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Artificial intelligence (AI) has emerged as a powerful approach for integrated analysis

of the rapidly growing volume of multi-omics data, including many research and clinical

tasks such as prediction of disease risk and identification of potential therapeutic targets.

However, the potential for AI to facilitate the identification of factors contributing to human

exceptional health and life span and their translation into novel interventions for enhancing

health and life span has not yet been realized. As researchers on aging acquire large

scale data both in human cohorts and model organisms, emerging opportunities exist

for the application of AI approaches to untangle the complex physiologic process(es) that

modulate health and life span. It is expected that efficient and novel data mining tools that

could unravel molecular mechanisms and causal pathways associated with exceptional

health and life span could accelerate the discovery of novel therapeutics for healthy aging.

Keeping this in mind, the National Institute on Aging (NIA) convened an interdisciplinary

workshop titled “Contributions of Artificial Intelligence to Research on Determinants and

Modulation of Health Span and Life Span” in August 2018. The workshop involved

experts in the fields of aging, comparative biology, cardiology, cancer, and computational

science/AI who brainstormed ideas on how AI can be leveraged for the analyses of

large-scale data sets from human epidemiological studies and animal/model organisms

to close the current knowledge gaps in processes that drive exceptional life and health

span. This report summarizes the discussions and recommendations from the workshop

on future application of AI approaches to advance our understanding of human health

and life span.
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INTRODUCTION

Aging is often described as the outcome of interactions among
genetic, environmental and lifestyle factors with wide variation
in life and health span between and within species (Newman
and Murabito, 2013; Partridge et al., 2018; Singh et al., 2019).
Exceptional life and health span represents an extreme phenotype
characterized by exceptional survival (well-beyond average life
expectancy), delayed onset of age-related diseases (before 80
years of age) (Pignolo, 2019) and/or preservation of good
health/function relative to their peers (Perls et al., 2000, 2002;
Kaeberlein, 2018). The identification of SNP associations with
exceptional life and health span is a starting point for identifying
targets for interventions that could potentially promote healthy
human aging. In this context, understanding the functional
effects of human genetic variants and cellular factors associated
with exceptional survival can identify potential targets for
interventions to mimic their favorable effects (Kennedy, 2008;
Kaeberlein and Kennedy, 2009). The advent of high-throughput
technologies is enabling the acquisition of large data sets on
genetics, genomics and many cell variables, including proteins,
lipids and metabolites in an effort to (1) untangle the intricate
biological process of aging, (2) identify drug targets, and (3)
develop therapeutics to enhance life and health span. Individually
these datasets have contributed to our understanding of human
physiology and diseases but existing approaches fall short in
terms of understanding the complex role of those mechanisms
in aging that protect individuals from age-related diseases and
enable health and life span (Sebastiani et al., 2013, 2017a; Milman
and Barzilai, 2015). The application of GWAS, Mendelian
randomization and other similar approaches have been of limited
success and have not resulted in any major breakthroughs in
therapeutics for prevention of age-related diseases, including
Alzheimer’s Disease (AD).

Alternative strategies which could be more fruitful include
integrated analysis of multi-omics data and comparative biology
approaches. For example, exceptional life and health span involve
amultiplicity of interacting contributory factors and the nature of
these interactions can change with time. There is a need to unlock
the fundamental functional information on (1) genotype—
phenotype relationships, (2) causality and mechanistic action
of the gene(s) at the physiologic level, (3) pleiotropic and
epistatic effects that mask the influence of the gene variants,
and (4) structural variations associated with these protective
gene variants. Integrative multi-omics approaches hold great
promise in the translation of protective variants to prevent/delay
age- related diseases and promote healthy aging (Huang et al.,
2017). Additionally, comparative biology of aging approaches
which further investigate the factors modulating life span of
long- and short-lived species could provide valuable insight into
potential pathways influencing healthy aging in humans. Using
data from human and animal/model organisms truly represents
an opportunity that could be exploited a lot more than it has
been in the past to understand the varied trajectories of aging in
different species (Yanai et al., 2017).

In this context, modern data analysis and in particular,
AI approaches could be transformative toward identifying

strategies for preservation of good health with advancing age. AI
researchers exploit computationally intense algorithms to assist
humans in making sense of large, complex data sets with patterns
that may not be detected using parametric statistical methods.
An overarching question now in the aging field is whether AI,
machine learning (ML), or deep learning (DL) approaches would
be useful tools for identifying the genetic basis of exceptional
health and life span. Future applications of AI in aging research
appear to be diverse and may potentially contribute to the
development of pharmaceutical drugs to enhance health and
life span.

With this as background, The National Institute on Aging
(NIA) convened a workshop in August titled “Contributions
of Artificial Intelligence to Research on Determinants and
Modulation of Health Span and Life Span.” The workshop
invited experts in the fields of aging, comparative biology,
cardiology, cancer, computer science/artificial intelligence, and
bioinformatics who brainstormed ideas on how AI can be
leveraged to extract knowledge from large scale data sets
collected from human epidemiological studies and animal/model
organisms to accomplish the following goals:

• Model the relationships between DNA, RNA, proteins,
metabolites and other cell variables, associated with disease
risks and exceptional healthy aging

• Infer biological models that relate genetic sequence to
cellular processes

• Utilize comparative biology approaches for identifying factors
which contribute to slow rates of aging

• Identify novel predictive biomarkers of aging, drug targets
and gene altering therapeutics to prevent or delay age-
related diseases

• Identify potential targets for pharmacological interventions to
prevent age-related diseases and promote healthy aging

The overall purpose of this workshop was to assemble experts to
obtain their input on ways that AI methods could be productively
applied to advance our understanding of the determinants of
human health and life span. Though its underlying premise was
that such understanding could contribute to interventions that
extend human health span and life span, it also included a focus
on potential contributions of AI to understanding the basis of the
wide variability of life span across species, which could further
inform the development of human interventions.

Study of Exceptional Life and Health
Span—Challenges, Goals and Resources
Aging is the progressive accumulation of cellular changes with
time that are associated with or responsible for susceptibility to
various diseases and is the main risk factor for diseases. The
process of aging displays wide variability across populations with
some reaching extreme old- age associated with exceptionally
healthy aging phenotypes (Macarron and Hertzberg, 2011). The
fact that human lifespan and achievement of extreme old age,
is moderately heritable motivated investigators to search for
protective genetic variants/factors associated with these traits.
Related to these efforts, Dr. Daniel S. Evans from California
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PacificMedical Center (CPMC) in his presentation described his
current strategies and challenges in data analyses that are aimed
at identifying and translating protective genetic and molecular
factors that drive the exceptional life and health span phenotype.
The identification of SNP associations with human longevity
is a starting point for identifying targets of interventions that
could potentially promote healthy human aging. In the past,
genome wide association studies (GWAS) of exceptional life
span /longevity have identified quite a few longevity-associated
variants (LAVs) (Perls et al., 2000; Willcox et al., 2006; Conneely
et al., 2012; Sebastiani et al., 2013), with the most significant
and widely replicated LAVs residing in the ApoE gene region.
The most consistent finding is associations with the SNP marker
for the ApoE e4 haplotype being associated with decreased
odds of longevity (Deelen et al., 2011; Nebel et al., 2011; Broer
et al., 2015). The meta-analysis of the CHARGE discovery results
[(Broer et al., 2015) with published results for the FOXO3 variant
rs2802292 (Willcox et al., 2006; Flachsbart et al., 2013)] revealed
that the G allele was associated with increased odds of longevity at
the genome-wide significance level (OR= 1.17, P= 1.9× 10−10).
A recent GWAS of Chinese centenarians identified SNPs near the
genes IL6 and ANKRD20A9P (Zeng et al., 2016). A GWASmeta-
analysis of centenarians of European descent replicated SNP
associations at the ApoE locus and identified rare variants near
the genes USP42 and TMTC2 (Sebastiani et al., 2017b). Recent
GWAS of parental lifespan from the UK Biobank study have
expanded the number of published LAVs (Pilling et al., 2017).

However, there appear to be a number of challenges to
advance SNP associations to biological knowledge that can be
used in drug development for exceptional life and health span.
First, genes underlying SNP associations must be identified. The
vast majority of genetic variants identified in GWAS are non-
coding (Nicolae et al., 2010), which presents a challenge in
identifying the gene whose function might be impacted by trait-
associated variants. Second, the relevant tissue must be identified
to develop an understanding of a biological mechanism and to
eventually consider interventions that can target the relevant
tissue. This is particularly complex since it is highly likely that
multiple processes and tissues contribute to human longevity.
Third, convincing evidence must be obtained that a target is
causally associated with exceptional life and health span. If a
target is only associated with longevity due to a confounding
influence, intervening on that target will have little chance of
modulating the outcome(s) of interest. Fourth, intermediate
phenotypes related to a SNP’s association with longevity should
be identified to enable rapid testing of biological mechanisms.

