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Although the causal role of Amyloid-β (Aβ) in Alzheimer’s disease (AD) is unclear, it is
still reasonable to expect that lowering concentrations of Aβ in the brain may decrease
the risk of developing the neurocognitive symptoms of the disease. Brain capillary
endothelial cells forming the blood-brain barrier (BBB) express transporters regulating
the efflux of Aβ out of the cerebral tissue. Age-related BBB dysfunctions, that have been
identified in AD patients, might impair Aβ clearance from the brain. Thus, targeting BBB
outward transport systems has been suggested as a way to stimulate the clearance
of Aβ from the brain. Recent data indicate that the increase in soluble brain Aβ and
behavioral impairments in 3×Tg-AD mice generated by months of intake of a high-
fat diet can be acutely reversed by the administration of a single dose of insulin. A
concomitant increase in plasma Aβ suggests that clearance from the brain through the
BBB is a likely mechanism for this rapid effect of insulin. Here, we review how BBB
insulin response pathways could be stimulated to decrease brain Aβ concentrations and
improve cognitive performance, at least on the short term.
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Introduction: Is There a Relationship Between Brain Aβ and the
Symptoms of AD?

Similar to other neurodegenerative diseases, Alzheimer’s disease (AD) is a proteinopathy, in which
accumulation of insoluble aggregates of Amyloid-β (Aβ), tau and TDP-43 occurs (Tremblay et al.,
2007, 2011; Serrano-Pozo et al., 2011). Deposition of Aβ peptides into neuritic plaques is still
instrumental in the neuropathological diagnosis of AD (Braak et al., 1993; Selkoe, 2001; Cummings,
2004), but whether it plays a causal role in the progressive dementia, which characterizes AD
clinically, remains uncertain (Karran et al., 2011; Mormino, 2014; Morris et al., 2014). Nevertheless,
one key element of information gathered in the last decade is the quantitative link between the
deposition of Aβ42 and the risk of developing the disease.

Genetic data provide strong support for the role of Aβ in AD. Mutation or double copies
leading to increased production lead to higher incidence of the disease. Indeed, mutations
leading to overproduction all increase the risk of AD (Goate et al., 1991; Rogaev et al., 1995;
Sherrington et al., 1995; Borchelt et al., 1996; Duff et al., 1996; Scheuner et al., 1996; Citron
et al., 1997), while a mutation more recently found to reduce Aβ production was rather
associated with reduced AD incidence (Jonsson et al., 2012). The discovery of mutations in amyloid
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precursor protein (APP) causing AD and the development of
transgenic mouse lines overexpressing mutant APP reproducing
many pathological features of AD all strongly suggest that
accumulation of Aβ can cause AD, at least in its familial forms
(St George-Hyslop, 2000; Bird, 2005; Gatz et al., 2006; Goedert
and Spillantini, 2006; Roberson and Mucke, 2006; Haass and
Selkoe, 2007). In fact, in the AD field, this simple quantitative link
between Aβ and disease incidence is one of the rare postulates
that remained true over the years. Facing a disease of intractable
complexity, where lists of different key factors involved never
stop growing, such a genotype-to-phenotype evidence offers a
rare element of clarity. However, for sporadic AD, it should not
be used for more than what it is, essentially a correlative link, and
ultimately perhaps only a risk factor.

The role of Aβ in the symptoms of AD is truly one of
the most controversial issues in the field. Most studies show
significant correlation between insoluble Aβ or neuritic plaque
and ante mortem cognitive symptoms (Blessed et al., 1968;
Dickson, 1997; Tremblay et al., 2007). However, individuals
with very high levels of Aβ do not necessarily develop cognitive
symptoms (Knopman et al., 2003; Price et al., 2009; Rentz
et al., 2010; Karran et al., 2011; Chételat et al., 2013) because
other protective mechanisms are in play, including the so-
called cognitive reserve (Rentz et al., 2010; Stern, 2012). Thus,
it remains possible that Aβ is a consequence rather than a
cause, or even a correlative event (Mormino, 2014; Morris and
Tangney, 2014). There is indeed ground for a much more
passive role of Aβ. For example, it has been argued that
removal of Aβ plaques or tau tangles from the aged diseased
brain could rather disrupt an ongoing compensatory mechanism
and be harmful (Perry et al., 2000; Tayeb et al., 2012). The
recent failure of a series of anti-amyloid treatments into late
clinical trials only added more fuel to this counterargument
(Golde et al., 2011; Tayeb et al., 2012; De Strooper and
Chávez Gutiérrez, 2015). The hypothesis that clearing Aβ leads
to improved cognition has only been confirmed in animal
models (Mori et al., 2014; Pujadas et al., 2014; Vandal et al.,
2014b). Although some evidence of effective clearing of Aβ

exists after clinical trials, it is insufficient to state that any
drug has succeeded in eliminating Aβ pathology (Selkoe, 2011;
De Strooper and Chávez Gutiérrez, 2015). For example, active
immunization trials with anti-Aβ antibodies have failed to reach
primary clinical outcomes of improving cognition (Robinson
et al., 2004; Grundman et al., 2013), despite reduced brain
Aβ concentrations, possibly because of adverse vascular effects
(Liu et al., 2012). A recent phase 3 clinical trial testing the γ-
secretase inhibitor semagacestat, was stopped before the end of
the trial because of major adverse effects such as infections, skin
cancer and weight loss, which might explain the deterioration
of cognitive function observed in treated patients (Doody et al.,
2013; Desjardins et al., 2014). Notwithstanding the absence
of cognitive benefit, a significant increase in CSF total Aβ42
was observed with semagacestat (Doody et al., 2013). Another
limitation comes from the current imaging techniques that are
used in clinical trials, which do not clearly detect the various
pools or subforms of Aβ, such as soluble oligomers that are
believed to be particularly toxic to synapses (Holland et al.,

2014). Nonetheless, because of the strength of above-mentioned
genetic evidence, the focus of therapeutic approaches in AD
has thus long been on stopping Aβ overproduction, which
may work at least in a subset of patients (Golde et al., 2011;
Selkoe, 2011; Lane et al., 2012; Tayeb et al., 2012; Mullane and
Williams, 2013). However, there is growing recognition that
proteinopathies are more likely to stem from disequilibrium
between production and clearance. Overproduction may not
systematically lead to the disease if clearing mechanisms remain
active. From a therapeutic perspective, decreasing the production
of Aβ, using APP modulators or γ or β-secretase inhibitors,
may be ineffective if clearance pathways are compensating. This
hypothesis that neurodegenerative proteinopathies result from
a ruptured equilibrium has been particularly applied to Aβ in
AD, probably because of the impressive sum of available data
deciphering its production and metabolism pathways. Whether
such an equilibrium hypothesis sounds too simple for a slowly
progressing disease remains to be established, but therapeutic
strategies designed to enhance Aβ clearance from the brain have
recently been considered amongst the most promising options to
treat AD (Sagare et al., 2012; Wildsmith et al., 2013; Saito and
Ihara, 2014).

Aβ Clearance: the Role of the BBB

The blood-brain barrier (BBB) forms the major interface between
the blood and brain tissues and can thus be considered
as the gateway to the brain. The BBB is formed by brain
capillary endothelial cells (BCEC) displaying a high metabolic
activity and polarized expression of receptors and membrane
transporters (Oldendorf, 1977; Cornford and Hyman, 2005;
Weiss et al., 2009). Except for small lipophilic compounds,
almost no molecule gets in or out of the brain, without some
control exerted by the BBB. Accordingly, impressive amounts
of data have underscored the role of the BBB in the regulation
of Aβ concentrations in the brain. Using peripheral arterial and
central venous blood samples, Bateman’s group has been able
to determine venous to arterial (V/A) Aβ concentration ratios
in non-demented patients (Bateman et al., 2006). Their data
show that the V/A ratio of Aβ is increased in central venous
samples, indicating that Aβ is continuously effluxed from the
brain (Bateman et al., 2006). They further designed a calculation
model integrating several parameters from their previous work
(Potter et al., 2013) and estimated that 25% of total Aβ clearance
from the CNS comes through direct transport across the BBB to
the blood (Roberts et al., 2014).

