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Abstract

Next-generation sequencing has prompted a surge of discovery of millions of genetic variants from

vertebrate genomes. Besides applications in genetic association and linkage studies, a fraction of

these variants will have functional consequences. This study describes detection and characteriza-

tion of 15million SNPs from chicken genomewith the goal to predict variants with potential function-

al implications (pfVars) from both coding and non-coding regions. The study reports: 183K amino

acid-altering SNPs of which 48% predicted as evolutionary intolerant, 13K splicing variants, 51K like-

ly to alter RNA secondary structures, 500K within most conserved elements and 3K from non-coding

RNAs. Regions of local fixation within commercial broiler and layer lines were investigated as poten-

tial selective sweeps using genome-wide SNP data. Relationships with phenotypes, if any, of the

pfVars were explored by overlaying the sweep regions with known QTLs. Based on this, the candi-

date genes and/or causal mutations for a number of important traits are discussed. Although the

fixed variants within sweep regions were enriched with non-coding SNPs, some non-synonym-

ous-intolerant mutations reached fixation, suggesting their possible adaptive advantage. The results

presented in this study are expected to have important implications for future genomic research to

identify candidate causal mutations and in poultry breeding.
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1. Introduction

With the advent of next-generation sequencing (NGS), we have seen a
surge of discovery of millions of genetic variants, particularly single-
nucleotide polymorphisms (SNPs), from different species. Character-
ization of these variants with the goal to delineate those with potential
functional implications (pfVars) is often challenging, especially in the
absence of comprehensive annotation of genomes for functional ele-
ments. Today for some model species, e.g. chicken, the genomes are
well annotated for protein-coding regions. As a consequence, our abil-
ity to characterize coding variants is much more mature. Additionally,

many methods are available to predict the effects of amino acid
(AA)-altering variants on protein functions by using evolutionary
and biochemical information.1–4 These resources have allowed exten-
sive study of the effects of protein-coding variants on disease and other
traits.5 The protein-coding regions, however, occupy only a small por-
tion of the genome (∼1.5%) while the rest is non-coding.6 In spite of
this, biological research on non-coding mutations has been limited
partly due to the difficulty in interpreting their effects and partly due
to the poor annotation of most genomes for functional non-coding
elements (fNCEs). The situation, however, is improving rapidly.

DNA Research, 2015, 22(3), 205–217
doi: 10.1093/dnares/dsv005

Advance Access Publication Date: 29 April 2015
Full Paper

© The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the
original work is properly cited. 205

http://www.oxfordjournals.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


For instance, a great deal of insight on fNCEs has been generated by
the human ENCODE project.7 The importance of non-coding var-
iants is further highlighted from the evidence gathered from
meta-analysis of genome-wide association studies, which found that
88% of the trait-associated mutations are non-coding.8 Complex
traits, in particular, are overwhelmingly associated with non-coding
mutations, suggesting that these mutations have primarily regulatory
roles.9 Some predictive models have been developed to assess the ef-
fects of SNPs on secondary structures of RNAs, as structural charac-
teristics are often crucial for the functioning of various non-coding
RNAs (ncRNA) and cis-regulatory elements in mRNAs.10–13

Due to scarcity of information on functional elements, particularly
the fNCEs, researchers have often adopted evolutionary analyses as a
means to locating these elements in genomes, in which, regions con-
served across species are assumed to be under purifying selection
and functionally important.14,15 Mutations within such regions are
therefore considered deleterious.4 Although these approaches are
able to identify regions under purifying selection, they are not suitable
for detecting regions evolving rapidly16 that are subject to recent posi-
tive selections. A number of approaches based on allele frequency
spectra and linkage disequilibrium (LD) structure have been proposed
for detecting signatures of positive selection by looking for regions ex-
hibiting local fixation, unusually long LD and/or population differen-
tiation that appear in a non-neutral manner compared with the rest of
the genome.17,18

The aim of the present study was to characterize millions of SNPs
detected from the chicken genome in a large NGS project with the goal
to identify pfVars. A number of complementary approaches were used
to delineate pfVars from both coding and non-coding regions: (i) an-
notation of the variants against known genes, (ii) predicting effects of
the AA-altering variants on protein function, (iii) predicting effects
of variants on the secondary structures of mRNAs and ncRNAs,
(iv) finding variants that coincided with most conserved elements and
(v) detecting regions of local fixation as putative signatures of recent
positive selection and considering the fixed pfVars within these as
sources of candidate causal mutations of various phenotypes. Since
chicken is a major farm animal and an important model organism
for genetic and genomic studies, detection and characterization of gen-
etic variants, especially the pfVars, have major incentives for and im-
plications in both research and breeding.