GWAS, in general, operates under the common variant
common disease framework, in which common variants are
thought to tag haplotypes that harbor causal variants associated
with common disease. Exceptional life and health span are not
common conditions, and as such, might not be under the control
of individual common variants. Rare variants might play a role,
but it is also possible that groups of common variants and non-
genetic factors could act together in high-order interactions to
result in human longevity. Such high-order interactions might
be rare, and standard univariate analysis performed in GWAS
cannot capture complex interactions. In addition, the lack of

biological knowledge of the variants is another major bottleneck
in translational strategy to promote longevity. The majority of
identified genetic variants identified in GWAS are non-coding,
which presents a challenge in identifying the gene whose function
might be impacted by trait-associated variants. This requires
analyzing mechanistic pathways that underlie the aging which in
turn requires omics data and functional-read outs or biological
markers. Dr. Evans presented his current approach of integrating
multiple lines of evidence, including eQTL studies, positional
overlap, and chromatin interaction studies to link LAVs to
candidate longevity associated genes (LAGs).

Mendelian Randomization (MR) analysis is also being applied
to evaluate the potential impact of modulating tissue-specific
LAG expression on subclinical risk and disease processes related
to human longevity. Dr. Evans indicated that it still remains
a challenge to identify potential intervention targets that can
form the basis of translational strategies based on findings from
GWAS andMR approaches. It is believed that integrated analysis
of genetic and multi-omics data using AI could potentially
overcome some of the hurdles that we currently have with the
existing analytical strategies. AI methods with the ability to
accommodate high order interactions in large datasets, might
end up being successful approaches in the prediction of human
longevity and the identification of factors that contribute to
human longevity.

According to Dr. Vadim Gladyshev from Harvard

University, the current challenges in the aging field is to
understand aging as a systemic process (Gladyshev and
Gladyshev, 2016; Petkovich et al., 2017) absence of biomarkers
of aging and lack of knowledge on short- and long-lived states of
diverse species. Hence, development of sophisticated measures
of biological age by integrating various measures of biological
processes is critical to develop therapeutics for health and
life span. He also emphasized the need for integrating and
interpreting processes that dictate short and long life in diverse
species that have evolved in nature as shown in Figure 1.

Additionally, Dr. Gladyshev presented the crowd-funded
and crowd-sourced system for the development of AI-powered
photographic aging clocks in mice called MouseAge.org (http://
www.mouseage.org).

Dr. Evan Hadley from the National Institute on Aging

described resources that could be useful for developing and
applying AI methods to identify factors modulating health
span and life span. NIA supports a variety of human studies
including family, centenarian, and longitudinal cohort studies, as
well as interdisciplinary studies on mechanisms contributing to
longevity and translational omics projects to identify potential
therapeutic targets for interventions to extend healthy life
(Table 1). NIA also supports laboratory animal projects of
interventions to extend longevity and develop new animal
aging models. Dr. Hadley also noted the value of comparisons
among species with differing life spans to complement studies
within humans, particularly through the potentially increased
signal strength due to the much greater variability in life
spans across species compared to their variability within
humans. For example, while only a minuscule percentage
of men and women survive to 1.4 times their median life
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FIGURE 1 | Maximum Life Span across different species [adapted from Deweerdt (2012), Copyright received from Nature Journal].

spans (Bell and Miller, 2005), primate species longevities
vary several folds (Table 2). These differences, particularly
among such phylogenetically closely related species, may allow
identification of mechanisms contributing to longevity that
might not be readily detectable by human studies alone,
but which could serve as the basis for developing novel
human interventions. Dr. Hadley further illustrated this idea
by noting that differences between rates of cancer development
in humans and dogs correspond closely to differences in
their life spans (Schneider, 1970), and that understanding the
basis for slower rates of disease onset in humans compared
to many other species might contribute to novel disease
prevention strategies.

Dr. Joanne Murabito from Boston University elaborated
more on human cohort studies that have acquired data
on many thousands of people of including some of quite
advanced age as enabled by technological advances. Most
importantly, longitudinal epidemiologic cohort studies have
deeply characterized participants often over the adult lifespan
with respect to age-related chronic conditions, physical function
and cognition with repeated in-person examinations and
validation of outcomes. The goal of this characterization is to

identify common and low frequency genetic variants and causal
factors associated with exceptional longevity. She presented
a descriptive table (Table 3) listing a collection of a sample
of cohorts with the available data for analyses. Cohorts have
extensive biorepositories (Figure 2) for testing an array of
non-genetic biomarkers and creating extensive genetic/genomic
resources. Health behaviors, risk factors, and imaging (ECG,
echocardiography, carotid ultrasound, coronary calcification,
brain MRI, bone mineral density) to characterize subclinical
measures of disease are available.

Investigators are now trying to overcome challenges
to combine data across cohorts including study design
(case/control, cohort, family-based, biobank), phenotype
definition, frequency of measurements, and missing data.
There are a number of large and productive consortia
(CHARGE, TOPMed, Longevity Consortium (LC), Cross-
Cohort-Collaboration) that include cohort investigators
addressing some of these challenges. Harmonization
for some age-related phenotypes is underway using
principles from the Maelstrom Research Guidelines for
Rigorous Retrospective Data Harmonization (Fortier
et al., 2017). Leveraging the clinical, biomarker, imaging
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TABLE 1 | Pertinent Projects.

Project Description

Long Life Family Study 550 families with exceptional familial longevity, and spousal controls (https://longlifefamilystudy.wustl.edu/LLFS/

Home.html)

New England Centenarian Study A study of ∼4,000 centenarians, siblings and their offspring since 1994 (http://www.bumc.bu.edu/centenarian/)

Longevity Genes Project ∼700 exceptionally long-life span Ashkenazi Jews (https://www.einstein.yu.edu/centers/aging/longevity-genes-

project/)

Kuakini Hawaii Health Span Study ∼ 8,006 Japanese- American men in Hawaii as part of the Kuakini Honolulu Heart Program (https://www.kuakini.

org/wps/portal/kuakini-research/research-home/kuakini-research-programs/Kuakini-Healthspan-Study)

CHARGE Studies in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (http://

www.chargeconsortium.com/)

Longevity Consortium Centenarian studies, comparative biology of longevity, pilot mechanistic studies (https://www.longevityconsortium.

org/)

Longevity Genomics Network Planning and informatics resource development for translating human genetic findings (https://www.

longevitygenomics.org/)

Animal Intervention Testing Program Testing intervention effects on mouse longevity and health span (https://www.nia.nih.gov/research/dab/

interventions-testing-program-itp)

Animal Models Program Development of new models for aging research, comparative biology of aging (https://www.nia.nih.gov/research/

dab/interventions-testing-program-itp)

TABLE 2 | Plasticity of life span in primates.

Species Maximum reported life

span (years)

White-tufted-ear Marmoset 23

South American Squirrel Monkey 30

Rhesus Monkey 40

Brown Capuchin 46

Chimpanzee 59

Human 122

Source: Animal Ageing and Longevity Database http://genomics.senescence.info/

species.

and genetic/omic data across cohorts in future studies is
believed to increase our understanding of healthy aging in
multiple systems.

Dr. Richard A. Miller from the University of Michigan

mentioned the availability of datasets from NIA supported
non-human studies (multiple species including primates and
mammals) and an animal intervention testing program (ITP)
with interventions that increase mouse longevity and health
span. He provided examples of few compounds such as
Rapamycin, 17Alpha estradiol and Acarbose that extend lifespan
in mice. Details on the work conducted by the ITP can be
obtained from the link (https://www.nia.nih.gov/research/dab/
interventions-testing-program-itp). He described the ITP work
based on a genetically heterogeneous four-way cross study
providing opportunities for mapping polymorphic alleles and a
greater degree of robustness than for work in a single inbred
mouse stock, such as C57BL/6. Resources from the ITP studies
include (a) data on lifespan, weight, and terminal pathology for
many of these mice, (b) DNA for over 8000 mice; (c) fixed
specimens for nearly all mice; (d) tissue blocks and slides for a
series of cross-sectional and end-of-life necropsy studies. NIA has
also been supporting a program that develops animal models,

TABLE 3 | Human cohort studies (Partial List).

Cohorts # of Subjects

Atherosclerosis Risk in Communities (ARIC) 15,368

Coronary Artery Risk Development in Young Adults (CARDIA) 5,114

Cardiovascular Health Study (CHS) 5,888

Framingham Heart Study ≈15,000

Hispanic Community Health Study/Study of Latinos (HCHS/SOL) 16,415

Jackson Heart Study (JHS) 5301

Multi-Ethnic Study of Atherosclerosis (MESA) 7,071

Health Aging and Body Composition (Health ABC) Study 3,075

Study of Osteoporotic Fractures (SOF) 9,704

Osteoporotic fractures in men (MROS) 5,994

Women’s Health Initiative (WHI) 161,808

Age, Gene/Environment Susceptibility study (AGES-Reykjavik) 5,764

Baltimore Longitudinal Study of Aging (BLSA) >3,200

Invecchiare in Chianti (InCHIANTI) 1,453

Long Life Family Study (LLFS) 4,953

SardiNIA 6,700

Memory and Aging Project 1,200

Whitehall II 10,308

Dawber et al. (1951), Feinleib et al. (1975), Friedman et al. (1988), Atherosclerosis Risk in

Communities (1989), Fried et al. (1991), Cummings et al. (1995), Women’s Health Initiative

(1998), Bild et al. (2002), Blank et al. (2005), Orwoll et al. (2005), Taylor et al. (2005), Wilson

et al. (2005), Harris et al. (2007), Splansky et al. (2007), Sebastiani et al. (2009), Newman

et al. (2011), Conomos et al. (2016).

both for vertebrate and invertebrates for comparative biology
studies in aging.

