics onto the EV surface, depending on their modality of
action (i.e., binding/activating receptors on the cell surface). Table 3 lists therapeutics added onto vesicle
surface and successfully delivered to target cells. Haraszti et al. [88] loaded cholesterol-conjugated
siRNA onto isolated EVs for Huntingtin mRNA silencing in primary neurons with promising results.
Although the conjugation was not tested on tumor cells, its application in cancer treatment could be
possible. Other membrane-conjugated siRNAs were tested on lung cancer cells [90] to inhibit the
expression of CD45.

Table 1. List of ligands and related targets in cancer therapy.

Molecule Ligand(s) Target(s) Cancer Type(s) Reference

Peptide RGD Integrins αvβ3, αvβ5, α5β1 Breast, glioblastoma, prostate,
pancreas [81,91–93]

Peptide H2009.1 Integrin αvβ6 Lung, ovarian, oralcavity [94]
Peptide RVG CHRNA7 Brain [75]
Peptide Bombesin GRP receptor Breast, lung, prostate [95]
Peptide SP94 - Hepatocellular carcinoma [96]
Peptide GE11 EGFR Breast, lung, hepatoma [97–99]

Tripeptide NGR Aminopeptidase N Blood vessels [100]

Protein Transferrin Transferrin-receptor Metastatic and drug-resistant
cancer cells [101]

Protein EGF EGFR Breast [97]
Ab Anti-CD20 CD20 Burkitt’slymphoma [102]
Ab Anti-CD47 CD47 Pancreas [103]
Ab Anti-annexin A2 AnnexinA2 Breast, glioblastoma [104]

Aptamer AS1411 Nucleolin Breast, non-small cell lung [105]
Aptamer Sgc8 PTK7 membrane protein Leukemia [106]

Aptamer HeA2_1
HeA2_3 HER2 receptor Breast [107]

Monosaccharide Galactose Asialoglycoproteinreceptor Liver [108]
Glycosaminoglycan Hyaluronic acid CD44 Melanoma, colon, lung [109]

Vitamin Cobalamin Transcobalaminreceptor Lung, breast, pancreas [110]
Vitamin Folate Folate receptor Ovarian, breast, kidney, brain [111]
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Table 2. Chemical methods of extracellular vesicle (EV) surface cross-linking.

Method Binding

Triazole linkage Covalent
Disulfide linkage Covalent
Thioether bond Covalent

Amide bond Covalent
Streptovidin-Biotin interaction Non-covalent

π-π stacking interactions Non-covalent

Table 3. Therapeutics conjugated to EV surface and their targets in cancers.

Molecule Therapeutic Target Cancer Reference

RNA hsiRNA Huntingtin - [88]
RNA siRNA HuR Neuroblastoma [112]
RNA siRNA CD45 Lung [90]

3. Engineering EV-Based Cancer Therapy

EV-based engineering strategies were developed for the treatment of both solid and hematologic
cancers and hold big promises, as they might be more specific, more effective, and safer for patients
compared to drug treatments. The main aim of EV-based gene cancer therapy is to transfer to the tumor
site nucleic acid molecules, such as siRNA, miRNA, RNA, and DNA, in order to modify or manipulate
the altered expression of target genes, reverting the aberrant cancer phenotype or conferring efficacy
and safety to therapeutic agents. Table 4 lists the acid nucleic molecules used as therapeutic in cancer.