2. Materials and methods

2.1. Resequencing of chicken samples

Details about the sequenced samples, method of sequencing and align-
ment of sequence reads to reference genome can be found in a previous
study by Kranis et al.19 In brief, 243 chickens were sequenced and
these originated from 24 lines: four commercial broilers (B1–B4), six
commercial white egg layers (WEL 1–6), five commercial brown egg
layers (BEL 1–5), eight experimental inbred layers (I1–8) and one un-
selected layer line (RI-J). For 23 lines, DNAs from 10–15 individuals
were pooled for creating the libraries, whereas for a single line (WEL6)
three individuals were sequenced separately. Sequencing was per-
formed on Illumina GAIIx platform using a paired-end protocol and
the sequencing reads were mapped to the reference genome using the
Burrows–Wheeler Aligner (BWA)20 v0.5.7 using default setting.

2.2. Variant calling

Variant calling was performed using the ‘mpilup’ function of Sam-
tools21 (v0.1.18) package. The minimum thresholds for base and

map qualities were set to Phred-based scores of 20. Following the ini-
tial calling of SNPs, filtrations were performed using the criteria:
(i) SNP quality (SNPQ) ≥40, (ii) coverage at SNP position ≥5 and
≤ mean line coverage ± 3SD (Standard deviation), (iii) evidence of al-
ternative (ALT) allele supported by at least two reads: one on forward
strand and one on reverse, and (iv) distance between adjacent markers
is >1 base. Regions with too high density of SNPs (>10 SNPs/50 bases)
were excluded. The coordinates of the SNPs reported in this paper are
on the latest chicken reference genome build,Gallus_gallus_4. Further
details on variant calling are provided in Supplementary Information.
All the filtered SNPs have been submitted to the dbSNP with the Han-
dle ID ‘DWBURT’.

2.3. Estimation of false discovery rates

False discovery rates (FDRs) of variant calls for the present study were
estimated by calling SNPs from Sanger sequencing of 25 random gen-
omic regions and comparing those with SNPs detected from the NGS
data from the same regions (further details in Supplementary Informa-
tion). For each region, only the part that had good-quality Sanger se-
quence in each individual was used for FDR estimation, and as a
result, the lengths of the sequences spanned between 150 and 500 bp.

Based on the comparison of variants from Sanger and NGS data, a
SNP was called true positive (TP) when it was detected by both the
method, a false positive (FP) when it was detected only by NGS and
a false negative (FN) when it was detected only by Sanger. Any se-
quenced bases that were not called as SNPs by either of the two meth-
ods were considered to be true negatives (TNs). Based on these,
sensitivity or true positive rate (TPR) was defined as the proportion
of actual SNPs that were detected by NGS and was calculated as:
TP/(TP + FN). Specificity was defined as the proportion of actual non-
SNPs not detected as SNPs by NGS and calculated as: TN/(TN + FP).
FP and FN rates were calculated as (1−specificity) and (1−sensitivity),
respectively. The proportion of FP SNPs in the NGS data at different
filtration criteria was calculated as: FP/(total NGS SNPs retained by
the criteria).

2.4. Functional annotation and characterization of SNPs

The 15 million SNPs were annotated against the chicken gene data-
base from ENSEMBL (release 71) and most conserved element
(MCE) database from UCSC using the software package ANNOVAR
(version July 06, 2012).22 The MCEs on chicken genome were pre-
dicted by PhastCons package by aligning the genomes of six distant
species, namely, human, mouse, rat, oppssum,X. tropicalis and zebra-
fish to chicken genome.23 To annotate against the MCEs, the co-
ordinates of the SNPs were first converted toGallus_gallus_3 genome
build as the MCEs are mapped onto this build.