The Promises of AI—Can AI Revolutionize
Aging Research?
AI is expected to revolutionize many aspects of society through
its ability to optimize processes and decisions using computer-
based algorithms. Given the current challenges in data mining,
the aging field is exploring supplemental and alternative
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approaches such as AI in the modern aging research agenda to
identify the underlying cellular biology of aging processes and
to determine the mechanisms of exceptional aging processes.
The aging field is a bit different than many other areas of
biomedicine because and do not yet have good measures of
biological age. Thus, AI is needed to define basic measures of
aging whereas many other disciplines can more directly measure
their outcomes of interest. There are several other areas where
AI has the potential to have a positive impact. Cohort studies
on aging offer extensive longitudinal phenotype data and an
array of genetic and omic data to study exceptional life and
health span. The Monarch Initiative (https://monarchinitiative.
org), an international consortium focused on integrating disease,
gene, and phenotype data from many species has created
a rich resource of data from different species. The datasets
in Monarch can be used to integrate and make connections
among other biological entities of interest, such as genes,
genotypes, gene variants, models (including cell lines, animal
strains, species, breeds, as well as targeted mutants) biological
pathways, human orthologs and phenotypes. By leveraging such
big data from humans and model species to allow computers to
learn, AI is expected to vastly improve recognition of patterns
and relationships, allowing for broad applications in complex
biological processes associated with aging.

Under the umbrella of AI, ML has succeeded in complex tasks
by trading experts and programmers for data and non-parametric
statistical models. However, the applications for which ML has
been successfully deployed remain limited, especially in aging.
We expect this change in the near future for several reasons.
First, AI can complement statistical approaches to data analysis
by making fewer assumptions about the model, improving
the power to detect non-linear interactions, automating model
discovery, and through incorporation of biological and clinical
knowledge from domain experts or from prior research results.
Second, AI is better powered for prediction and forecasting
than parametric statistical approaches that are designed for
inference. Third, some AI methods such as Bayesian belief
networks can infer causality that will be important to provide
insight into the etiology of aging and aging-related diseases.
This is important because many AI methods consist of models
based on associations that don’t necessarily reflect causal factors.
Fortunately, AI methods can be applied to any study design
that parametric statistical approaches can be applied to. Of
course, issues such as bias and confounding that plague any
study design and data analysis approach are of concern with
AI approaches and must be taken into consideration. Larger
sample size may be required if the goal of the AI approach is to
detect non-linear interaction among the features being studied.
Additional challenges lie in the interpretation of AI models and
results that are often more complicated and less transparent than
those derived from parametric statistical models. This will be
important address as the aging community increasingly embraces
AI approaches.

There are several reasons why now is the time to adopt AI
approaches. First, high-performance computing is inexpensive
and accessible. The widespread construction of local computing
infrastructure and the availability of cloud computing make the

implementation of AI approaches more tractable. Second, AI has
matured rapidly as a field and is starting to have real successes
in a variety of domains of biomedical research. An example
is DL neural networks that have had success in areas such as
image analysis. Third, we have extensive knowledgebases such
as PubMed that provide the research memory or the training
data that AI methods need. Fourth, as we review later, significant
investments in aging and longevity research over many decades
have provided a wealth of data that need to be integrated and
analyzed using both statistical and AI approaches. Finally, AI is
increasingly accessible as automated methods and user-friendly
software emerge and an emphasis is placed on interpretation.
We recognize that AI is in its infancy and there are still a
number of challenges that must be overcome before AI can have
a major impact in aging research. However, now is the time to
address these challenges and to begin adding this technology to
the toolkit used by AI researchers. An important early challenge
is to identify those aging problems and research questions that
can benefit from an AI approach. A starting point is to identify
a list of published aging studies where parametric statistical
approaches were used and for which the data are publicly
available. Reanalysis with AI methods along with a thoughtful
comparison to original results would provide a good foundation
for planning future studies using AI.

A brief introduction to AI as summarized by Drs. Srinivas

Kankanahalli fromClearAvenue, David Jacobs fromUniversity

of Maryland and Jason H. Moore from University of

Pennsylvania is provided below to educate researchers studying
aging. A review of the opportunities for AI researchers to have
an impact in this domain along with a set of recommendations
that resulted from the NIA workshop on AI and aging is
summarized below.

History of AI
AI arose in the 1940s and 1950s in parallel with the development
and use of the first mainframe computers (Russell and Norvig,
2003). The phrase AI was coined during a workshop at
Dartmouth College in 1956 to unify the various early developers
of the discipline. There was a lot of excitement at that time about
the potential of AI for solving difficult problems. This excitement
grew as computers became faster and more accessible through
the 1960s and 1970s. Despite the excitement, it became apparent
that AI was not living up to the hype. This led to what has been
called the AI winter, a period through the late 1980s and 1990s
when investment in AI research and commercial efforts slowed
significantly. In recent years, excitement about AI has increased
due to some high-profile successes. One example of this is the
successful launch of Watson AI by IBM and its much-publicized
defeat of the best human Jeopardy contestants in 2010 on live
television (Ferrucci, 2010). Part of this current success of AI can
be attributed to availability of the computational resources that
are needed for these algorithms to solve hard problems.

Essentially, AI refers to computer software that can reason
and adapt based on sets of rules and data. The original goals for
AI were to mimic human intelligence. Early AI systems relied
heavily on expert-derived rules for replicating how people would
approach these tasks. ML, a subfield of AI, emerged as research
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FIGURE 2 | Extensive phenotypic characterization of the cohorts. CMS indicates Centers for Medicare and Medicaid Services data [adapted from Benjamin et al.

(2015). Copyright received from Circulation Journal].

began to leverage numerical techniques integrating principles
from computing, optimization, and statistics to automatically
“learn” programs for performing these tasks by processing
data: hence the recent interest in “big data.” ML is a field of AI
and is based on computational statistical algorithms that allow
computers to learn directly from data, without being explicitly
programmed to perform a specific task. Often, ML uses training
data to fit a parametric model that can predict important features
of new test data. Thus, for example, ML techniques have the
potential to automatically identify the most important features
related to key differences in patient data, that is, disease vs.
healthy. The potential applications of ML in healthcare are
vast, including screening, disease detection and classification,
patient risk stratification, and optimal therapy selection (Topol,
2019). DL is a specific ML approach that employs multilayered
neural networks (Goodfellow et al., 2016). These networks are
composed of layers of computational units, dubbed “neurons,”
that apply a non-linear function to the weighted sums of their
inputs. These units are loosely inspired by the behavior of
biological neurons. DL is distinguished in part by its ability
to make use of very large training sets. Figure 3 illustrates the
relationship of AI, ML, and DL.

Definition and Components of AI
AI has been defined in many different ways, but the common
thread refers to intelligent decision-making by computers.
Intelligence could refer to biological decisions made by simple
organisms such as bacteria during chemotaxis or much more
complex decisions made by humans. For the purposes of our

discussion here we will focus on AI as an approach to data
analysis that can identify patterns as the human brain does
and that makes analytical decisions (e.g., what method to use)
as a human analyst would using their expert knowledge and
training. There are several important components that are useful
for building a computational framework that can analyze data
as a human expert. The first is knowledge representation that
attempts to put what is known about a problem in a format
that is optimal for the computer to work with. For the Jeopardy
problem this meant representing the knowledge in Wikipedia
and other sources such that Watson could efficiently make use
of it. A related area is knowledge engineering that is used to
transfer the knowledge that a human expert has into a computer
representation (Ferrucci, 2010). An example is the rules that
clinicians use to make patient treatment decisions. A second

major component of AI is ML that allows a computer to learn

from experience. The most common context for ML is data
analysis where a model of the data is constructed and then

evaluated. Feedback from the quality of the model is then used
to build a new model. The computer learns over time what
types of models are successful. A third major component is
reasoning. Reasoning can be deductive or inductive with the goal
of making a decision (e.g., which treatment to give the patient).
The combination of a knowledge representation and engineering
ML, and reasoning can be used to build a computational system
that attempts to approximate the problem-solving ability of the
human brain. There are several other components of AI such
as natural language processing that are important depending on
the application.
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FIGURE 3 | Relationship of AI, ML, and DL (Modified from Toward Data Science).

MYCIN as Early Example of AI in Medicine
Artificial intelligence has had a long history in medicine. One
of the early successes was the MYCIN system for prescribing
antibiotics to intensive care unit patients (Shortliffe et al., 1975)
that was based on a type of AI called an expert system (Duda and
Shortliffe, 1983) The MYCIN system included a knowledgebase
of rules from clinicians (i.e., knowledge engineering), a database
of facts about patients (i.e., the data), and an inference engine
that would produce treatment decisions using probability (i.e.,
reasoning). It was demonstrated that MYCIN made antibiotic
treatment decision as well or better than human experts (Yu et al.,
1979). However, it was never used in clinical practice because of
legal concerns and the data required took 30min to enter into
the computer. Despite never being used, MYCIN demonstrated
the potential of AI in medicine.