BBB-expressed transporters such as the receptor for advanced
glycation end products (RAGE) and low density lipoprotein
receptor-related protein 1 (LRP1), are thought to play a key role
in Aβ transport in and out of the brain (Deane et al., 2003; Kim
et al., 2009). In addition, ATP-binding cassette (ABC) transporter
family members, namely ABCB1, ABCG2, respectively known as
P-glycoprotein and breast cancer resistance protein, and ABCG4,
are also implicated in the efflux of Aβ, since pharmacological
inhibition or gene deletion of these transporters can increase the
brain uptake of Aβ (Cirrito et al., 2005; Kuhnke et al., 2007; Tai
et al., 2009; Donkin et al., 2010; Do et al., 2012; Stukas et al.,
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2014). Altogether, these studies pinpoint the important role of
BBB transporters in the efflux of Aβ and further suggest that their
manipulation may be useful to alter brain Aβ concentrations.

Evidence of BBB Dysfunction in Aging and
in AD

Historically, the increased cerebrospinal fluid (CSF)/serum ratios
of blood-borne macromolecules have been interpreted as an
evidence of impaired BBB permeability in AD (Skoog et al.,
1998). However, CSF concentration should be interpreted
carefully as CSF presence is not a proof of BBB disruption,
because circulating molecules have access to the CSF through
the blood-CSF barrier at the choroid plexus (Pardridge, 2011;
Strazielle and Ghersi-Egea, 2013).

An increase in the activity of RAGE (influx) vs. LRP1
(efflux) within the BBB has been suggested to contribute to the
accumulation and deposition of Aβ in the brain (Donahue et al.,
2006; Miller et al., 2008). Immunostaining experiments showed
that RAGE expression is increased at the microvasculature
of AD brains whereas LRP1 is decreased (Donahue et al.,
2006; Miller et al., 2008). This increase in RAGE expression
is associated with the progression of the disease (Miller
et al., 2008), which supports evidence indicating that RAGE
expression is enhanced in an Aβ-rich environment (Schmidt
et al., 2000; Bierhaus et al., 2005). Both RAGE and LRP1
activities seem to be closely related since the blockade of RAGE-
β interaction with a RAGE antibody enhances the expression
of LRP1 in cultured human brain endothelial cells (Deane
et al., 2004). This apparent disequilibrium between RAGE and
LRP1 thus appears as an interesting therapeutic target for AD
(Deane et al., 2009). Accordingly, the inhibition of RAGE as
a therapeutic intervention expected to reduce Aβ influx and
enhance its clearance, has been rapidly investigated. However,
the phase 2 clinical trial provided disappointing results. AD
patients randomized in the high-dose group displayed several
adverse effects, including aggravated cognitive decline, whereas
patients in the low-dose group displayed no significant cognitive
improvement compared to the placebo group (Galasko et al.,
2014).

Morphological abnormalities of brain capillaries, as well
as evidence of cerebrovascular dysfunction such as decreased
cerebral blood flow (CBF) or lower brain glucose uptake and
metabolism, have also been documented in normal aging (Farrall
and Wardlaw, 2009; Erickson and Banks, 2013; Nugent et al.,
2014; Montagne et al., 2015) and AD patients (Wang et al.,
2006; Taheri et al., 2011; Sagare et al., 2012; Erickson and
Banks, 2013). Supportive observations have also been gathered
in animal models of Aβ or tau AD-like neuropathology (Paul
et al., 2007; Bourasset et al., 2009; Mehta et al., 2013; Do
et al., 2014). More recently, apolipoprotein E4 (apoE4) has
been associated with series of BBB defects, including impaired
Aβ clearance (Deane et al., 2008; Salem et al., 2015), reduced
glucose and polyunsaturated fatty acids uptake, decreased
microvascularization and CBF (Reiman et al., 2004; Bell et al.,
2012; Sagare et al., 2012; Vandal et al., 2014a; Alata et al., 2015).
Surgical CBF reduction in an animal model of AD has been

shown to initiate a vicious cycle between Aβ neuropathology
and CBF deficits (Li et al., 2014). These evidence support data
indicating that Aβ can also be cleared by perivascular drainage of
the interstitial brain fluid (Preston et al., 2003; Xie et al., 2013),
a clearance pathway thought to be driven by the CBF pulsation
force (Schley et al., 2006; Weller et al., 2009), but losing its
strength with age (Schley et al., 2006; Weller et al., 2009; Kress
et al., 2014). Reduced CBF observed in aging and in AD patients
may thus impair Aβ clearance potentiating its accumulation and
aggregation in the CNS (Erickson and Banks, 2013; Desjardins
et al., 2014; Li et al., 2014; Oudegeest-Sander et al., 2014), which
can further damage the cells of the neurovascular unit. RAGE-
Aβ complex may play a predominant role in the decrease of
CBF in AD. Upon binding with Aβ, RAGE triggers the release
of endothelin-1, a potent vasoconstrictor, and proinflammatory
factors, which can indirectly reduce the CBF (Deane et al., 2003).
Finally, patrolling monocytes have also been shown to adhere
to cerebral microvessels triggering the internalization of vascular
Aβ, and may be implicated in another clearance process thought
to become defective in AD (Michaud et al., 2013). Altogether,
these series of data provide strong arguments for a dysfunction
of the BBB associated with AD.

Insulin Signaling Pathway in the BBB

Insulin exerts a plethora of effects in the CNS. Centrally
administered insulin increases glycemia and reduces blood
insulin, effects that are often at the opposite of those in
the periphery (Banks et al., 2012; Fernandez and Torres-
Alemán, 2012). In addition to its role in the maintenance
of energy balance, insulin is implicated in the regulation of
autonomic outflow and neurotrophic factors (Banks et al., 2012;
Fernandez and Torres-Alemán, 2012). Evidence of reduced
cerebral perfusion has been found in insulin resistant or diabetic
patients (Novak et al., 2006, 2011; Brundel et al., 2012; Rusinek
et al., 2015). Although local synthesis has been evidenced (Plata-
Salamán, 1991; Banks, 2004), most insulin action in the brain
probably comes from circulating insulin (Margolis and Altszuler,
1967; Banks et al., 1997a; Banks, 2004). Insulin can be transported
across the BBB by three mechanisms: extracellular pathway,
saturable transmembrane diffusion and via the choroid plexus.
Permeability of the BBB to insulin is variable among brain
regions. It is estimated that insulin crosses the BBB 2–8 times
faster in the olfactory bulb, the most insulin receptor (INSR)-
enriched region, than in the whole brain (Banks et al., 1999).
Nevertheless, to put that in perspective, less than 0.05% of
intravenously injected insulin (per gram of whole brain) enters
the mouse brain (Banks et al., 1997a, 2012; Banks and Kastin,
1998).

Insulin is ferried into the brain via the INSR (Frank et al.,
1985; Duffy and Pardridge, 1987; Banks et al., 1997a, 2012;
Banks and Kastin, 1998) located at the luminal surface of BCEC
(Miller et al., 1994; Figure 1). This transendothelial transport is
saturable (King and Johnson, 1985; Hachiya et al., 1988), at a
rate dependent on plasma insulin concentrations (Baura et al.,
1993). First, insulin binds its receptor at the luminal side of
the BBB and receptor-mediated endocytosis occurs. Next, the
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FIGURE 1 | Multiple pathways through which insulin may activate
Amyloid-β (Aβ) clearance out of the Alzheimer’s disease (AD)
brain. (1) Peripherally administered insulin binds the insulin receptor
(INSR) either to trigger cell-signaling pathways within brain capillary
endothelial cells or to ferry an insulin molecule into the brain
parenchyma through a saturable transendothelial transport mechanism.
Insulin then might affect brain Aβ clearance by modulating (2) influx
transporter such as receptor for advanced glycation end products
(RAGE) or (3) efflux transporters such as ATP Binding Cassette

transporter (ABC) and Low density lipoprotein receptor-related protein 1
(LRP1). (4) Insulin inside the brain may also increase Aβ drainage to the
CSF and/or (5) reduce Aβ production. ABC, ATP Binding Cassette
transporter; APP, amyloid precursor protein; Aβ, Amyloid-β; BBB, blood
brain barrier; CSF, cerebrovascular fluid; IDE, insulin degrading enzyme;
INSR, insulin receptor; IRS/PI3/Akt, insulin receptor substrate
(IRS)/phosphoinositide-3 kinase (PI3)/Akt pathways; ISF, brain interstitial
fluid; LRP1, Low density lipoprotein receptor-related protein 1; NEP,
neprilysin; RAGE, receptor for advanced glycation end products.

insulin and insulin-receptor complex are transported into the
endothelial cytoplasm. Finally, insulin is exported out of the
endothelial cell inside the brain parenchyma through receptor-
mediated exocytosis (Pardridge, 1986).