The effects of non-synonymous SNPs on protein function were
predicted based on evolutionary conservation using the SIFT ( jcvi-sift
1.03)1,2 and PROVEAN (v1.1.3)3 packages. SIFT prediction depends
on the degree of conservation at individual AA positions, assuming
that functionally important positions have been conserved over evolu-
tionary timescale. Using multiple alignment of homologous but dis-
tantly related peptide sequences, SIFT calculates normalized
probabilities (SIFT score) of observing all possible AA residues at a
position. If the SIFT score of an altered AA is below certain threshold,
the variant is considered evolutionary intolerant (INTOL) while above
the threshold the variants are considered tolerant (TOL). In contrast,
PROVEAN computes an unbiased averaged delta alignment score
frommultiple alignments of homologous but distantly related peptides
as a metric to predict the effects of coding mutations. Below certain
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threshold of delta score, the variant is declared INTOL. For the pre-
sent study, SIFT was run using locally generated peptide alignments
consisting of sequences from the UniRef90 non-redundant peptide
database and predicted sequences from additional 47 bird genomes re-
cently generated by BGI. Sequences were filtered to remove those pep-
tides with over 90% sequence identity to a representative sample using
the CD-HIT package and then aligned using Muscle (v.3.8.31). De-
fault scores (<0.05 for SIFT score and >3.25 for conservation score)
were used to classify the SNPs as either evolutionary intolerant
(INTOL) or tolerant (TOL). PROVEAN was run with the default
parameters on the NCBI non-redundant protein database. CD-HIT
package was used to remove redundancy and Muscle package was
used to generate the alignment. Default threshold (−2.28) of the delta
score—defined as the change in alignment score due to introduction of a
mutation—was used to differentiate INTOL variants from TOLs.

The effects of SNPs on the secondary structures of mRNAs and
ncRNAs were predicted using RNAsnp12,24 package. Predictions
were performed using two Modes (1 and 2) using default parameters
as detailed in the package. The Mode 1 calculates the base-pair prob-
abilities of the wild-type and mutant RNA sequences using a ‘global
folding’ algorithm and computes the structural difference between
wild and mutant types using Euclidian distance or Pearson’s correl-
ation co-efficient for all sequence intervals or local regions. As out-
puts, the interval with maximum base pairing distance (d_max) or
minimum correlation co-efficient (r_min) is reported along with the
corresponding P-values. The Mode 2, on the other hand, uses a
‘local folding’ algorithm to calculate base pairing probabilities and
is designed to predict the effects of SNPs on large RNA sequences.
In a two-step process, this mode first calculates the structural difference
using Euclidian distance for all sequence intervals of fixed window
length. In the second step, the interval withmaximumbase pair distance
and the corresponding P-value is reported. The P-values were corrected
for multiple testing using Benjamini–Hotchberg (B–H) method.25

Ingenuity Pathway Analyses (IPAs) were performed for the genes
harbouring potentially deleterious sets of SNPs to gain insight into
the biological pathways that are affected. For these analyses, the
genes with target group of SNPs were set as up-regulated molecules
against the rest of the chicken genes. B–H multiple testing correction
was performed and pathways were considered to be enriched with tar-
get molecules only when they remained significant (at P≤ 0.05) after
the correction.

Allele frequency of each SNP was estimated based on the propor-
tion of good-quality reads supporting the alternative or non-reference
allele. Mean frequencies of individual variants were calculated based
on the frequency estimates from the populations where the SNP was
detected.

2.5. Selection signature analysis

Analyses to detect signatures of selection were performed by calculat-
ing pooled heterozygosity (Hp) from autosomal SNPs following the
method described by Rubin et al.26 Hp values were calculated for slid-
ing windows of 40 kb size with step size of 20 kb using the following
formula.

Hp ¼ 2
P

nMAJ
P

nMIN

ðP nMAJþP
nMINÞ2

Here ∑nMAJ and ∑nMIN are the sum of major and minor allele
counts within a window, respectively. Only windows with >10 SNPs
were analysed. BEDTools v2.17.0 was used for creating and intersect-
ing the windows with SNP data, and Hp calculation was performed

using custom scripts. The Hp calculation was performed within
each commercial broiler (B1–B4), BEL (BEL1–BEL5) and WEL
(WEL1–WEL5) lines where pooled samples were sequenced. Sig-
nificance cut-offs for the Hp values were decided empirically based
on chromosome-wise permutation analysis following the methods
described by Churchill and Doerge27 and Qanbari et al.28 for individ-
ual lines. For the permutation tests, the allele count data were shuffled
for 10,000 times within chromosomes, but the SNP positions were
kept fixed.