IBM Watson as Modern Example of AI
As mentioned above, IBM Watson has served as a modern
example of the potential for AI in medicine. Building on the
success of Watson for playing Jeopardy, Watson was adapted
for use in the healthcare domain with an initial focus on
oncology. Watson was adopted by several academic medical
centers as a commercial product for improving decision making.
Watson has also proved useful in other domains. For example,
Watson for Genomics was used by a molecular tumor board to
identify actionable mutations from the literature that were not
accounted for in their current lists (Rhrissorrakrai et al., 2016;
Wrzeszczynski et al., 2017; Patel et al., 2018). This is a useful
application of AI because human experts have limited time to
study the literature for new clinically useful findings. Currently,
Dr. Laxmi Parida, a senior researcher in IBM, is exploring AI/M
approaches to analyze the Alzheimer’s Disease (AD) WGS data
from ADNI and ADSP- CC (∼3,500 samples). She discussed the
usefulness of Topological Data Analysis (TDA) as a promising

new mathematical approach on complex discrete datasets such
as aging.

What Is Deep Learning?
Neural networks have a long history in AI and have been widely
used as a ML method for identifying non-linear patterns in data.
Their development was inspired by neurons in a brain whose
connections can be strengthened through positive reinforcement.
They have regained popularity with the availability of high-
performance computing that has allowed deep neural networks
with many nodes (i.e., neurons) and connections (Krizhevsky
et al., 2012; Lecun et al., 2015). These deeper and more complex
neural networks have made it possible to accurately classify
images. Applications include the identification of melanoma
from photos of skin lesions (Haenssle et al., 2018) and risk
stratification from radiographic images of lung cancer (Hosny
et al., 2018). Few investigators have provided in-depth reviews of
DL methods and applications in biology and medicine (Topol,
2016; Ching et al., 2018). Although DL has had a number
of important successes there are some limitations. The most
important limitation relevant to aging researchers is the greatly
increased difficulty in interpretation of the resulting models
due to the size and complexity of the networks. This can be
problematic if the goal is to understand why the model works
so that new experiments can be planned. Further, many of these
models have not been validated in the clinic or in prospective
studies. There is no doubt that DL has an important place in the
AI universe and will enable new biomedical applications.

Automated ML/AI for Data Analytics
One of the most important challenges in using ML to detect
complex patterns in big data is the selection of the algorithm to
be used. There are many different MLmethods, and each looks at
the data in a different way using different mathematical models
and computational approaches. It is difficult to know which ML
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method is the right one for your data. This was highlighted
in a recent paper by Olson and La Cava (Olson et al., 2018)
that compares the performance of a large number of different
ML methods across 160 publicly available data sets of different
sizes and shapes (Olson et al., 2017). This paper showed that
although there were methods such as gradient boosting that
performed well on a majority of data sets there was not one
method that performed best across all data. In fact, every method
performed best on at least a small number of data sets. Selecting
the right method is particularly challenging for non-experts. To
address this issue there have been several methods developed
specifically to automate the selection of ML methods and their
parameter settings. These include Auto-Weka (Thornton et al.,
2013) built using the Weka ML software, AutoSklearn using the
scikit-learning library (Feurer et al., 2015), Penn AI (La Cava
et al., 2019) and the Tree Based Pipeline Optimization Tool or
TPOT (Olson, 2016) that builds an entire ML pipeline using all
the components of scikit-learn as building blocks. These methods
and their software are all freely available and open-source. The
TPOT approach is specifically designed for biomedical problems
and includes operators for dealing with big data (Sohn et al.,
2017). These methods represent an important step toward true
AI for tackling big data problems in biomedical research. The
value for aging researchers is that automated approaches take the
guesswork out of which methods and parameters settings to pick
thus making this technology more accessible to a wide audience.

A Few Examples on Application of AI
Approaches in Bio-medicine
Having observed the entry of AI in biomedical fields in the recent
past for disease diagnosis and drug development, few experts
were invited to narrate their experiences on the challenges and
successes of AI approaches in their respective area of research.

Dr. Rahul Deo, a cardiologist at Brigham Young hospital,

in an effort to overcome challenges associated with early
disease detection, exploited automated approaches in a pilot
study to resolve cardiac disease heterogeneity. He hypothesized
that failure to recognize cardiac heterogeneity is hindering
the discovery and validation of novel treatments for heart
diseases. By employing novel ML approaches such as automated
interpretation of echocardiography and electrocardiography, and
integration of clinical, imaging and molecular data to define
disease subtypes, he was able to track dysfunction reflecting the
underlying disease states.

Dr. Rick Stevens, from Argonne National Labs, is leading
the NCI-DOE collaboration on the Joint Design of Advanced
Computing Solutions for Cancer and working on applying large-
scale computation to the problem of predictive oncology. He
presented interesting ML models for predicting drug response
in Cancer. The team has developed ML models for both single
drug and drug combinations that are trained on drug response
datasets from screens conducted on cell lines and patient
derived xenografts.

He also mentioned major challenges in predictive oncology
that include integrating data between studies for largescale
model training, developing effective representation for drugs and

devising model formulations that generalize well across cancer
types and drugs. DLmodels get their predictive power from, often
inscrutable, extremely high dimensional models. An estimate
of the total uncertainty, including both statistical fluctuations
and modeling limitations, in this setting needs development of
new techniques beyond what are used in standard statistical
analysis used for less complex models fitted without access to
large data sets.

Dr. Steven R. Cummings from CPMC described projects
underway, in collaboration with Google Accelerated Sciences,
on the application of DL to images of the human body and
cells to improve prediction of aging outcomes. However, a
few issues have arisen in developing projects to apply AI to
existing human cohort studies. First, procuring the necessary
sample sizes has been challenging. The number of images
available from human cohorts with subsequent aging outcomes
are limited. Thus, it is important to determine early in the
process whether it will be feasible to assemble the required
amount of data. Second, it has been difficult to determine
how many individuals with images or samples of tissues
or cells are needed to develop validated and generalizable
predictions. The answer from practitioners of AI to “how
many?” is generally “more.” In standard sample size estimation,
fewer individuals or samples are needed for “prediction” of
continuous endpoints, such as change in walking speed with
aging, then for incident outcomes, such as mobility and
disability. Ongoing projects are using data with thousands
of images and hundreds of outcomes, taking advantage of
strategies to initially train a neural network on smaller samples.
Importantly, there are often barriers to collaborations between
Industry, Institute sponsors of NIH-funded cohorts, and their
academic institutions.

Many academic institutions and some NIH institutes (not
NIA) have reticence to share data with commercial groups,
and several issues, such as intellectual property, HIPAA,
material transfer agreements, and funding can substantially delay
projects. There is a need for model agreements between NIH
institutes and commercial entities that can serve as models
for these collaborations. Phil Nelson and Dr. Kai Kohlhoff

from Google showcased a few projects (unpublished data)
where teams have been working on the application of DL
approaches to achieve expert-level accuracy in determining
diabetic retinopathy, unsupervised clustering of drugs by dose
and mechanisms of action in cell images, and automatic
staining of cell components. With respect to aging research, the
Google team has used the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset consisting of 13,000 MRI images on
1,500 subjects and transfer learning to infer AD diagnosis and
disease progression with a network pre-trained on the ImageNet
dataset (unpublished).

Dr. Alex Zhavoronkov from Insilico Medicine provided
an overview of the recent advances in the applications of DL
to the development of aging biomarkers, target identification,
generation of synthetic human data using the generative
adversarial networks (GANs) using age as a generation condition
(Zhavoronkov et al., 2019). He demonstrated the application of
the deep neural networks for the prediction of chronological
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age of patients using the basic anonymized clinical test data
available for public testing using the aging.ai system. The
hematological aging clocks (Putin et al., 2016) were tested
in multiple populations to explore population-specificity and
establish biological relevance (Mamoshina et al., 2018a) and
evaluate the effects of lifestyle and behavior (Mamoshina et al.,
2019). Insilico medicine has also achieved integration of multi-
modal data for aging research by launching the intelligently-
formulated nutraceuticals (Aliper et al., 2016) and establishing
a real-world data collection effort with the launch of the
young.ai system. Dr. Zhavoronkov provided examples of how
deep neural network approach has been applied on the blood
biochemistry, transcriptomic (Mamoshina et al., 2018b) and
imaging data (Aliper et al., 2016) as well as the other data types
to predict chronological and biological age of individuals. He
also showed preliminary data with successful application of AI
on deep feature selection algorithms for target identification
and biomarker development. To rapidly validate the targets in
biological assays Insilico Medicine developed a set of GAN and
reinforcement learning (RL) systems to generate novel molecules
with the desired set or properties (Putin et al., 2016; Kadurin
et al., 2017; Polykovskiy et al., 2018). Insilico Medicine scientists
contributed to the development of a large public database
of biomedical funding and literature related to aging called
AgingPortfolio.org (Zhavoronkov and Cantor, 2011; West et al.,
2018) and open database of geroprotective drugs and lifespan
experiments that can be used for training: DrugAge (Moskalev
et al., 2015; Barardo et al., 2017; http://genomics.senescence.info/
drugs/) and Geroprotectors.org (https://geroprotectors.org/). It
also contributes to the development and curation of the
open community database of pathways implicated in aging
and longevity, AgingChart.org (Moskalev et al., 2016; https://
agingchart.org/).