In addition to the active transport insulin across the
BBB, INSR also modulate several BCEC function through
insulin intracellular signaling pathways (Banks et al., 2012;
Figure 1). When insulin binds and activates INSR, it undergoes
autophosphorylation, which induces the recruitment of insulin
signaling proteins, such as insulin receptor substrate (IRS)-1
and activation of the phosphoinositide 3-kinase/protein kinase
B (Akt) pathway (Fernandez and Torres-Alemán, 2012).
Experiments in cultured BCEC confirm the induction of such
a signaling pathway by insulin (Katakam et al., 2009). Since
INSR are expressed by endothelial cells throughout the BBB
network (Miller et al., 1994), the downstream action of insulin
in the brain can thus be widespread in all the perfused cerebral
tissue.

INSRs are widely distributed in the CNS. In mice,
immunohistochemistry and in situ hybridization experiments
showed that insulin receptors are mainly found in the olfactory
bulb followed by the cerebral cortex, the hippocampus, the
hypothalamus and the cerebellum (Havrankova et al., 1978;
Unger et al., 1989; Fernandez and Torres-Alemán, 2012).
Smaller amounts of INSR are also found in the striatum and

the thalamus (Fernandez and Torres-Alemán, 2012). Insulin
interacts with receptors on neuron and glial cells (Unger et al.,
1989). In contrast to the periphery, glucose uptake in the CNS is
independent of insulin (Hasselbalch et al., 1999). Interestingly,
the role of insulin in the brain appears to be older from an
evolutionary standpoint, more closely related to a growth factor,
specifically, similar to the Insulin-like Growth Factor (IGF; Banks
et al., 2012). Insulin signaling in the brain is linked to neuronal
survival, synaptic and dendritic plasticity, learning, memory and
formation of neuronal circuits (Banks et al., 2012; De Felice and
Ferreira, 2014; Kleinridders et al., 2014). Therefore, although
the physiological effects of insulin in cerebral tissues are very
different than in periphery, there is not much reason to believe
that its cellular signaling pathways within BBB endothelial cells
are very different than in other tissue like muscles or liver. The
main difference is that impact of insulin on parenchyma brain
cells has first to go through the BBB, whether by actual transport
or via cell signaling, under the tight regulation of BCEC of the
capillary network.

Can Insulin Trigger Aβ Efflux Though the
BBB?

The benefits of intranasal insulin in AD patients led to the
hypothesis that insulin might be a therapeutic tool in AD (Craft
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et al., 2012; Freiherr et al., 2013; Claxton et al., 2015). In
parallel, studies have been conducted in mouse models of AD
to elucidate the mechanisms by which insulin might modulate
AD-like neuropathology and cognition. Consistent with evidence
showing that nutritional factors alter AD risk (Morris, 2009;
Hennebelle et al., 2014; Morris and Tangney, 2014), high-fat-
diets (HFD) have been consistently shown to further increase
Aβ concentrations in the brain of APP models (Ho et al., 2004;
Maesako et al., 2013; Ramos-Rodriguez et al., 2014), as well
as in the 3×Tg-AD model (Julien et al., 2010; Barron et al.,
2013; Vandal et al., 2014b). Thus, the combination of HFD with
APP overexpression generates a model of diabetic AD mice,
useful to investigate the links between T2D and AD observed in
humans.

In 3×Tg-AD mice fed with the HFD for 9 months, we have
recently shown that an acute insulin injection (3.8 U/kg body
weight) corresponding to approximately 2000-fold the normal
fasting insulin level in the mouse, restores cortical soluble Aβ40
and Aβ42 back to the level of mice fed with the control diet
(CD). The Aβ lowering affect of insulin was accompanied with
improved memory function in HFD-fed 3×Tg-AD mice (Vandal
et al., 2014b). We also identified changes in molecular markers
implicated in Aβ production, all altered by a single insulin
injection, including increased α-APP, increased X11α, decreased
BACE, and decreased autophagy-related proteins (Kamenetz
et al., 2003; Kondo et al., 2010; Son et al., 2012). Although
these observations suggest that APP/Aβ production may be
affected by insulin, as previously shown (Pandini et al., 2013;
Wang et al., 2014), the rapidity of insulin effect suggests that
other mechanisms are in play. Indeed, previous evaluation of
the synthesis and turnover of Aβ in an APP mouse model
led to an estimation of a half-life ranging from 1.0–2.5 h
for Aβ, C99 and APP, respectively (Savage et al., 1998). In
line with this observation and with findings from previous
investigators (Cirrito et al., 2003; Barten et al., 2005; Abramowski
et al., 2008), Basak et al. used 13C6-leucine injection and
Liquid Chromatography/Mass Spectrometry (LC/MS) analysis
to evaluate clearance of Aβ from the brain of APP mice and
found an Aβ half life ranging from 2.8–2.9 h (Basak et al., 2012).
Indeed, a slow brain clearance rate for Aβ (18–33 h) was reported
in monkey, using the same methodology based on 13C6-leucine
injection. As the metabolic rate in humans is slower than in the
mouse (Potter et al., 2013), Aβ half-life is likely to be shorter in
the mouse as well. Therefore, the turnover rates of Aβ in the brain
suggest that the insulin-induced downregulation effect of soluble
Aβ is unlikely to be solely explained by changes in production.

On the other hand, BBB clearance mechanisms could occur
faster. In our experiments in HFD-fed 3×Tg-AD mice, we indeed
observed a concomitant increase of plasma Aβ42 following
insulin injection strongly suggesting that insulin increased Aβ

clearance from the brain (Vandal et al., 2014b). This hypothesis
is in line with human studies reporting an increase of plasma
Aβ following insulin administration (Kulstad et al., 2006;
Karczewska-Kupczewska et al., 2013). The cerebrovasculature is
so dense throughout the brain that it is conceivable that the
network of capillaries, venules and veins can excrete rapidly Aβ

out of the brain.

How can Insulin Modulate Aβ Clearance from the
Brain?
A first obvious mechanism of insulin effect on Aβ clearance
is through the activation/inactivation of Aβ transporters at the
BBB. Binding of insulin to its receptor at the BBB and transport
across the BBB can occur rapidly after IV insulin administration
(Figure 1). Since INSR is widely distributed in the brain,
insulin can target several cerebral regions (Banks et al., 2012).
Interestingly, the hippocampus, a brain region accumulating
large amounts of fribrillar Aβ during AD progression, is
also highly enriched in INSR (Mirra et al., 1991; Kadir
et al., 2011; Banks et al., 2012). Studies in mice revealed
that intravenously administered radiolabelled-insulin can be
detected in mouse brain 1 min after injection (Banks et al.,
1997a,b, 1999; Banks and Kastin, 1998; Yu et al., 2006). In
a time frame of 20 min following IV administration, insulin
modulates the BBB transport and analgesic effect of an opioid
receptor agonist in mice suggesting that central effect of insulin
appears minutes following peripheral administration (Witt et al.,
2000).

Insulin has already been shown to potentiate the brain
transport of molecules such as leptin (Kastin and Akerstrom,
2001) and amino acids (Tagliamonte et al., 1976). In
streptozotocin-treated mice, insulin increased cerebral
microvessels expression of occludin, claudin-5, and ZO-1
(Sun et al., 2015). Although little evidence is available regarding
the effect of insulin on the expression of LRP1 at the BBB, insulin
regulates translocation and uptake of LRP1 receptor in hepatic
cells (Laatsch et al., 2009). Interestingly, LRP1 expression is
downregulated in brain capillaries of streptozotocin-injected
mice (Hong et al., 2009) and CSF soluble LRP1 is increased in
type 1 diabetes patients treated with insulin for several years
(Ouwens et al., 2014), suggesting that insulin might increase
central LRP1, at least on the long term. Finally, insulin might
also modulate RAGE concentration. Soluble RAGE is inversely
correlated with plasma insulin concentration during an oral
glucose tolerance test in healthy human subjects (Forbes et al.,
2014). In isolated brain microvessels from streptozotocin-
injected mice, insulin reduces the concentration of RAGE
compared to diabetic mice (Sun et al., 2015). On the other
hand, there is a wealth of evidence showing that insulin
modulates the levels and function of ABC transporters such
as P-glycoprotein in cultured BCEC (Liu and Liu, 2014).
Although no data actually confirms that insulin modulate the
activity LRP1, RAGE or other BBB Aβ transporters within
the time frame of minutes, such an action simultaneously
throughout the dense brain capillary network could in principle
underlie the rapid effect observed with insulin on Aβ efflux
(Figure 1).