3. Results and discussions

3.1. Detection of SNPs and FDRs

Initial calling of variants using the criteria of base quality ≥20 and
map quality ≥20 detected ∼48 million putative SNPs, which were ei-
ther segregating or fixed for a non-reference or alternative allele within
a line. Upon filtration based on several criteria viz. minimum SNPQ,
acceptable coverage, number of reads supporting the alternative allele,
inter-marker gap and removal of regions with too high density of
variants—over 15 million (n = 15,310,407) high-quality SNPs were
retained. These formed the basis of subsequent analyses described in
this paper. About 48% of the 15 million SNPs are common with
known variants in dbSNP (build140) which currently contains ∼8.9
million SNPs for chicken.

The filtered variants were distributed in the genome with an aver-
age density of 15 SNPs (± 9.54) per kb or 1 SNP per every 68 bases,
although the number of variants in each 1 kb window varied widely
ranging from 0 to 112. The number of SNPs detected from each line
varied between 3.6 and 5 million. The proportions of segregating var-
iants within lines varied widely ranging from 8 to 77%. For inbred
lines, this proportion was particularly low with an average of 21%
while the corresponding averages for the commercial lines were
∼74% for broilers, 53% for WELs and 48% for BELs. The smaller
proportion of segregating SNPs in the inbred lines was expected
as these lines have been developed through many generations of
close-mating.

Even though stringent filtration criteria are often applied tominim-
ize the FPs from NGS data, uncertainties in variant calling may still
persist due to alignment errors, inaccurate base calling and insufficient
coverage. FDRs for the present study were, therefore, estimated by
comparing SNP calls from Sanger Sequence of 25 random regions
with that from NGS for the same regions. In total, 97 SNPs were
detected from Sanger sequencing of the 11,801 bases while the num-
ber of NGS variants from these regions varied depending on the strin-
gency of filtration criteria used (Supplementary Table S1). Before
filtration, therewere 200NGS SNPs including all the 97 SNPs detected
by Sanger. The Fig. 1a and b compare the FDRs of two filtrationmeth-
ods: (i) using only the SNPQ as filtration criterion and (ii) using SNPQ
in combination with the criterion of support of alternative allele by at
least two reads—one on the forward strand and one on the reverse
strand. Figure 1a shows the trade-off between the FPRs and TPRs
for the NGS data using Sanger sequencing as the gold standard. It em-
phasizes several points. First, the TPRs were very high for NGS al-
though not perfect when high-quality scores were imposed. Second,
the FPRs were small in relation to the number of sequenced bases
and reduced as higher quality scores were imposed. Third, filtration
usingMethod2was more effective thanMethod1 in reducing the FPR.

Figure 1b compares the error rates for the NGS SNPs between the
two filtrationmethodsmentioned above. It shows that when the criter-
ion of support of alternative allele by at least one forward- and one
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reverse-stranded reads alone was applied without any filtration on
SNPQ (i.e. when SNPQ = 0), the error rate dropped drastically from
51 to 26%. At SNPQ≥ 40, imposing this criterion reduced the error
rate from 13 to 3% but at the same time increased the FNR (Supple-
mentary Table S1). This error rate of 3% in detecting SNPs fromNGS
data is comparable to the rates reported in other studies such as 4.5%
reported for chicken26 and 2.6% for turkey.29

Prediction of FNR, however, is more difficult as it may be affected
by a range of factors such as missing regions in the genome assembly
where variant calling was not possible, extent of repeat regions in the
genome, presence of regions that are difficult to sequence due to their
biochemical properties and attempt to reduce FPs resulting from align-
ment artefact due to presence of indels or duplicated regions. As a con-
sequence, even though the above analysis estimated FNR to be only
2% with Method 2 (Supplementary Table S1), the actual rate is ex-
pected to be much higher. Since the goal of the present study was to
characterize a set of high-quality SNPs by minimizing the FPs, the ap-
plication of stringent criteria was justified even with some compromise
on the FNR.