Calico, represented by Dr. Jun Xu is applying AI approaches
to understand fundamental biology that controls life span in
model organisms. Calico has built an end-to-end deeplearning
pipeline to automate the analysis of yeast replicative lifespan
data collected from custom microfluidic devices (unpublished).
Deep convolutional neural network models are being used to
predict cell-type-specific epigenetic and transcriptional profiles
in large mammalian genomes, based on DNA sequence alone
with the hope of unraveling cellular processes that dictate life and
health span.

Dr. Atul J. Butte, from University of California, San

Francisco from his studies applying AI approaches demonstrated
the conversion of trillions of points of molecular, clinical, and
epidemiological data measured by researchers and clinicians over
the past decade into diagnostics, therapeutics, and new insights
into disease. He mentioned the promise of DL approaches in
evaluating a patient’s diagnosis, prognosis from the eHR and
ICD codes with a decent amount of accuracy (Rajkomar et al.,
2018). He elaborated on the process within the University of
California wherein the six health systems collect and store eHR
in the common open standard Observational Medical Outcomes
Partnership (OMOP) Common Data Model (CDM). In one
specific example, he showed how deidentified data for patients
at one UC medical center was connected to events recorded in

data containers based on the Fast Healthcare Interoperability
Resource (FHIR) specification. The FHIR resources are
placed in temporal folders depicting all events recorded in
eHR (timeline). The DL process then uses this historical
data to make predictions for each patient. He showcased
few proof of principle studies that used data combining
healthcare data from across the six UC medical schools
and systems.

Dr. James Cole from King’s College, London presented his
work on a potential brain-aging biomarker, so-called ’brain age’,
derived using ML analysis of structural neuroimaging data. He
showed interesting data applying the identified biomarker from
his ML analysis to study brain aging in general population and
patients with diseases such as Down’s syndrome, HIV, traumatic
brain injury, epilepsy, multiple sclerosis and Alzheimer’s. Dr.
Cole also outlined how this brain aging biomarker has shown
prognostic value, predicting survival time in a large of older
adults in Scotland, and how predictions of brain age can be
combined with the epigenetic clock in order to refine these
mortality estimations (Cole, 2018).

Dr. Paola Sebastiani from Boston University presented her
analysis using Bayesian model—based clustering of longitudinal
trajectories of neuropsychological scores to identify distinct
patterns of cognitive decline in the domains of episodic
memory, attention, processing speed, and verbal fluency. The
data were collected in participants from the Long-Life Family
Study (LLFS), a unique cohort of families with clustering of
exceptional survival. The analysis discovered predictors of multi-
domain cognitive change such as gait speed, and domain-specific
predictors of cognitive change such as low IL6 and NTproBNP,
or the APOE2 genotype that predict slower change of processing
speed. The correlation between patterns of changes of cognitive
functions inmultiple domains and patterns of changes of physical
functions corroborated other reports that showed aging affecting
many domains simultaneously which is the basis for “a common
cause theory of aging.”

Dr. Haiyuan Yu from Cornell University showed an
ensemble-classifier approach “ECLAIR” for proteome-scale 3D
interactome modeling and its applications in precision medicine.
While simply knowing which proteins interact with each
other provides valuable information to spur functional studies,
far more specific hypotheses can be tested if the spatial
contacts of interacting proteins are known. Using ECLAIR,
he has created the first multi-scale proteome-wide structural
interactome in human for all 122,647 experimentally-determined
binary interactions reported in major databases.

Dr. Sudha Seshadri from University of Texas Health

Science Center at San Antonio discussed the use of ML,
AI and systems biology approaches in 3 specific settings:
(i) genome- wide voxel-based analyses of MRI data in the
CHARGE consortium, (ii) trial ready biomarker discovery in
the MarkVCID consortium and (iii) whole genome, epigenome,
gene expression, metabolome and proteome-based exploration of
the heterogeneity and novel biology underlying dementia. The
FraminghamHeart Study has high dimensional genomic (GWAS
and WGS), multi-omic (DNA methylation, gene expression
in blood and multiple brain regions, miRNA, metabolome,
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proteome and microbiome) as well as comprehensive phenomic
data that extends over the participant’s lifespan (repeated
brain MRI and cognitive function measures, amyloid and
tau PET imaging, incident stroke, dementia, and information
on subclinical function, biomarkers and clinical disease in
various systems (cardiovascular, pulmonary, hepatic, renal, bone,
joint, and inflammatory). Such high dimensional data provided
an exceptional opportunity to uncover novel biology and
repurposable drug targets for disease and resilience and to craft
better risk prediction scores using novel computational and
systems biology approaches.

Future Opportunities for AI in Aging
The workshop focused both on AI analyses of existing data, and
on the need for new primary data that would allow productive
application of AI methods for increased understanding of
determinants of longevity and health span. Given these focuses,
the speakers were requested to provide their insights on the
following questions:

• How can AI approaches be applied to existing genetic/omics
and other phenotype data from aging studies?

• Is there a need for more primary data (e.g., bigger Ns, greater
data density on individuals, data from various race-ethnic and
geographic groups, data from more species, data integration
across cell and tissue models, model organisms and humans)
to allow key AI analyses?

• Is there a need for new AI computational methods to address
special features of life span data (e.g., longitudinal changes,
birth cohort effects, differential survival and generation of
synthetic data)?

• What are the longer-term prospects for AI in aging research as
AI methods develop further?

• What types of training are needed for aging researchers to
utilize advances in AI tools?

The Overall Recommendations From the
Speakers Are Summarized as Below
Research Infrastructure

• Creation of an open data commons for aging research
to enable collaborations. This could include international
organizations with relevant data on aging and serve as a
venue to foster collaborative studies across international
cohort studies.

• Incentivize and attract computationally oriented research
groups to apply AImethodologies on data from aging research.

• Reduction of barriers for appropriate access, analysis,
interpretation and application of data to increase
likelihood of successful discovery of biomarkers, target(s)
and interventions.

Research Programs

• Initiation of research programs which will foster
collaborations between scientists in aging research and
computational scientists working on applying AI & ML to
social, biological, neuroscience and medical applications.

• Guidance on sample sizes required for AI and other issues
such as bias, confounding, and model interpretation would
be valuable for determining the feasibility of applying AI to
measurements in existing cohorts.

• Planning hackathon competitions for curation of data from
aging studies and to develop novel AI algorithms for aging-
relevant data mining.

• Development of pilot feasibility studies on existing data where
published AImethods are applied in an initial discovery phase,
followed by a Refine/Development Phase of AI methods to
address data volumes challenges such as transfer learning and
generative methods to reduce the needs for large-volumes
of data.

Education and Training

• Initiation of NIH Career (K) awards to provide support
training of senior postdoctoral fellows or faculty-level
candidates in the United States on AI. The objective of these
programs is to bring candidates to the point where they
are able to conduct their research independently and are
competitive for major grant support.

• Institutional training (T32) grants with a primary focus on
AI (both biologists and computational scientists). These are
training grants made to institutions in the United States
would support groups of pre- and/or postdoctoral fellows,
including trainees in basic, clinical, and behavioral research.
Major purpose of this training grant is to ensure the availability
of diverse and highly trained workforce to assume leadership
roles in the application of AI approaches to biomedical,
behavioral, and clinical research.

CONCLUSIONS

AI approaches appear to be extremely valuable for integration
of genetic and cellular data from human and other species
and for modeling biological processes associated with aging.
Such analyses could potentially resolve several unanswered
questions currently pending in aging research. It is hoped that
researchers in the aging field could collaborate, share resources
and computational tools for mining the wealth of genetic and
multi-omics data for novel discoveries to enhance health and
life span. AI approaches could complement standard statistical
approaches which are designed for inference and reveal complex
patterns missed by parametric models that assume a particular
functional form and could serve as a predictive tool in data
analysis Aging and longevity are influenced by many interacting
components and AI is particularly well-suited for modeling
complex patterns driven by non-additive interactions and genetic
or phenotypic heterogeneity.

WORKSHOP SPEAKERS AND
ORGANIZERS

Evan C. Hadley, M.D., Chhanda Dutta, Ph.D., Max Guo, Ph.D.,
Marilyn Miller, Ph.D., Daniel S. Evans, Ph.D., Joanne Murabito,
M.D., Vadim Gladyshev, Ph.D., Richard A. Miller, M.D., Ph.D.,

Frontiers in Artificial Intelligence | www.frontiersin.org 11 August 2019 | Volume 2 | Article 12

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Moore and Raghavachari AI Approaches for Health/Life Span

Srinivas Kankanahalli, Ph.D., David Jacobs, Ph.D., Atul J. Butte,
M.D., Ph.D., Rick Stevens, Ph.D., Rahul Deo, M.D., Haiyuan Yu,
Ph.D., Steven R. Cummings, M.D., Phil Nelson, Kai Kohlhoff,
Ph.D., James Cole, Ph.D., Alex Zhavoronkov, Ph.D., Laxmi
Parida, Ph.D., Paola Sebastiani, Ph.D., Sudha Seshadri, M.D., and
Jun Xu, Ph.D.

AUTHOR CONTRIBUTIONS

JM and NR wrote and edited the manuscript with substantial
input on contents/edits from the Workshop Speakers.