Other more speculative mechanisms of insulin include
enzymatic degradation of Aβ after insulin administration.
However, no changes in insulin-degrading enzyme levels were
detected, arguing against a direct effect of insulin on these
enzymes known to catalyze the degradation of Aβ present in
brain microvessels (Miller et al., 1994; Banks et al., 2012). On
the other hand, drainage of Aβ from central interstitial fluid to
CSF is increasingly recognized as a key clearance mechanism
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of brain Aβ. Experiments with intraparenchymal radiotracer
injections show that significant amount of Aβ is effluxed through
paravascular glymphatic system from the interstitial space to the
CSF (Kress et al., 2014). This view is also supported by clinical
evidence: low concentrations of CSF Aβ is now considered as
a diagnostic tool for AD (Palmqvist et al., 2014). Therefore,
insulin could also lead to a drop in brain soluble Aβ through
interaction in water channels or by increasing CSF turnover
(Zemva and Schubert, 2014). In support of this view, the
administration of intranasal (Grichisch et al., 2012; Schilling
et al., 2014) or intravenous (Kerr et al., 1993; Tallroth et al.,
1993; Powers et al., 1996; Kennan et al., 2005) insulin have
been linked to an increased CBF in human. Consistent effects
of insulin on blood flow dynamics have been reported in
mice after a stroke (Tennant and Brown, 2013). Furthermore,
systemically administered insulin increases in CSF Aβ42 levels,
particularly in the subjects with improved memory (Watson
et al., 2003). The cerebrovascular response to insulin appears
to be biphasic: first a vasoconstriction at low doses, then a
vasodilation at higher doses, accompanied by an inhibition of
nitric oxide synthase (Katakam et al., 2009). Therefore, since
the paravascular drainage may be enhanced in parallel with
CBF (Schley et al., 2006; Weller et al., 2009), modulation of
CBF could also contribute to insulin-induced Aβ clearance.
However, studies on the effect of brain-CSF transport led to
apparent contradictory data. Intracerebral co-injection of very
high doses of insulin with ionidated Aβ40 into the parietal
cortex of rats led to less diffusion of radioactivity in the CSF
(Shiiki et al., 2004), suggesting that systemic insulin has a
different impact on Aβ than CNS insulin. This also argues for
a direct effect of insulin on luminally exposed BBB transporters
and CSF Aβ in human subject following insulin infusion
(Figure 1).

Alternative Therapeutic Strategies
Because of the well-known side effects resulting from
the long-term use of insulin, authors have tried to use
intranasal administration in clinical trials with AD patients
(Freiherr et al., 2013). Importantly, intranasal insulin
improved memory function in patients suffering from
mild cognitive impairment and AD (Reger et al., 2006,
2008; Craft et al., 2012). Despite the fact that changes in
peripheral glucose metabolism are observed following intranasal
insulin administration (Dash et al., 2015; Gancheva et al.,
2015), no significant change in blood insulin were detected
(Born et al., 2002; Hallschmid et al., 2008). However,
if peripheral mechanisms contribute to insulin-induced
central Aβ clearance (Zhang and Lee, 2011), intranasal
administration might then be less effective than direct peripheral
administration.

Another concern linked to insulin administration is that
the effect of insulin might not be sustainable on the long-
term due to desensitization or other compensatory mechanisms.
Indeed, INSR down-regulation and desensitization have been
described in insulin resistance, including in cerebral tissues
(Ketterer et al., 2011). As brain insulin resistance is likely
to be present in most AD patients (Steen et al., 2005;

Fernandez and Torres-Alemán, 2012; Talbot et al., 2012),
the effect of chronic treatment with insulin on Aβ clearance
might wear-off over time. Various INSR agonists could be
useful in such a case. For example, partial agonist (or even
antagonist) could be used to exert a chronic impact on
these clearance mechanisms without inducing tolerance. Insulin
analogs such as insulin detemir and insulin glargine are
widely used to treat diabetic patients and are very effective
to lower fasting glucose (Pollock et al., 2011). Nonetheless,
those analogs have the disadvantage, when administered in
the periphery, of inducing hypoglycemia and weight gain,
which is associated to a higher risk of cardiovascular disease
(Niswender, 2011). Xmet is a high affinity allosteric human
monoclonal antibody that targets the INSR. When binding
the INSR, Xmet mimics the glucoregulatory but not the
mitogenic effect of insulin. In an animal model of diabetes,
Xmet normalizes glucose tolerance without weight gain and
hypoglycemia (Bhaskar et al., 2012). Although the central effect
of Xmet and its capacity to cross the BBB still have to be
determined, Xmet might represent an interesting therapeutic tool
in AD as well.

Although insulin is an interesting therapeutical tool in
AD, several parameters remain to be considered. First, in
our previous study, we have shown that transgenic mice are
glucose intolerant and that the glucose intolerance progressed to
decreased insulin sensitivity and reduction in insulin production
when the mice were fed a HFD (Vandal et al., 2014b). This
raises the question whether insulin resistance and basal insulin
levels affect the Aβ clearance capacity of insulin. Indeed, it
is estimated that 46% of AD patient have impaired fasting
glucose (Janson et al., 2004) and data suggest that a majority of
AD patients have central insulin resistance (Steen et al., 2005;
Talbot et al., 2012), suggesting that impaired insulin signaling
might be a part of AD pathological process. Consequently,
the possible impact of insulin resistance on the Aβ clearance
capacity of insulin has to be taken into account in future
studies.

Conclusion

Although perhaps too simple, the facilitation of Aβ clearance
out of the brain represents a conceptually attracting therapeutic
strategy to reduce Aβ burden in cerebral tissue. A game-
changer has been the quantitative kinetic work of Bateman
and colleagues indicating that it is possible to measure with
relative accuracy Aβ clearance, even sufficiently to be used
as surrogate marker in clinical assays. It is unclear whether
a disease modifying or simply a symptomatic effect can be
expected, but further preclinical and clinical studies appear to be
worthwhile. The timing of the intervention is probably important
as the stimulation/potentiation of Aβ clearance is likely to be
more useful to prevent Aβ accumulation, whether as primary
or secondary prevention measures, rather than when dementia
signs have become obvious, and therefore when it might be
too late. Thus, the control of Aβ clearance might be part of
future risk management perspectives, similar to the treatment of
cardiovascular diseases, in the hope of decreasing the likelihood
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of developing AD. However, to achieve this, better understanding
of BBB clearance mechanisms are still needed. In this regard,
the recent evidence covered in this review suggest that insulin

through its transport into the brain or its signaling pathways
within cerebral endothelial cells offers promising opportunities
to increase Aβ clearance.
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N., et al. (2012). Differential effects of intranasal insulin and caffeine on cerebral
blood flow. Hum. Brain Mapp. 33, 280–287. doi: 10.1002/hbm.21216

Grundman, M., Dibernardo, A., Raghavan, N., Krams, M., and Yuen, E. (2013).
2012: a watershed year for Alzheimer’s disease research. J. Nutr. Health Aging
17, 51–53. doi: 10.1007/s12603-013-0002-2

Haass, C., and Selkoe, D. J. (2007). Soluble protein oligomers in
neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide.
Nat. Rev. Mol. Cell Biol. 8, 101–112. doi: 10.1038/nrm2101

Hachiya, H. L., Halban, P. A., and King, G. L. (1988). Intracellular pathways
of insulin transport across vascular endothelial cells. Am. J. Physiol. 255,
C459–C464.