3.1. Solid Tumors

Most studies report that the use of miRNA and siRNA reduces the tumorigenicity of various types
of solid cancers [113–119]. These molecules mediate RNA interference, inhibiting the translation of
mRNA targets. Given their greater specificity [120], they can be considered the best replacement therapy
for inhibitory drugs. Since angiogenesis is a key mechanism in the development of cancer, many research
efforts have focused on the inhibition of genes involved in this process. One of the main target genes in
angiogenesis is vascular endothelial growth factor (VEGF). miR-100/497 mediated downregulation of
this gene leads to a reduction in the growth and spread of lung and breast cancer [121,122]. Specifically,
the paracrine effects of miR-100 from MSC-derived EVs in breast cancer cells is indirectly involved in
downregulation of VEGF through inhibition of mTOR and a consequent reduction in hypoxia-inducible
factor (HIF) 1α [121]. Similarly, miR-497-loaded EVs repressed angiogenesis in lung cancer via direct
interaction with VEGF-A and other factors, such as YAP1, HDGF, and CCNE1, in a 3D microfluidic
device [122]. Inhibition of angiogenesis was also observed in the treatment of gastric cancer using
siRNA against hepatocyte growth factor (HGF); in this case, the EV-siRNA system suppressed not only
angiogenesis but also tumor growth, both in vitro and in vivo, through downregulation of HGF and
subsequently of VEGF [123]. Furthermore, it was recently reported that EV-siRNA against VEGF was
able to easily and effectively cross the blood–brain barrier in a zebrafish model of brain cancer. This study
demonstrated the stability of EVs in circulation and their ability to act as couriers for the delivery of
brain drugs, supporting a new strategy for cancer therapy [124]. A wide range of genes are involved in
cancer spread, such as COX-2, known to be responsible for breast cancer pathogenesis, angiogenesis,
and metastasis. Injecting EVs containing miR-379 reduced tumor growth in mice, revealing the
effective action of miR-379 as a tumor suppressor [125]. Further studies reported that EV-delivered
TRPP2 siRNA blocks cell migration and invasion of laryngeal cancer [126] and thatHSP27 siRNA
tagged-EVs promote neuronal maturation and differentiation as well as a reduction in cell proliferation
and viability in neuroblastoma cells [127]. In another interesting work, therapeutic biomimetic
nanoparticles composed of cationic bovine serum albumin (CBSA)-conjugated siS100A4 and exosome
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membrane-coated nanoparticles, called CBSA/siS100A4@Exosome, was able to suppress postoperative
breast cancer metastasis [128]. In addition, EVs derived from miR-148b-3p-overexpressing human
umbilical cord MSCs and miR-134-enriched EVs reduced cellular migration and invasion, and enhanced
drug sensitivity by inhibiting TRIM9, and targeting STAT5B, Bcl-2, and Hsp90, respectively [13,129].
Another important opportunity is to target oncogenic drivers. KRAS is one of the most representative
and well-studied genes, found mutated in 30% of all human cancers. Several studies showed that
EV-delivered mutated KRAS silencing efficiently reduces tumor proliferation and growth in lung and
pancreatic cancer cells and in mouse tumor xenografts [130–133]. In a work on murine sarcoma, the use
of a siRNA against transforming growth factor beta, delivered to the tumor via EVs, was shown to
reduce cancer growth and repressed tumor progression [134]. Promising results using engineered
EVs have been achieved in neuronal diseases not responsive to conventional drugs. In one of the first
studies, miR-146b-delivered EVs inhibited glioma multiforme growth by targeting epidermal growth
factor receptor (EGFR) mRNA in rats [135]. In addition, EVs derived from miR-199a-overexpressing
MSCs inhibited glioma development by inducing apoptosis via downregulation of ankyrin repeat and
pH domain 2 expression [136]. The most encouraging results of engineered EVs regard their ability
to improve existing drug therapies by increasing sensitivity to conventional drugs to which patients
acquire resistance. For instance, miR-199a and miR-9 released via EVs enhanced chemosensitivity in a
combinatorial protocol with temozolomide, leading to a significant reduction in proliferation, migration,
and invasion of glioma [136,137]. In breast cancer, the use of exosomal miR-567 proved to be an
effective means of reversing resistance to trastuzumab by inhibiting ATG5 expression [138] and miR-134
increased cisplatin-induced apoptosis by enhancing sensitivity to anti-Hsp90 drugs [13]. In liver cancer,
miR-122 was found to be remarkably effective in decreasing chemoresistance by downregulating three
genes, ADAM10, IGF1R, and CCNG1, involved in tumorigenesis and drug sensitivity. The authors
observed a decrease in tumor volume and weight, in vivo, exclusively through the use of miR-122 from
adipose tissue-derived MSC EVs combined with sorafenib [139] for GRP78-siRNA EVs transfected
into hepatocellular carcinoma cells, leading to a significant reduction in sorafenib resistance and tumor
metastasis formation [140]. Finally, EV-released miR-128-3p increased chemosensitivity to oxaliplatin
in colorectal cancer by negatively regulating expression of Bmi1 and MRP5 genes [141].