FUNDING

Funding was provided by the National Institute
on Aging—Division of Clinical Geriatrics and
Gerontology, Division of Aging Biology, and Division
of Neuroscience.

ACKNOWLEDGMENTS

The authors gratefully thank Dr.William La Cava for his valuable
input in this manuscript.

REFERENCES

Aliper, A., Belikov, A. V., Garazha, A., Jellen, L., Artemov, A., Suntsova, M., et al.

(2016). In search for geroprotectors: in silico screening and in vitro validation

of signalome-level mimetics of young healthy state. Aging 8, 2127–2152.

doi: 10.18632/aging.101047

Atherosclerosis Risk in Communities (1989). The Atherosclerosis Risk in

Communities (ARIC) Study: design and objectives. The ARIC investigators.

Am. J. Epidemiol. 129, 687–702. doi: 10.1093/oxfordjournals.aje.a115184

Barardo, D., Thornton, D., Thoppil, H., Walsh, M., Sharifi, S., Ferreira, S., et al.

(2017). The DrugAge database of aging-related drugs. Aging Cell 16, 594–597.

doi: 10.1111/acel.12585

Bell, F. C., and Miller, M. L. (2005). Life Tables for the United States Social

Security Area.

Benjamin, I., Brown, N., Burke, G., Correa, A., Houser, S. R., Jones, D.

W., et al. (2015). American heart association cardiovascular genome-

phenome study: foundational basis and program. Circulation 131, 100–112.

doi: 10.1161/CIRCULATIONAHA.114.014190

Bild, D. E., Bluemke, D. A., Burke, G. L., Detrano, R., Diez Roux, A. V., Folsom, A.

R., et al. (2002). Multi-Ethnic Study of Atherosclerosis: objectives and design.

Am. J. Epidemiol. 156, 871–881. doi: 10.1093/aje/kwf113

Blank, J. B., Cawthon, P. M., Carrion-Petersen, M. L., Harper, L., Johnson, J.

P., Mitson, E., et al. (2005). Overview of recruitment for the osteoporotic

fractures in men study (MrOS). Contemp. Clin. Trials 26, 557–568.

doi: 10.1016/j.cct.2005.05.005

Broer, L., Buchman, A. S., Deelen, J., Evans, D. S., Faul, J. D., Lunetta, K. L.,

et al. (2015). GWAS of longevity in CHARGE consortium confirms APOE

and FOXO3 candidacy. J. Gerontol. A Biol. Sci. Med. Sci. 70, 110–118.

doi: 10.1093/gerona/glu166

Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do, B. T., Way,

G. P., et al. (2018). Opportunities and obstacles for deep learning in biology and

medicine. J. R. Soc. Interface 15, 1–47. doi: 10.1098/rsif.2017.0387

Cole, J. H. (2018). Neuroimaging studies illustrate the commonalities between

ageing and brain diseases. Bioessays 40:e1700221. doi: 10.1002/bies.2017

00221

Conneely, K. N., Capell, B. C., Erdos, M. R., Sebastiani, P., Solovieff, N., Swift, A.

J., et al. (2012). Human longevity and common variations in the LMNA gene: a

meta-analysis. Aging Cell 11, 475–481. doi: 10.1111/j.1474-9726.2012.00808.x

Conomos, M. P., Laurie, C. A., Stilp, A. M., Gogarten, S. M., McHugh,

C. P., Nelson, S. C., et al. (2016). Genetic diversity and association

studies in us hispanic/latino populations: applications in the hispanic

community health study/study of latinos. Am. J. Hum. Genet. 98, 165–184.

doi: 10.1016/j.ajhg.2015.12.001

Cummings, S. R., Nevitt, M. C., Browner, W. S., Stone, K., Fox, K. M., Ensrud,

K. E., et al. (1995). Risk factors for hip fracture in white women. Study

of Osteoporotic Fractures Research Group. N. Engl. J. Med. 332, 767–773.

doi: 10.1056/NEJM199503233321202

Dawber, T. R., Meadors, G. F., and Moore, F. E. (1951). Epidemiological

approaches to heart disease: the Framingham Study. Am. J. Public Health

Nations Health 41, 279–281. doi: 10.2105/AJPH.41.3.279

Deelen, J., Beekman, M., Uh, H. W., Helmer, Q., Kuningas, M., Christiansen, L.,

et al. (2011). Genome-wide association study identifies a single major locus

contributing to survival into old age; the APOE locus revisited. Aging Cell 10,

686–698. doi: 10.1111/j.1474-9726.2011.00705.x

Deweerdt, S. (2012). Comparative biology: Looking for a master switch. Nature

492, S10-11.

Duda, R.O., and Shortliffe, E.H. (1983). Expert Systems Research. Science 220,

261–268. doi: 10.1038/492S10a

Feinleib, M., Kannel, W. B., Garrison, R. J., McNamara, P. M., and Castelli, W. P.

(1975). The framingham offspring study. Design and preliminary data. Prevent.

Med. 4, 518–525. doi: 10.1016/0091-7435(75)90037-7

Ferrucci, D. (2010). Building watson: an overview of the DeepQA project. AI

Magazine 31:2303. doi: 10.1609/aimag.v31i3.2303

Feurer, M., Springenberg, J. T., Klein, A., Blum, M., Eggensperger, K., and Hutter,

F. (2015). Efficient and Robust Automated Machine Learning. Adv. Neural

Inform. Process. Syst. 28:2028.

Flachsbart, F., Möller, M., Däumer, C., Gentschew, L., Kleindorp, R., Krawczak,

M., et al. (2013). Genetic investigation of FOXO3A requires special attention

due to sequence homology with FOXO3B. Eur. J. Hum. Genet. 21, 240–242.

doi: 10.1038/ejhg.2012.83

Fortier, I., Raina, P., Van Den Heuvel, E. R., Griffith, L. E., Craig, C., Saliba, M.,

et al. (2017). Maelstrom Research guidelines for rigorous retrospective data

harmonization. Int. J. Epidemiol. 46, 103–105. doi: 10.1093/ije/dyw075

Fried, L. P., Borhani, N. O., Enright, P., Furberg, C. D., Gardin, J. M., Kronmal,

R. A., et al. (1991). The cardiovascular health study: design and rationale. Ann.

Epidemiol. 1, 263–276. doi: 10.1016/1047-2797(91)90005-W

Friedman, G. D., Cutter, G. R., Donahue, R. P., Hughes, G. H., Hulley, S. B.,

Jacobs, D. R., et al. (1988). CARDIA: study design, recruitment, and some

characteristics of the examined subjects. J. Clin. Epidemiol. 41, 1105–1116.

doi: 10.1016/0895-4356(88)90080-7

Gladyshev, T. V., and Gladyshev, V. N. (2016). A disease or not a disease? Aging As

a Pathology. Trends Mol. Med. 22, 995–996. doi: 10.1016/j.molmed.2016.09.009

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge,

MA: The MIT Press.

Haenssle, H. A., Fink, C., Schneiderbauer, R., Toberer, F., Buhl, T., Blum,

A., et al. (2018). Man against machine: diagnostic performance of a

deep learning convolutional neural network for dermoscopic melanoma

recognition in comparison to 58 dermatologists. Ann. Oncol. 29, 1836–1842.

doi: 10.1093/annonc/mdy166

Harris, T. B., Launer, L. J., Eiriksdottir, G., Kjartansson, O., Jonsson, P. V.,

Sigurdsson, G., et al. (2007). Age, gene/environment susceptibility-reykjavik

study: multidisciplinary applied phenomics. Am. J. Epidemiol. 165, 1076–1087.

doi: 10.1093/aje/kwk115

Hosny, A., Parmar, C., Coroller, T. P., Grossmann, P., Zeleznik, R., Kumar,

A., et al. (2018). Deep learning for lung cancer prognostication: a

retrospective multi- cohort radiomics study. PLoS Med. 15:e1002711.

doi: 10.1371/journal.pmed.1002711

Huang, S., Chaudhary, K., and Garmire, L. X. (2017). More is better: recent

progress in multi-omics data integration methods. Front. Genet. 8:84.

doi: 10.3389/fgene.2017.00084

Kadurin, A., Nikolenko, S., Khrabrov, K., Aliper, A., and Zhavoronkov, A. (2017).

druGAN: an advanced generative adversarial autoencoder model for de novo

generation of new molecules with desired molecular properties in silico. Mol.