3.2. Coding and non-coding variants

Only 2.2% of the 15 million SNPs was predicted to be within protein-
coding regions and 1.2% as AA-altering (non-synonymous and stop-
gain/loss) when annotated against the ENSEMBL gene database for
chicken. The rest of the SNPs were classified as non-coding (Table 1).

Apart from the AA-altering variants, the other potentially functional
categories included: variants with the potential to disrupt splicing
events (0.09%); variants in 3′and 5′ UTRs with the potential to regu-
late protein translation (1.3%); those within 1 kb up- or downstream
of transcription start or end sites with possible roles on transcriptional
regulation (2.8%); and finally, the SNPs belonging to ncRNAs
(0.02%). In addition to the ENSEMBL gene database, all the SNPs
were checked against 1,608 ncRNA transcripts, which have recently
been characterized.30 A total of 2,062 (0.01%) variants fell within
these transcripts: 131 in CD-snoRNAs, 155 in HACA-snoRNAs,
1,073 in microRNAs, 241 in regulatory regions, 82 in tRNAs, and
the remaining 380 were in unclassified transcripts. Some of these
ncRNA variants (n = 284) were previously annotated to be within
protein-coding genes (exonic, UTR and intronic categories) when
the ENSEMBL database was used. Major proportions of these SNPs
with dual annotation were enriched for three ncRNA categories: regu-
latory region (34% of the 284), microRNA (27%) and tRNA (14%)
types. Such overlaps could be due to potential difficulty in distinguish-
ing ncRNA from mRNA or might truly reflect regions having dual
functions as both non-coding and coding.31

The AA-altering SNPs (n = 183,320) were detected from 13,286
genes representing 74% of the known genes in chicken. Their density
in terms of length of coding sequence varied widely across the genes
ranging from 1 SNP per 19 bases to 1 per 731 kb (mean 1 SNP per
5.5 kb). A high degree of correlation (r = 0.75, P < 0.001), however,
was observed between the densities of AA-altering and synonymous

Figure 1. Comparison of two methods of filtration on false discovery rates (FDRs) of SNP call. Method 1 represents filtration based on SNP quality scores (SNPQ)

alone andMethod 2 represents filtration based on SNPQ and evidence of non-reference or alternative allele by at least one forward- and one reverse-stranded reads.

(a) ROC (receiver operating characteristic) curve plotting the true positive rate (TPR) against false positive rate (FPR). TPR is the sensitivity and is defined as the

proportion of actual SNPs detected by Next Generation Sequencing (NGS). FPR is (1−specificity) and is defined as the fraction of non-SNP bases wrongly called

as SNP by NGS. (b) Error rates or proportion of false positives (FPs) within NGS SNP set at different SNPQ. Both the figures indicate Method 2 as a better filtration

approach in terms of FDR.
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mutations. This correlation combined with the large variation in the
densities of coding SNPs indicate that some genes are more prone to
accumulate variants either due to differential mutation rates or uneven
selection pressure.32 IPA demonstrated that the genes with high dens-
ity of AA-altering variants (>10 SNPs/kb coding sequence) were sig-
nificantly enriched in nine biological pathways (P ≤ 0.05 after
correction for multiple testing). These pathways were associated
with a DNA replication, recombination and repair, cell-to-cell signal-
ling and interaction, metabolism of lipids, carbohydrates and amino
acids, and cancer (Supplementary Table S2). It is difficult to explain
why certain genes within important pathways harbour high density
of AA-altering variants. One explanation is that not all of these var-
iants were predicted to have radical effect on the function of the
genes, and when harmful, they were generally present at low frequen-
cies; these aspects have been further explored in the next two sections.
Closer inspection of these genes further reveals that majority of these
(∼70%) have one or more paralogs in the genome, indicating that the
loss of function of the genes due to deleterious variants may partly be
rescued by their paralogous genes. There were, however, 20 genes that
showed extreme SNP density (≥50 SNPs/kb coding sequence). While
these genes may represent regions with rapid mutation rates, it is pos-
sible that the high variant density in these genes is actually a result of
error in the reference genome assembly and/or error in mapping of se-
quence reads due to high level of duplications. Eleven of these 20 genes
had no paralog in the genome and may represent assembly errors. The
other 9 genes had one or more paralogs, as many as 58, and the high
SNP density may be a result of mapping errors.