Hallschmid, M., Benedict, C., Schultes, B., Perras, B., Fehm, H. L., Kern, W., et al.
(2008). Towards the therapeutic use of intranasal neuropeptide administration
in metabolic and cognitive disorders. Regul. Pept. 149, 79–83. doi: 10.1016/j.
regpep.2007.06.012

Hasselbalch, S. G., Knudsen, G. M., Videbaek, C., Pinborg, L. H., Schmidt, J. F.,
Holm, S., et al. (1999). No effect of insulin on glucose blood-brain barrier
transport and cerebral metabolism in humans. Diabetes 48, 1915–1921. doi: 10.
2337/diabetes.48.10.1915

Havrankova, J., Schmechel, D., Roth, J., and Brownstein, M. (1978). Identification
of insulin in rat brain. Proc. Natl. Acad. Sci. U S A 75, 5737–5741. doi: 10.
1073/pnas.75.11.5737

Hennebelle, M., Plourde, M., Chouinard-Watkins, R., Castellano, C. A., Barberger-
Gateau, P., and Cunnane, S. C. (2014). Ageing and apoE change DHA
homeostasis: relevance to age-related cognitive decline. Proc. Nutr. Soc. 73,
80–86. doi: 10.1017/s0029665113003625

Ho, L., Qin, W., Pompl, P. N., Xiang, Z., Wang, J., Zhao, Z., et al. (2004). Diet-
induced insulin resistance promotes amyloidosis in a transgenic mouse model
of Alzheimer’s disease. FASEB J. 18, 902–904. doi: 10.1096/fj.03-0978fje

Holland, J. P., Liang, S. H., Rotstein, B. H., Collier, T. L., Stephenson,
N. A., Greguric, I., et al. (2014). Alternative approaches for PET radiotracer
development in Alzheimer’s disease: imaging beyond plaque. J. Labelled Comp.
Radiopharm. 57, 323–331. doi: 10.1002/jlcr.3158

Hong, H., Liu, L. P., Liao, J. M., Wang, T. S., Ye, F. Y., Wu, J., et al. (2009).
Downregulation of LRP1 [correction of LPR1] at the blood-brain barrier
in streptozotocin-induced diabetic mice. Neuropharmacology 56, 1054–1059.
doi: 10.1016/j.neuropharm.2009.03.001

Janson, J., Laedtke, T., Parisi, J. E., O’Brien, P., Petersen, R. C., and Butler, P. C.
(2004). Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53,
474–481. doi: 10.2337/diabetes.53.2.474

Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., et al.
(2012). A mutation in APP protects against Alzheimer’s disease and age-related
cognitive decline. Nature 488, 96–99. doi: 10.1038/nature11283

Julien, C., Tremblay, C., Phivilay, A., Berthiaume, L., Emond, V., Julien, P.,
et al. (2010). High-fat diet aggravates amyloid-beta and tau pathologies in

Frontiers in Aging Neuroscience | www.frontiersin.org 8 June 2015 | Volume 7 | Article 114

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Vandal et al. Insulin and brain Aβ clearance

the 3xTg-AD mouse model. Neurobiol. Aging 31, 1516–1531. doi: 10.1016/j.
neurobiolaging.2008.08.022

Kadir, A., Marutle, A., Gonzalez, D., Schöll, M., Almkvist, O., Mousavi, M., et al.
(2011). Positron emission tomography imaging and clinical progression in
relation to molecular pathology in the first Pittsburgh compound B positron
emission tomography patient with Alzheimer’s disease. Brain 134, 301–317.
doi: 10.1093/brain/awq349

Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., et al.
(2003). APP processing and synaptic function. Neuron 37, 925–937. doi: 10.
1016/s0896-6273(03)00124-7

Karczewska-Kupczewska, M., Lelental, N., Adamska, A., Nikolajuk, A., Kowalska,
I., Gorska, M., et al. (2013). The influence of insulin infusion on the metabolism
of amyloid beta peptides in plasma. Alzheimers Dement. 9, 400–405. doi: 10.
1016/j.jalz.2012.01.013

Karran, E., Mercken, M., and De Strooper, B. (2011). The amyloid cascade
hypothesis for Alzheimer’s disease: an appraisal for the development of
therapeutics. Nat. Rev. Drug Discov. 10, 698–712. doi: 10.1038/nrd3505

Kastin, A. J., and Akerstrom, V. (2001). Glucose and insulin increase the
transport of leptin through the blood-brain barrier in normal mice but not
in streptozotocin-diabetic mice. Neuroendocrinology 73, 237–242. doi: 10.
1159/000054640

Katakam, P. V., Domoki, F., Lenti, L., Gáspár, T., Institoris, A., Snipes, J. A., et al.
(2009). Cerebrovascular responses to insulin in rats. J. Cereb. Blood FlowMetab.
29, 1955–1967. doi: 10.1038/jcbfm.2009.177

Kennan, R. P., Takahashi, K., Pan, C., Shamoon, H., and Pan, J. W. (2005). Human
cerebral blood flow and metabolism in acute insulin-induced hypoglycemia. J.
Cereb. Blood Flow Metab. 25, 527–534. doi: 10.1038/sj.jcbfm.9600045

Kerr, D., Stanley, J. C., Barron, M., Thomas, R., Leatherdale, B. A., and Pickard,
J. (1993). Symmetry of cerebral blood flow and cognitive responses to
hypoglycaemia in humans. Diabetologia 36, 73–78. doi: 10.1007/bf00399097

Ketterer, C., Tschritter, O., Preissl, H., Heni, M., Häring, H. U., and Fritsche,
A. (2011). Insulin sensitivity of the human brain. Diabetes Res. Clin. Pract.
93(Suppl. 1), S47–S51. doi: 10.1016/S0168-8227(11)70013-4

Kim, J., Castellano, J. M., Jiang, H., Basak, J. M., Parsadanian, M., Pham,
V., et al. (2009). Overexpression of low-density lipoprotein receptor in the
brain markedly inhibits amyloid deposition and increases extracellular A beta
clearance. Neuron 64, 632–644. doi: 10.1016/j.neuron.2009.11.013

King, G. L., and Johnson, S. M. (1985). Receptor-mediated transport of insulin
across endothelial cells. Science 227, 1583–1586. doi: 10.1126/science.3883490

Kleinridders, A., Ferris, H. A., Cai, W., and Kahn, C. R. (2014). Insulin action
in brain regulates systemic metabolism and brain function. Diabetes 63,
2232–2243. doi: 10.2337/db14-0568

Knopman, D. S., Parisi, J. E., Salviati, A., Floriach-Robert, M., Boeve, B. F.,
Ivnik, R. J., et al. (2003). Neuropathology of cognitively normal elderly. J.
Neuropathol. Exp. Neurol. 62, 1087–1095.

Kondo, M., Shiono, M., Itoh, G., Takei, N., Matsushima, T., Maeda, M., et al.
(2010). Increased amyloidogenic processing of transgenic human APP in X11-
like deficient mouse brain. Mol. Neurodegener. 5:35. doi: 10.1186/1750-13
26-5-35

Kress, B. T., Iliff, J. J., Xia, M., Wang, M., Wei, H. S., Zeppenfeld, D., et al.
(2014). Impairment of paravascular clearance pathways in the aging brain.Ann.
Neurol. 76, 845–861. doi: 10.1002/ana.24271

Kuhnke, D., Jedlitschky, G., Grube, M., Krohn, M., Jucker, M., Mosyagin, I., et al.
(2007). MDR1-P-Glycoprotein (ABCB1) mediates transport of Alzheimer’s
amyloid-beta peptides–implications for the mechanisms of Abeta clearance at
the blood-brain barrier. Brain Pathol. 17, 347–353. doi: 10.1111/j.1750-3639.
2007.00075.x

Kulstad, J. J., Green, P. S., Cook, D. G., Watson, G. S., Reger, M. A., Baker, L. D.,
et al. (2006). Differential modulation of plasma beta-amyloid by insulin in
patients with Alzheimer disease. Neurology 66, 1506–1510. doi: 10.1212/01.wnl.
0000216274.58185.09

Laatsch, A., Merkel, M., Talmud, P. J., Grewal, T., Beisiegel, U., and Heeren,
J. (2009). Insulin stimulates hepatic low density lipoprotein receptor-related
protein 1 (LRP1) to increase postprandial lipoprotein clearance. Atherosclerosis
204, 105–111. doi: 10.1016/j.atherosclerosis.2008.07.046

Lane, R. F., Shineman, D. W., Steele, J. W., Lee, L. B., and Fillit, H. M. (2012).
Beyond amyloid: the future of therapeutics for Alzheimer’s disease. Adv.
Pharmacol. 64, 213–271. doi: 10.1016/B978-0-12-394816-8.00007-6

Li, H., Guo, Q., Inoue, T., Polito, V. A., Tabuchi, K., Hammer, R. E., et al. (2014).
Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-
in mouse model: interplay with cerebral blood flow. Mol. Neurodegener. 9:28.
doi: 10.1186/1750-1326-9-28

Liu, Y. H., Giunta, B., Zhou, H. D., Tan, J., and Wang, Y. J. (2012). Immunotherapy
for Alzheimer disease: the challenge of adverse effects. Nat. Rev. Neurol. 8,
465–469. doi: 10.1038/nrneurol.2012.118

Liu, L., and Liu, X. D. (2014). Alterations in function and expression of ABC
transporters at blood-brain barrier under diabetes and the clinical significances.
Front. Pharmacol. 5:273. doi: 10.3389/fphar.2014.00273