Pharm. 14, 3098–3104. doi: 10.1021/acs.molpharmaceut.7b00346

Frontiers in Artificial Intelligence | www.frontiersin.org 12 August 2019 | Volume 2 | Article 12

https://doi.org/10.18632/aging.101047
https://doi.org/10.1093/oxfordjournals.aje.a115184
https://doi.org/10.1111/acel.12585
https://doi.org/10.1161/CIRCULATIONAHA.114.014190
https://doi.org/10.1093/aje/kwf113
https://doi.org/10.1016/j.cct.2005.05.005
https://doi.org/10.1093/gerona/glu166
https://doi.org/10.1098/rsif.2017.0387
https://doi.org/10.1002/bies.201700221
https://doi.org/10.1111/j.1474-9726.2012.00808.x
https://doi.org/10.1016/j.ajhg.2015.12.001
https://doi.org/10.1056/NEJM199503233321202
https://doi.org/10.2105/AJPH.41.3.279
https://doi.org/10.1111/j.1474-9726.2011.00705.x
https://doi.org/10.1038/492S10a
https://doi.org/10.1016/0091-7435(75)90037-7
https://doi.org/10.1609/aimag.v31i3.2303
https://doi.org/10.1038/ejhg.2012.83
https://doi.org/10.1093/ije/dyw075
https://doi.org/10.1016/1047-2797(91)90005-W
https://doi.org/10.1016/0895-4356(88)90080-7
https://doi.org/10.1016/j.molmed.2016.09.009
https://doi.org/10.1093/annonc/mdy166
https://doi.org/10.1093/aje/kwk115
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.3389/fgene.2017.00084
https://doi.org/10.1021/acs.molpharmaceut.7b00346
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Moore and Raghavachari AI Approaches for Health/Life Span

Kaeberlein, M. (2018). How healthy is the healthspan concept? Geroscience

40, 361–364. doi: 10.1007/s11357-018-0036-9

Kaeberlein, M., and Kennedy, B. K. (2009). Ageing: a midlife longevity drug?

Nature 460, 331–332.

Kennedy, B. K. (2008). The genetics of ageing: insight from genome-wide

approaches in invertebrate model organisms. J. Intern. Med. 263, 142–152.

doi: 10.1111/j.1365-2796.2007.01903.x

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). ImageNet classification with

deep convolutional neural networks. Proc. Adv. Neural Inform. Process. Syst. 25,

1090–1098.

La Cava, W., Williams, H., Fu, W., and Moore, J. H. (2019).

Evaluating recommender systems for AI-driven data science. arXiv

preprint arXiv:1905.09205.

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.

doi: 10.1038/nature14539

Macarron, R., and Hertzberg, R. P. (2011). Design and implementation

of high throughput screening assays. Mol. Biotechnol. 47, 270–285.

doi: 10.1007/s12033-010-9335-9

Mamoshina, P., Kochetov, K., Cortese, F., Kovalchuk, A., Aliper, A., Putin, E.,

et al. (2019). Blood biochemistry analysis to detect smoking status and quantify

accelerated aging in smokers. Sci. Rep. 9:142. doi: 10.1038/s41598-018-35704-w

Mamoshina, P., Kochetov, K., Putin, E., Cortese, F., Aliper, A., Lee, W. S., et al.

(2018a). Population specific biomarkers of human aging: a big data study using

south korean, canadian, and eastern european patient populations. J. Gerontol.

A Biol. Sci. Med. Sci. 73, 1482–1490. doi: 10.1093/gerona/gly005

Mamoshina, P., Volosnikova, M., Ozerov, I. V., Putin, E., Skibina, E., Cortese,

F., et al. (2018b). Machine learning on human muscle transcriptomic data for

biomarker discovery and tissue-specific drug target identification. Front. Genet.

9:242. doi: 10.3389/fgene.2018.00242

Milman, S., and Barzilai, N. (2015). Dissecting the mechanisms underlying

unusually successful human health span and life span. Cold Spring Harb.

Perspect. Med. 6:a025098. doi: 10.1101/cshperspect.a025098

Moskalev, A., Chernyagina, E., De Magalhaes, J. P., Barardo, D., Thoppil, H.,

Shaposhnikov, M., et al. (2015). Geroprotectors.org: a new, structured and

curated database of current therapeutic interventions in aging and age-related

disease. Aging 7, 616–628. doi: 10.18632/aging.100799

Moskalev, A., Zhikrivetskaya, S., Shaposhnikov, M., Dobrovolskaya, E.,

Gurinovich, R., Kuryan, O., et al. (2016). Aging Chart: a community resource

for rapid exploratory pathway analysis of age-related processes. Nucleic Acids

Res. 44, D894–899. doi: 10.1093/nar/gkv1287

Nebel, A., Kleindorp, R., Caliebe, A., Nothnagel, M., Blanche, H., Junge, O., et al.

(2011). A genome-wide association study confirms APOE as the major gene

influencing survival in long-lived individuals.Mech. Ageing Dev. 132, 324–330.

doi: 10.1016/j.mad.2011.06.008

Newman, A. B., Glynn, N. W., Taylor, C. A., Sebastiani, P., Perls, T. T., Mayeux, R.,

et al. (2011). Health and function of participants in the Long Life Family Study:

a comparison with other cohorts. Aging 3, 63–76. doi: 10.18632/aging.100242

Newman, A. B., and Murabito, J. M. (2013). The epidemiology of longevity and

exceptional survival. Epidemiol. Rev. 35, 181–197. doi: 10.1093/epirev/mxs013

Nicolae, D. L., Gamazon, E., Zhang, W., Duan, S., Dolan, M. E., and

Cox, N. J. (2010). Trait-associated SNPs are more likely to be eQTLs:

annotation to enhance discovery from GWAS. PLoS Genet. 6:e1000888.

doi: 10.1371/journal.pgen.1000888

Olson, R. S. (2016). TPOT: A tree-based pipeline optimization too for automating

machine learning. JMLR Workshop Conf. Proc. 64, 66–74.

Olson, R. S., Cava, W., Mustahsan, Z., Varik, A., and Moore, J. H. (2018). Data-

driven advice for applying machine learning to bioinformatics problems. Pac.

Symp. Biocomput. 23, 192–203. doi: 10.1142/9789813235533_0018

Olson, R. S., La Cava, W., Orzechowski, P., Urbanowicz, R. J., and Moore, J. H.

(2017). PMLB: a large benchmark suite for machine learning evaluation and

comparison. BioData Min. 10:36. doi: 10.1186/s13040-017-0154-4

Orwoll, E., Blank, J. B., Barrett-Connor, E., Cauley, J., Cummings, S., Ensrud, K.,

et al. (2005). Design and baseline characteristics of the osteoporotic fractures in

men (MrOS) study–a large observational study of the determinants of fracture

in older men. Contemp. Clin. Trials 26, 569–585. doi: 10.1016/j.cct.2005.05.006

Partridge, L., Deelen, J., and Slagboom, P. E. (2018). Facing up to the global

challenges of ageing. Nature 561, 45–56. doi: 10.1038/s41586-018-0457-8

Patel, N. M., Michelini, V. V., Snell, J. M., Balu, S., Hoyle, A. P., Parker,

J. S., et al. (2018). Enhancing next-generation sequencing-guided

cancer care through cognitive computing. Oncologist 23, 179–185.

doi: 10.1634/theoncologist.2017-0170

Perls, T., Kunkel, L. M., and Puca, A. A. (2002). The genetics of exceptional human

longevity. J. Mol. Neurosci. 19, 233–238. doi: 10.1007/s12031-002-0039-x

Perls, T., Terry, D. F., Silver, M., Shea, M., Bowen, J., Joyce, E., et al. (2000).

Centenarians and the genetics of longevity. Results Probl. Cell. Differ. 29, 1–20.

doi: 10.1007/978-3-540-48003-7_1

Petkovich, D. A., Podolskiy, D. I., Lobanov, A. V., Lee, S. G., Miller, R. A.,

and Gladyshev, V. N. (2017). Using DNA methylation profiling to evaluate

biological age and longevity interventions. Cell Metab. 25, 954–960 e956.

doi: 10.1016/j.cmet.2017.03.016

Pignolo, R. J. (2019). Exceptional Human Longevity.Mayo Clin. Proc. 94, 110–124.

doi: 10.1016/j.mayocp.2018.10.005

Pilling, L. C., Kuo, C. L., Sicinski, K., Tamosauskaite, J., Kuchel, G. A., Harries, L.

W., et al. (2017). Human longevity: 25 genetic loci associated in 389,166 UK

biobank participants. Aging 9, 2504–2520. doi: 10.18632/aging.101334

Polykovskiy, D., Zhebrak, A., Vetrov, D., Ivanenkov, Y., Aladinskiy,

V., Mamoshina, P., et al. (2018). Entangled conditional adversarial

autoencoder for de novo drug discovery. Mol. Pharm. 15, 4398–4405.

doi: 10.1021/acs.molpharmaceut.8b00839

Putin, E., Mamoshina, P., Aliper, A., Korzinkin, M., Moskalev, A., Kolosov, A., et al.

(2016). Deep biomarkers of human aging: application of deep neural networks

to biomarker development. Aging 8, 1021–1033. doi: 10.18632/aging.100968

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Hardt, M., et al. (2018).

Scalable and accurate deep learning with electronic health records.Digital Med.

1:18. doi: 10.1038/s41746-018-0029-1

Rhrissorrakrai, K., Koyama, T., and Parida, L. (2016). Watson for genomics:

moving personalized medicine forward. Trends Cancer 2, 392–395.

doi: 10.1016/j.trecan.2016.06.008

Russell, S. J., and Norvig, P. (2003). Artificial Intelligence: A Modern Approach.

Pearson Education.

Schneider, R. (1970). Comparison of age, sex, and incidence rates in

human and canine breast cancer. Cancer 26, 419–426. doi: 10.1002/1097-

0142(197008)26:2andlt;419::AID-CNCR2820260225andgt;3.0.CO;2-U

Sebastiani, P., Bae, H., Gurinovich, A., Soerensen, M., Puca, A., and Perls, T.