Besides delivering miRNAs and siRNAs, EVs can also carry mRNAs, long noncoding RNAs,
and circular RNAs (circRNAs). These long noncoding RNAs are the subject of increasing interest
because of their biological stability and function as gene expression regulatory elements when acting
as a miRNA sponge. circ-0051443 delivered by EVs in hepatocarcinoma cells was reported to reduce
tumor progression and, in vivo, the size and weight of xenograft tumors. In this case, circRNA acted as
a sponge of miR-331-3p, inhibiting expression of the BAK1 gene, an important cell death regulator [142].
EV circRNA was also found to play a role in chemoresistance. In gastric cancer cells, the long
noncoding RNA HOXA transcript at the distal tip (HOTTIP) was able to promote resistance to cisplatin
by regulating miR-218, which targets the HMGA1 gene, a tumor promoter in several cancers [143].
In colorectal cancer, hsa_circ_0005963 acted as a miR-122 sponge, causing overexpression of the PKM2
gene and consequently resistance to oxaliplatin [144]. One of the limitations associated with EV
therapy concerns its production site. Most EVs are generated from primary MSCs or immortalized cells.
Millions of cells are required to produce a sufficient quantity of EVs, severely hindering their potential
therapeutic use. This limitation could be overcome by using EVs derived from human red blood
cells (hRBC). Since RBCs constitute the majority of the body’s cells (about 84%) [145], a sufficiently
high number of EVs can be produced while simultaneously abolishing immunological cytotoxicity,
resulting from the use of primary cell-derived EVs. This approach was validated in a study by Usman
et al., where hRBC-derived EVs proved to be an effective and safe method of gene therapy. As well
as demonstrating that it is possible to target a specific miRNA, miR-125, by transferring an inhibitor
via RBC-EVs in a particularly aggressive breast cancer line, the authors described a novel use of the
CRISPR-Cas9 system in gene therapy. By transferring both Cas9 mRNA and RNA to the genetic target
of interest, they obtained promising results in gene expression modulation [146].
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3.2. Hematologic Tumors

Currently, in terms of gene therapy, the most cutting-edge therapeutic approach for hematological
diseases is chimeric antigen receptor T cell therapy (CAR-T) [147]. Since most leukemia is caused by
an imbalance of coding and noncoding genes [148], the development of opportune RNA interference
therapies is required. One of the most studied targets in hematological diseases is c-Myc, and EVs targeting
c-Myc by siRNA-induced apoptosis in lymphoma cells in vivo [149]. In addition, since inflammations are a key
process in the development and progression of hematologic cancers, many research efforts are aimed at targeting
monocytes and macrophages. One of the first studies in this field showed the effective transfer of a
siRNA from plasma EVs of peripheral blood mononuclear cells into the target cells, causing selective
gene silencing of MAPK-1 [150]. Dendritic-derived EV miR-155 and miR-146a can be effectively
transferred between immune cells in vivo, and positively and negatively regulate the inflammatory
process in mammals, respectively [151]. In a more recent study, the viability of precursor B cell acute
lymphoblastic leukemia was reduced using engineered EVs carrying specific RNA oligonucleotides
against Che-1/AATF polymerase [152]. However, one of the most interesting studies is that by Usman
et al., where in addition to demonstrating the advantages of using EVs-derived from blood cells for
gene therapy, the authors showed that induction of antisense miR-125 reduces the progression of
acute myeloid leukemia (AML) in vivo. For this purpose, they loaded antisense oligonucleotide into
3 × 1012 EVs which subsequently were injected into tumor-bearing mice.