Maesako, M., Uemura, K., Iwata, A., Kubota, M., Watanabe, K., Uemura, M., et al.
(2013). Continuation of exercise is necessary to inhibit high fat diet-induced
beta-amyloid deposition and memory deficit in amyloid precursor protein
transgenic mice. PLoS One 8:e72796. doi: 10.1371/journal.pone.0072796

Margolis, R. U., and Altszuler, N. (1967). Insulin in the cerebrospinal fluid. Nature
215, 1375–1376. doi: 10.1038/2151375a0

Mehta, D. C., Short, J. L., and Nicolazzo, J. A. (2013). Altered brain uptake of
therapeutics in a triple transgenic mouse model of Alzheimer’s disease. Pharm.
Res. 30, 2868–2879. doi: 10.1007/s11095-013-1116-2

Michaud, J. P., Bellavance, M. A., Préfontaine, P., and Rivest, S. (2013). Real-time
in vivo imaging reveals the ability of monocytes to clear vascular amyloid beta.
Cell Rep. 5, 646–653. doi: 10.1016/j.celrep.2013.10.010

Miller, D. W., Keller, B. T., and Borchardt, R. T. (1994). Identification
and distribution of insulin receptors on cultured bovine brain microvessel
endothelial cells: possible function in insulin processing in the blood-brain
barrier. J. Cell. Physiol. 161, 333–341. doi: 10.1002/jcp.1041610218

Miller, M. C., Tavares, R., Johanson, C. E., Hovanesian, V., Donahue, J. E.,
Gonzalez, L., et al. (2008). Hippocampal RAGE immunoreactivity in early
and advanced Alzheimer’s disease. Brain Res. 1230, 273–280. doi: 10.1016/j.
brainres.2008.06.124

Mirra, S. S., Heyman, A., McKeel, D., Sumi, S. M., Crain, B. J., Brownlee,
L. M., et al. (1991). The Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD). Part II. Standardization of the neuropathologic assessment
of Alzheimer’s disease. Neurology 41, 479–486. doi: 10.1212/wnl.41.4.479

Montagne, A., Barnes, S. R., Sweeney, M. D., Halliday, M. R., Sagare, A. P.,
Zhao, Z., et al. (2015). Blood-brain barrier breakdown in the aging human
hippocampus. Neuron 85, 296–302. doi: 10.1016/j.neuron.2014.12.032

Mori, T., Koyama, N., Segawa, T., Maeda, M., Maruyama, N., Kinoshita, N., et al.
(2014). Methylene blue modulates beta-secretase, reverses cerebral amyloidosis
and improves cognition in transgenic mice. J. Biol. Chem. 289, 30303–30317.
doi: 10.1074/jbc.m114.568212

Mormino, E. C. (2014). The relevance of beta-amyloid on markers of Alzheimer’s
disease in clinically normal individuals and factors that influence these
associations. Neuropsychol. Rev. 24, 300–312. doi: 10.1007/s11065-014-9267-4

Morris, M. C. (2009). The role of nutrition in Alzheimer’s disease: epidemiological
evidence. Eur. J. Neurol. 16(Suppl. 1), 1–7. doi: 10.1111/j.1468-1331.2009.
02735.x

Morris, G. P., Clark, I. A., and Vissel, B. (2014). Inconsistencies and controversies
surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol.
Commun. 2:135. doi: 10.1186/s40478-014-0135-5

Morris, M. C., and Tangney, C. C. (2014). Dietary fat composition and dementia
risk. Neurobiol. Aging 35(Suppl. 2), S59–S64. doi: 10.1016/j.neurobiolaging.
2014.03.038

Mullane, K., and Williams, M. (2013). Alzheimer’s therapeutics: continued clinical
failures question the validity of the amyloid hypothesis-but what lies beyond?
Biochem. Pharmacol. 85, 289–305. doi: 10.1016/j.bcp.2012.11.014

Niswender, K. D. (2011). Basal insulin: physiology, pharmacology and clinical
implications. Postgrad. Med. 123, 17–26. doi: 10.3810/pgm.2011.07.2300

Novak, V., Last, D., Alsop, D. C., Abduljalil, A. M., Hu, K., Lepicovsky, L.,
et al. (2006). Cerebral blood flow velocity and periventricular white matter
hyperintensities in type 2 diabetes. Diabetes Care 29, 1529–1534. doi: 10.
2337/dc06-0261

Novak, V., Zhao, P., Manor, B., Sejdic, E., Alsop, D., Abduljalil, A., et al. (2011).
Adhesion molecules, altered vasoreactivity and brain atrophy in type 2 diabetes.
Diabetes Care 34, 2438–2441. doi: 10.2337/dc11-0969

Nugent, S., Castellano, C. A., Goffaux, P., Whittingstall, K., Lepage, M., Paquet,
N., et al. (2014). Glucose hypometabolism is highly localized, but lower cortical
thickness and brain atrophy are widespread in cognitively normal older adults.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 June 2015 | Volume 7 | Article 114

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Vandal et al. Insulin and brain Aβ clearance

Am. J. Physiol. Endocrinol. Metab. 306, E1315–E1321. doi: 10.1152/ajpendo.
00067.2014

Oldendorf, W. H. (1977). The blood-brain barrier. Exp. Eye Res. 25(Suppl.),
177–190. doi: 10.1016/S0014-4835(77)80016-X

Oudegeest-Sander, M. H., van Beek, A. H., Abbink, K., Olde Rikkert, M. G.,
Hopman, M. T., and Claassen, J. A. (2014). Assessment of dynamic cerebral
autoregulation and cerebrovascular CO2 reactivity in ageing by measurements
of cerebral blood flow and cortical oxygenation. Exp. Physiol. 99, 586–598.
doi: 10.1113/expphysiol.2013.076455

Ouwens, D. M., van Duinkerken, E., Schoonenboom, S. N., Herzfeld de Wiza, D.,
Klein, M., van Golen, L., et al. (2014). Cerebrospinal fluid levels of Alzheimer’s
disease biomarkers in middle-aged patients with type 1 diabetes. Diabetologia
57, 2208–2214. doi: 10.1007/s00125-014-3333-6

Palmqvist, S., Zetterberg, H., Blennow, K., Vestberg, S., Andreasson, U., Brooks,
D. J., et al. (2014). Accuracy of brain amyloid detection in clinical practice
using cerebrospinal fluid beta-amyloid 42: a cross-validation study against
amyloid positron emission tomography. JAMA Neurol. 71, 1282–1289. doi: 10.
1001/jamaneurol.2014.1358

Pandini, G., Pace, V., Copani, A., Squatrito, S., Milardi, D., and Vigneri, R.
(2013). Insulin has multiple antiamyloidogenic effects on human neuronal
cells. Endocrinology 154, 375–387. doi: 10.1210/en.2012-1661

Pardridge, W. M. (1986). Receptor-mediated peptide transport through the blood-
brain barrier. Endocr. Rev. 7, 314–330. doi: 10.1210/edrv-7-3-314

Pardridge, W. M. (2011). Drug transport in brain via the cerebrospinal fluid. Fluids
Barriers CNS 8:7. doi: 10.1186/2045-8118-8-7

Paul, J., Strickland, S., and Melchor, J. P. (2007). Fibrin deposition accelerates
neurovascular damage and neuroinflammation in mouse models of
Alzheimer’s disease. J. Exp. Med. 204, 1999–2008. doi: 10.1084/jem.200
70304

Perry, G., Nunomura, A., Raina, A. K., and Smith, M. A. (2000). Amyloid-beta
junkies. Lancet 355:757. doi: 10.1016/S0140-6736(05)72173-5

Plata-Salamán, C. R. (1991). Insulin in the cerebrospinal fluid. Neurosci. Biobehav.
Rev. 15, 243–258. doi: 10.1016/S0149-7634(05)80004-1

Pollock, R. F., Erny-Albrecht, K. M., Kalsekar, A., Bruhn, D., and Valentine,
W. J. (2011). Long-acting insulin analogs: a review of ‘‘real-world’’ effectiveness
in patients with type 2 diabetes. Curr. Diabetes Rev. 7, 61–74. doi: 10.
2174/157339911794273892

Potter, R., Patterson, B. W., Elbert, D. L., Ovod, V., Kasten, T., Sigurdson, W.,
et al. (2013). Increased in vivo amyloid-beta42 production, exchange and
loss in presenilin mutation carriers. Sci. Transl. Med. 5:189ra77. doi: 10.
1126/scitranslmed.3005615

Powers, W. J., Hirsch, I. B., and Cryer, P. E. (1996). Effect of stepped hypoglycemia
on regional cerebral blood flow response to physiological brain activation. Am.
J. Physiol. 270, H554–H559.