T. (2017a). Limitations and risks of meta-analyses of longevity studies. Mech

Ageing Dev. 165, 139–146. doi: 10.1016/j.mad.2017.01.008

Sebastiani, P., Bae, H., Sun, F. X., Andersen, S. L., Daw, E. W., Malovini, A., et al.

(2013). Meta-analysis of genetic variants associated with human exceptional

longevity. Aging 5, 653–661. doi: 10.18632/aging.100594

Sebastiani, P., Gurinovich, A., Bae, H., Andersen, S., Malovini, A., Atzmon,

G., et al. (2017b). Four genome-wide association studies identify new

extreme longevity variants. J. Gerontol. A Biol. Sci. Med. Sci. 72, 1453–1464.

doi: 10.1093/gerona/glx027

Sebastiani, P., Hadley, E. C., Province, M., Christensen, K., Rossi, W., Perls, T.

T., et al. (2009). A family longevity selection score: ranking sibships by their

longevity, size, and availability for study. Am. J. Epidemiol. 170, 1555–1562.

doi: 10.1093/aje/kwp309

Shortliffe, E. H., Davis, R., Axline, S. G., Buchanan, B. G., Green, C. C., and

Cohen, S. N. (1975). Computer- based consultations in clinical therapeutics:

explanation and rule acquisition capabilities of the MYCIN system. Comput.

Biomed. Res. 8, 303–320. doi: 10.1016/0010-4809(75)90009-9

Singh, P. P., Demmitt, B. A., Nath, R. D., and Brunet, A. (2019).

The genetics of aging: a vertebrate perspective. Cell 177, 200–220.

doi: 10.1016/j.cell.2019.02.038

Sohn, A., Olson, R. S., and Moore, J. H. (2017). “Toward the automated

analysis of complex diseases in genome-wide association studies using genetic

programming,” in Proceedings of the Genetic and Evolutionary Computation

Conference. (Berlin: ACM).

Splansky, G. L., Corey, D., Yang, Q., Atwood, L. D., Cupples, L. A., Benjamin,

E. J., et al. (2007). The third generation cohort of the national heart, lung,

and blood institute’s framingham heart study: design, recruitment, and initial

examination. Am. J. Epidemiol. 165, 1328–1335. doi: 10.1093/aje/kwm021

Taylor, H. A., Wilson, J. G., Jones, D. W., Sarpong, D. F., Srinivasan, A., Garrison,

R. J., et al. (2005). Toward resolution of cardiovascular health disparities in

Frontiers in Artificial Intelligence | www.frontiersin.org 13 August 2019 | Volume 2 | Article 12

https://doi.org/10.1007/s11357-018-0036-9
https://doi.org/10.1111/j.1365-2796.2007.01903.x
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s12033-010-9335-9
https://doi.org/10.1038/s41598-018-35704-w
https://doi.org/10.1093/gerona/gly005
https://doi.org/10.3389/fgene.2018.00242
https://doi.org/10.1101/cshperspect.a025098
https://doi.org/10.18632/aging.100799
https://doi.org/10.1093/nar/gkv1287
https://doi.org/10.1016/j.mad.2011.06.008
https://doi.org/10.18632/aging.100242
https://doi.org/10.1093/epirev/mxs013
https://doi.org/10.1371/journal.pgen.1000888
https://doi.org/10.1142/9789813235533_0018
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1016/j.cct.2005.05.006
https://doi.org/10.1038/s41586-018-0457-8
https://doi.org/10.1634/theoncologist.2017-0170
https://doi.org/10.1007/s12031-002-0039-x
https://doi.org/10.1007/978-3-540-48003-7_1
https://doi.org/10.1016/j.cmet.2017.03.016
https://doi.org/10.1016/j.mayocp.2018.10.005
https://doi.org/10.18632/aging.101334
https://doi.org/10.1021/acs.molpharmaceut.8b00839
https://doi.org/10.18632/aging.100968
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1016/j.trecan.2016.06.008
https://doi.org/10.1002/1097-0142(197008)26:2andlt;419::AID-CNCR2820260225andgt;3.0.CO;2-U
https://doi.org/10.1016/j.mad.2017.01.008
https://doi.org/10.18632/aging.100594
https://doi.org/10.1093/gerona/glx027
https://doi.org/10.1093/aje/kwp309
https://doi.org/10.1016/0010-4809(75)90009-9
https://doi.org/10.1016/j.cell.2019.02.038
https://doi.org/10.1093/aje/kwm021
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Moore and Raghavachari AI Approaches for Health/Life Span

African Americans: design and methods of the Jackson Heart Study. Ethn. Dis.

15(4 Suppl. 6):S6–4–17.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). “Auto-

WEKA: combined selection and hyperparameter optimization of classification

algorithms,” in Proceedings of the 19th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. (Chicago, IL:ACM).

Topol, E. (2016). THE FUTURIST Toward a personalized, learning healthcare

system.Mod. Healthc (Suppl), 50–51.

Topol, E. J. (2019). High-performance medicine: the convergence of human and

artificial intelligence. Nat. Med. 25, 44–56. doi: 10.1038/s41591-018-0300-7

West, M. D., Labat, I., Sternberg, H., Larocca, D., Nasonkin, I., Chapman, K. B.,

et al. (2018). Use of deep neural network ensembles to identify embryonic-

fetal transition markers: repression of COX7A1 in embryonic and cancer cells.

Oncotarget 9, 7796–7811. doi: 10.18632/oncotarget.23748

Willcox, D. C., Willcox, B. J., Hsueh, W. C., and Suzuki, M. (2006).

Genetic determinants of exceptional human longevity: insights from the

Okinawa Centenarian Study. Age 28, 313–332. doi: 10.1007/s11357-006-

9020-x

Wilson, J. G., Rotimi, C. N., Ekunwe, L., Royal, C. D., Crump, M. E., Wyatt, S. B.,

et al. (2005). Study design for genetic analysis in the Jackson Heart Study. Ethn.

Dis. 15(4 Suppl. 6):S6–30–37.

Women’s Health Initiative (1998). Design of the Women’s Health Initiative

clinical trial and observational study. The Women’s Health Initiative

Study Group. Control Clin. Trials 19, 61–109. doi: 10.1016/S0197-2456(97)

00078-0

Wrzeszczynski, K. O., Frank, M. O., Koyama, T., Rhrissorrakrai, K., Robine, N.,

Utro, F., et al. (2017). Comparing sequencing assays and human-machine

analyses in actionable genomics for glioblastoma. Neurol Genet. 3:e164.

doi: 10.1212/NXG.0000000000000164

Yanai, H., Budovsky, A., Barzilay, T., Tacutu, R., and Fraifeld, V. E. (2017). Wide-

scale comparative analysis of longevity genes and interventions. Aging Cell 16,

1267–1275. doi: 10.1111/acel.12659

Yu, V. L., Fagan, L. M., Wraith, S. M., Clancey, W. J., Scott, A. C.,

Hannigan, J., et al. (1979). Antimicrobial selection by a computer. A

blinded evaluation by infectious diseases experts. JAMA 242, 1279–1282.

doi: 10.1001/jama.1979.03300120033020

Zeng, Y., Nie, C., Min, J., Liu, X., Li, M., Chen, H., et al. (2016). Novel

loci and pathways significantly associated with longevity. Sci. Rep. 6:21243.

doi: 10.1038/srep21243

Zhavoronkov, A., and Cantor, C. R. (2011). Methods for structuring scientific

knowledge from many areas related to aging research. PLoS ONE. 6:e22597.

doi: 10.1371/journal.pone.0022597

Zhavoronkov, A., Mamoshina, P., Vanhaelen, Q., Scheibye-Knudsen, M.,

Moskalev, A., and Aliper, A. (2019). Artificial intelligence for aging and

longevity research: recent advances and perspectives. Ageing Res. Rev. 49,

49–66. doi: 10.1016/j.arr.2018.11.003

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Moore, Raghavachari and Workshop Speakers. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 14 August 2019 | Volume 2 | Article 12

https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.18632/oncotarget.23748
https://doi.org/10.1007/s11357-006-9020-x
https://doi.org/10.1016/S0197-2456(97)00078-0
https://doi.org/10.1212/NXG.0000000000000164
https://doi.org/10.1111/acel.12659
https://doi.org/10.1001/jama.1979.03300120033020
https://doi.org/10.1038/srep21243
https://doi.org/10.1371/journal.pone.0022597
https://doi.org/10.1016/j.arr.2018.11.003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Artificial Intelligence Based Approaches to Identify Molecular Determinants of Exceptional Health and Life Span-An Interdisciplinary Workshop at the National Institute on Aging
	Introduction
	Study of Exceptional Life and Health Span—Challenges, Goals and Resources
	The Promises of AI—Can AI Revolutionize Aging Research?
	History of AI
	Definition and Components of AI
	MYCIN as Early Example of AI in Medicine
	IBM Watson as Modern Example of AI
	What Is Deep Learning?
	Automated ML/AI for Data Analytics
	A Few Examples on Application of AI Approaches in Bio-medicine
	Future Opportunities for AI in Aging
	The Overall Recommendations From the Speakers Are Summarized as Below
	Research Infrastructure
	Research Programs
	Education and Training


	Conclusions
	Workshop Speakers and Organizers
	Author Contributions
	Funding
	Acknowledgments
	References