Notably, most of the articles in this review use a large amount of vesicles for in vivo experiments
(ranging from 5 × 1010 to 10 × 1012 total EVs) without incurring toxicity, immunogenicity and changes
in cytokine levels. Furthermore, EV purity evaluations were performed by different technologies
(TEM, SEC, NanoSight) to ensure the therapeutic effects were due only to vesicles.

Table 4. List of acid nucleic molecules used as therapeutic in cancer, and related targets.

Therapeutic Target(s) Cancer Type Outcome(s) Reference

miR-100 VEGF, mTOR,
HIF1α Breast reduction in the growth and spread [121]

miR-497 VEGF, YAP1,
HDGF, and CCNE1 Lung angiogenesis repressed [122]

siRNA HGF Gastric angiogenesis and tumor growth suppressed [123]
siRNA VEGF Brain angiogenesis decreased [124]

miR-379 COX-2 Breast reduction in tumor growth [125]
siRNA TRPP2 Laryngeal migration and invasion blocked [126]

siRNA HSP27 Neuroblastoma neuronal maturation and differentiation promoted;
reduction proliferation and viability of cancer [127]

CBSA/siS100A4 S100A4 Breast postoperative cancer metastasis suppressed [128]

miR-148b-3p TRIM59 Breast proliferation, invasion, and migration inhibithed;
apoptosis promoted [129]

miR-134 STAT5B Breast cellular proliferation reduced; cisplatin-induced
apoptosis enhanced [13]

siRNA TGF-β Murine Sarcoma cancer growth and tumor progression repressed [134]

siRNA KRAS Lung and
Pancreatic tumor proliferation and growth reduced [130–133]

miR-146b EGFR Glioma multiforme Growth inhibited [135]

miR-199a AGAP2 Glioma inducing apoptosis enhanced chemosensitivity
for temozolomide [136]

Anti-miRNA miR-9 Glioma proliferation, migration, and invasion reduced [137]
miR-567 ATG5 Breast reversing resistance to trastuzumab [138]

miR-122 ADAM10, IGF1R,
and CCNG1 Liver decreasing chemoresistance; tumor volume and

weight decrease [139]

siRNA GRP78 Hepatocellular
carcinoma

reduction in sorafenib resistance and tumor
metastasis formation [140]

miR-128-3p Bmi1, MRP5 Colorectal increased chemosensitivity to oxaliplatin [141]

circ-0051443 BAK1 Hepatocarcinoma tumor progression and size and weight of
tumor reduced [142]

HOTTIP miR-218 Gastric promote resistance to cisplatin [143]
hsa_circ_0005963 miR-122 Colorectal promote resistance to oxaliplatin [144]

siRNA c-Myc Lymphoma Apoptosis induced [149]

miR-155; miR-146a SHIP1 and BACH1;
IRAK1 BMDCs regulate inflammation [151]

RNA OLIGOS Che-1/AATF CLL Viability reduced [152]
125b-ASO miR-125 AML Progression reduced [146]
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4. Conclusions

Despite greater insights and rapid progress in the diagnosis and treatment of cancer, the efficacy
of current treatment strategies is still limited. The synergism of gene therapy and EV communication
has opened up new horizons in the treatment of malignancies. EV-based gene therapy represents
a promising approach to delivering new precision medicine treatments for solid and hematological
cancers. Crucially, EVs are highly stable, non-toxic, and non-immunogenic natural targeted delivery
vehicles. Exploiting the properties of EVs in combination with gene therapy has already proved
to be effective in efficiently targeting and delivering therapeutic agents in preclinical models.
Further molecular and in vivo studies will be required to substantiate and validate current findings
and improve EV-mediated gene therapy.
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