Preston, S. D., Steart, P. V., Wilkinson, A., Nicoll, J. A., and Weller, R. O. (2003).
Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease:
defining the perivascular route for the elimination of amyloid beta from the
human brain. Neuropathol. Appl. Neurobiol. 29, 106–117. doi: 10.1046/j.1365-
2990.2003.00424.x

Price, J. L., McKeel, D. W. J., Buckles, V. D., Roe, C. M., Xiong, C., Grundman, M.,
et al. (2009). Neuropathology of nondemented aging: presumptive evidence for
preclinical Alzheimer disease. Neurobiol. Aging 30, 1026–1036. doi: 10.1016/j.
neurobiolaging.2009.04.002

Pujadas, L., Rossi, D., Andres, R., Teixeira, C. M., Serra-Vidal, B., Parcerisas, A.,
et al. (2014). Reelin delays amyloid-beta fibril formation and rescues cognitive
deficits in a model of Alzheimer’s disease. Nat. Commun. 5:3443. doi: 10.
1038/ncomms4443

Ramos-Rodriguez, J. J., Ortiz-Barajas, O., Gamero-Carrasco, C., de la Rosa,
P. R., Infante-Garcia, C., Zopeque-Garcia, N., et al. (2014). Prediabetes-
induced vascular alterations exacerbate central pathology in APPswe/PS1dE9
mice. Psychoneuroendocrinology 48, 123–135. doi: 10.1016/j.psyneuen.2014.
06.005

Reger, M. A., Watson, G. S., Frey, W. H., Baker, L. D., Cholerton, B., Keeling, M. L.,
et al. (2006). Effects of intranasal insulin on cognition in memory-impaired
older adults: modulation by APOE genotype. Neurobiol. Aging 27, 451–458.
doi: 10.1016/j.neurobiolaging.2005.03.016

Reger, M. A., Watson, G. S., Green, P. S., Baker, L. D., Cholerton, B., Fishel, M. A.,
et al. (2008). Intranasal insulin administration dose-dependently modulates

verbal memory and plasma amyloid-beta in memory-impaired older adults. J.
Alzheimers Dis. 13, 323–331.

Reiman, E. M., Chen, K., Alexander, G. E., Caselli, R. J., Bandy, D., Osborne, D.,
et al. (2004). Functional brain abnormalities in young adults at genetic risk for
late-onset Alzheimer’s dementia. Proc. Natl. Acad. Sci. U S A 101, 284–289.
doi: 10.1073/pnas.2635903100

Rentz, D. M., Locascio, J. J., Becker, J. A., Moran, E. K., Eng, E., Buckner, R. L.,
et al. (2010). Cognition, reserve and amyloid deposition in normal aging. Ann.
Neurol. 67, 353–364. doi: 10.1002/ana.21904

Roberson, E. D., and Mucke, L. (2006). 100 years and counting: prospects for
defeating Alzheimer’s disease. Science 314, 781–784. doi: 10.1126/science.
1132813

Roberts, K. F., Elbert, D. L., Kasten, T. P., Patterson, B. W., Sigurdson, W. C.,
Connors, R. E., et al. (2014). Amyloid-β efflux from the central nervous system
into the plasma. Ann. Neurol. 76, 837–844. doi: 10.1002/ana.24270

Robinson, S. R., Bishop, G. M., Lee, H. G., and Münch, G. (2004). Lessons from
the AN 1792 Alzheimer vaccine: lest we forget. Neurobiol. Aging 25, 609–615.
doi: 10.1016/j.neurobiolaging.2003.12.020

Rogaev, E. I., Sherrington, R., Rogaeva, E. A., Levesque, G., Ikeda, M., Liang, Y.,
et al. (1995). Familial Alzheimer’s disease in kindreds with missense mutations
in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene.
Nature 376, 775–778. doi: 10.1038/376775a0

Rusinek, H., Ha, J., Yau, P. L., Storey, P., Tirsi, A., Tsui, W. H., et al. (2015).
Cerebral perfusion in insulin resistance and type 2 diabetes. J. Cereb. Blood Flow
Metab. 35, 95–102. doi: 10.1038/jcbfm.2014.173

Sagare, A. P., Bell, R. D., and Zlokovic, B. V. (2012). Neurovascular dysfunction
and faulty amyloid beta-peptide clearance in Alzheimer disease. Cold Spring
Harb. Perspect. Med. 2:a011452. doi: 10.1101/cshperspect.a011452

Saito, S., and Ihara, M. (2014). New therapeutic approaches for Alzheimer’s
disease and cerebral amyloid angiopathy. Front. Aging Neurosci. 6:290. doi: 10.
3389/fnagi.2014.00290

Salem, N. J., Vandal, M., and Calon, F. (2015). The benefit of docosahexaenoic acid
for the adult brain in aging and dementia. Prostaglandins Leukot. Essent. Fatty
Acids 92, 15–22. doi: 10.1016/j.plefa.2014.10.003

Savage, M. J., Trusko, S. P., Howland, D. S., Pinsker, L. R., Mistretta, S., Reaume,
A. G., et al. (1998). Turnover of amyloid beta-protein in mouse brain and acute
reduction of its level by phorbol ester. J. Neurosci. 18, 1743–1752.

Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., et al.
(1996). Secreted amyloid beta-protein similar to that in the senile plaques of
Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP
mutations linked to familial Alzheimer’s disease. Nat. Med. 2, 864–870. doi: 10.
1038/nm0896-864

Schilling, T. M., Ferreira de Sá, D. S., Westerhausen, R., Strelzyk, F., Larra, M. F.,
Hallschmid, M., et al. (2014). Intranasal insulin increases regional cerebral
blood flow in the insular cortex in men independently of cortisol manipulation.
Hum. Brain Mapp. 35, 1944–1956. doi: 10.1002/hbm.22304

Schley, D., Carare-Nnadi, R., Please, C. P., Perry, V. H., and Weller, R. O. (2006).
Mechanisms to explain the reverse perivascular transport of solutes out of the
brain. J. Theor. Biol. 238, 962–974. doi: 10.1016/j.jtbi.2005.07.005

Schmidt, A. M., Yan, S. D., Yan, S. F., and Stern, D. M. (2000). The biology of the
receptor for advanced glycation end products and its ligands. Biochim. Biophys.
Acta 1498, 99–111. doi: 10.1016/S0167-4889(00)00087-2

Selkoe, D. J. (2001). Clearing the brain’s amyloid cobwebs. Neuron 32, 177–180.
doi: 10.1016/s0896-6273(01)00475-5

Selkoe, D. J. (2011). Resolving controversies on the path to Alzheimer’s
therapeutics. Nat. Med. 17, 1060–1065. doi: 10.1038/nm.2460

Serrano-Pozo, A., Frosch, M. P., Masliah, E., and Hyman, B. T. (2011).
Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect.
Med. 1:a006189. doi: 10.1101/cshperspect.a006189

Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda,
M., et al. (1995). Cloning of a gene bearing missense mutations in early-
onset familial Alzheimer’s disease. Nature 375, 754–760. doi: 10.1038/375
754a0

Shiiki, T., Ohtsuki, S., Kurihara, A., Naganuma, H., Nishimura, K., Tachikawa, M.,
et al. (2004). Brain insulin impairs amyloid-β(1–40) clearance from the brain.
J. Neurosci. 24, 9632–9637. doi: 10.1523/jneurosci.2236-04.2004

Skoog, I., Wallin, A., Fredman, P., Hesse, C., Aevarsson, O., Karlsson, I., et al.
(1998). A population study on blood-brain barrier function in 85-year-olds:

Frontiers in Aging Neuroscience | www.frontiersin.org 10 June 2015 | Volume 7 | Article 114

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive


Vandal et al. Insulin and brain Aβ clearance

relation to Alzheimer’s disease and vascular dementia. Neurology 50, 966–971.
doi: 10.1212/wnl.50.4.966

Son, S. M., Song, H., Byun, J., Park, K. S., Jang, H. C., Park, Y. J., et al.
(2012). Altered APP processing in insulin-resistant conditions is mediated
by autophagosome accumulation via the inhibition of mammalian target of
rapamycin pathway. Diabetes 61, 3126–3138. doi: 10.2337/db11-1735

Steen, E., Terry, B. M., Rivera, E. J., Cannon, J. L., Neely, T. R., Tavares,
R., et al. (2005). Impaired insulin and insulin-like growth factor expression
and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J.
Alzheimers Dis. 7, 63–80.

Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet
Neurol. 11, 1006–1012. doi: 10.1016/S1474-4422(12)70191-6

St George-Hyslop, P. H. (2000). Genetic factors in the genesis of Alzheimer’s
disease. Ann. N Y Acad. Sci. 924, 1–7. doi: 10.1111/j.1749-6632.2000.tb0
5552.x

Strazielle, N., and Ghersi-Egea, J. F. (2013). Physiology of blood-brain interfaces
in relation to brain disposition of small compounds and macromolecules. Mol.
Pharm. 10, 1473–1491. doi: 10.1021/mp300518e

Stukas, S., Robert, J., and Wellington, C. L. (2014). High-density lipoproteins
and cerebrovascular integrity in Alzheimer’s disease. Cell Metab. 19, 574–591.
doi: 10.1016/j.cmet.2014.01.003

Sun, Y. N., Liu, L. B., Xue, Y. X., and Wang, P. (2015). Effects of insulin combined
with idebenone on blood-brain barrier permeability in diabetic rats. J. Neurosci.
Res. 93, 666–677. doi: 10.1002/jnr.23511

Tagliamonte, A., DeMontis, M. G., Olianas, M., Onali, P. L., and Gessa, G. L.
(1976). Possible role of insulin in the transport of tyrosine and tryptophan from
blood to brain. Adv. Exp. Med. Biol. 69, 89–94. doi: 10.1007/978-1-4684-32
64-0_7

Taheri, S., Gasparovic, C., Shah, N. J., and Rosenberg, G. A. (2011). Quantitative
measurement of blood-brain barrier permeability in human using dynamic
contrast-enhanced MRI with fast T1 mapping. Magn. Reson. Med. 65,
1036–1042. doi: 10.1002/mrm.22686

Tai, L. M., Loughlin, A. J., Male, D. K., and Romero, I. A. (2009). P-glycoprotein
and breast cancer resistance protein restrict apical-to-basolateral permeability
of human brain endothelium to amyloid-beta. J. Cereb. Blood Flow Metab. 29,
1079–1083. doi: 10.1038/jcbfm.2009.42

Talbot, K., Wang, H. Y., Kazi, H., Han, L. Y., Bakshi, K. P., Stucky, A., et al.
(2012). Demonstrated brain insulin resistance in Alzheimer’s disease patients
is associated with IGF-1 resistance, IRS-1 dysregulation and cognitive decline.
J. Clin. Invest. 122, 1316–1338. doi: 10.1172/JCI59903

Tallroth, G., Ryding, E., and Agardh, C. D. (1993). The influence of
hypoglycaemia on regional cerebral blood flow and cerebral volume in type
1 (insulin-dependent) diabetes mellitus. Diabetologia 36, 530–535. doi: 10.
1007/bf02743269

Tayeb, H. O., Yang, H. D., Price, B. H., and Tarazi, F. I. (2012). Pharmacotherapies
for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol. Ther.
134, 8–25. doi: 10.1016/j.pharmthera.2011.12.002

Tennant, K. A., and Brown, C. E. (2013). Diabetes augments in vivo microvascular
blood flow dynamics after stroke. J. Neurosci. 33, 19194–19204. doi: 10.
1523/JNEUROSCI.3513-13.2013

Tremblay, C., Pilote, M., Phivilay, A., Emond, V., Bennett, D. A., and Calon,
F. (2007). Biochemical characterization of Abeta and tau pathologies in mild
cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis. 12, 377–390.

Tremblay, C., St-Amour, I., Schneider, J., Bennett, D. A., and Calon, F. (2011).
Accumulation of transactive response DNA binding protein 43 in mild
cognitive impairment and Alzheimer disease. J. Neuropathol. Exp. Neurol. 70,
788–798. doi: 10.1097/NEN.0b013e31822c62cf

Unger, J., McNeill, T. H., Moxley, R. T., White, M., Moss, A., and Livingston,
J. N. (1989). Distribution of insulin receptor-like immunoreactivity in the rat
forebrain. Neuroscience 31, 143–157. doi: 10.1016/0306-4522(89)90036-5

Vandal, M., Alata, W., Tremblay, C., Rioux-Perreault, C., Salem, N. J., Calon, F.,
et al. (2014a). Reduction in DHA transport to the brain of mice expressing
human APOE4 compared to APOE2. J. Neurochem. 129, 516–526. doi: 10.
1111/jnc.12640

Vandal, M., White, P. J., Tremblay, C., St-Amour, I., Chevrier, G., Emond, V.,
et al. (2014b). Insulin reverses the high-fat diet-induced increase in brain Abeta
and improves memory in an animal model of Alzheimer disease. Diabetes 63,
4291–4301. doi: 10.2337/db14-0375

Wang, H., Golob, E. J., and Su, M. Y. (2006). Vascular volume and blood-
brain barrier permeability measured by dynamic contrast enhanced MRI in
hippocampus and cerebellum of patients with MCI and normal controls. J.
Magn. Reson. Imaging 24, 695–700. doi: 10.1002/jmri.20669

Wang, X., Yu, S., Gao, S. J., Hu, J. P., Wang, Y., and Liu, H. X. (2014). Insulin
inhibits Abeta production through modulation of APP processing in a cellular
model of Alzheimer’s disease. Neuro Endocrinol. Lett. 35, 224–229.

Watson, G. S., Peskind, E. R., Asthana, S., Purganan, K., Wait, C., Chapman,
D., et al. (2003). Insulin increases CSF Abeta42 levels in normal older adults.
Neurology 60, 1899–1903. doi: 10.1212/01.wnl.0000065916.25128.25

Weiss, N., Miller, F., Cazaubon, S., and Couraud, P. O. (2009). The blood-brain
barrier in brain homeostasis and neurological diseases. Biochim. Biophys. Acta
1788, 842–857. doi: 10.1016/j.bbamem.2008.10.022

Weller, R. O., Djuanda, E., Yow, H. Y., and Carare, R. O. (2009). Lymphatic
drainage of the brain and the pathophysiology of neurological disease. Acta
Neuropathol. 117, 1–14. doi: 10.1007/s00401-008-0457-0

Wildsmith, K. R., Holley, M., Savage, J. C., Skerrett, R., and Landreth, G. E.
(2013). Evidence for impaired amyloid beta clearance in Alzheimer’s disease.
Alzheimers Res. Ther. 5:33. doi: 10.1186/alzrt187

Witt, K. A., Huber, J. D., Egleton, R. D., and Davis, T. P. (2000). Insulin
enhancement of opioid peptide transport across the blood-brain barrier and
assessment of analgesic effect. J. Pharmacol. Exp. Ther. 295, 972–978.

Xie, L., Kang, H., Xu, Q., Chen, M. J., Liao, Y., Thiyagarajan, M., et al. (2013). Sleep
drives metabolite clearance from the adult brain. Science 342, 373–377. doi: 10.
1126/science.1241224

Yu, Y., Kastin, A. J., and Pan, W. (2006). Reciprocal interactions of insulin and
insulin-like growth factor I in receptor-mediated transport across the blood-
brain barrier. Endocrinology 147, 2611–2615. doi: 10.1210/en.2006-0020

Zemva, J., and Schubert, M. (2014). The role of neuronal insulin/insulin-like
growth factor-1 signaling for the pathogenesis of Alzheimer’s disease: possible
therapeutic implications. CNS Neurol. Disord. Drug Targets 13, 322–337.
doi: 10.2174/18715273113126660141

Zhang, Y., and Lee, D. H. (2011). Sink hypothesis and therapeutic strategies
for attenuating Abeta levels. Neuroscientist 17, 163–173. doi: 10.
1177/1073858410381532

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Vandal, Bourassa and Calon. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution and reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Aging Neuroscience | www.frontiersin.org 11 June 2015 | Volume 7 | Article 114

http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive

	Can insulin signaling pathways be targeted to transport A out of the brain?
	Introduction: Is There a Relationship Between Brain A and the Symptoms of AD?
	A Clearance: the Role of the BBB
	Evidence of BBB Dysfunction in Aging and in AD
	Insulin Signaling Pathway in the BBB
	Can Insulin Trigger A Efflux Though the BBB?
	How can Insulin Modulate A Clearance from the Brain?
	Alternative Therapeutic Strategies

	Conclusion
	References