3.3. Negative impact of non-synonymous substitutions

on protein function

Even though non-synonymous SNPs change amino acid sequence
within a protein, the effects are not always harmful or radical on
protein function. Using SIFT, 23% of the non-synonymous variants
(n = 41,980) were predicted as ‘intolerant’ (INTOL) having radical ef-
fect and 51% were predicted ‘tolerant’ (TOL) (Supplementary
Fig. S1a). The remaining 26% did not have any predictions either
due to lack of sufficient aligned sequences or poor confidence in pre-
dictions. Contrary to this, PROVEAN provided predictions for >98%

of the SNPs and much higher proportion of the variants (45%;
n = 82,564) were predicted as INTOL (Supplementary Fig. S1b).
This can be attributed to two factors. First, PROVEAN takes into ac-
count the sequence context of a variant rather than only individual
amino acid position.3 Second, in the absence of homologous peptides,
PROVEAN can still perform analysis by comparing the alignment of
the query sequence to itself before and after the introduction of the
mutation, which is not possible with SIFT. Together 49% of the non-
synonymous SNPs (n = 88,655) were predicted INTOL by at least one
of the algorithms while only 20% (n = 35,889) were predicted as
INTOL by both.

IPA analysis of genes harbouring INTOL non-synonymous
SNPs from broiler, WEL and BEL groups suggested many pathways
(n = 162–211 after multiple testing correction), especially signalling
pathways (87–92%), to be significantly enriched for these variants
(See the Supplementary Table S3 for the top five pathways from
each group). Most of the INTOL variants were found to have low fre-
quency andwere detected from few lines only (Supplementary Fig. S2),
thereby limiting their harmful effect (see next section for further infor-
mation on allele frequency). This can explain how important path-
ways could harbour INTOL variants. IPA analysis on inbred lines
found only two pathways as significant of which the ‘Role of
BRCA1 in DNA Damage Response’ was found highly significant
(P < 0.001; with 20 of the 71 genes passing the cut-off criteria). This
pathway consists of genes encoding for tumour suppressors and DNA
damage repair proteins. Since, the inbred lines have been bred for ex-
perimental purposes for susceptibility/resistance to different viral
pathogens, such as Marek’s Disease Virus (MDV), Avian Leucosis
Virus (ALV) and Lymphoid Leucosis Virus (LLV), it is likely that
these genes within these pathways are candidates for explaining the
susceptibility/resistance towards these pathogens.

3.4. Effects of SNPs on RNA secondary structure

The functions of many ncRNAs and cis-regulatory elements in
mRNAs often rely on their distinctive secondary structures.12 Previous
studies have shown that mutations within untranslated regions (UTR)
of mRNA transcripts can alter the structures of cis-acting regulatory
elements that reside within these regions and thereby affect

Table 1. SNPs belonging to different annotation categories

Annotation categories Number (%)a Mean AAF
(± S.D.)b

No. detected from
>10 lines with mean

AAF > 0.9c

No. detected from all
24 lines with mean

AAF > 0.9c

No. of private
SNPs with AAF > 0.9c

Intergenic 7,688,980 (50.22) 0.63 (0.24) 584,504 (7.60%) 223,114 (2.90%) 172,139 (2.24%)
Up/downstream 433,726 (2.83) 0.60 (0.25) 31,710 (7.30%) 10,348 (2.38%) 8,377 (1.93%)
Intronic 6,637,278 (43.35) 0.63 (0.24) 503,093 (7.57%) 190,587 (2.87%) 134,161 (2.02%)
Exonic 335,331 (2.19) 0.46 (0.26) 15,686 (4.48%) 5,846 (1.67%) 3,293 (0.94%)
Non-synonymous INTOL 88,655 (0.58) 0.28 (0.16) 416 (0.47%) 129 (0.15%) 288 (0.32%)
Non-synonymous TOL
(or no prediction)

93,596 (0.61) 0.42 (0.25) 4,114 (4.38%) 159 (1.70%) 850 (0.90%)

Stop-gain/loss 1,071 (0.01) 0.38 (0.24) 21 (1.96%) 7 (0.65%) 11 (1.03%)
Synonymous 151,999 (0.99) 0.58 (0.25) 11,135 (7.31%) 4,116 (2.70%) 2,144 (1.41%)

Splicing 13,147 (0.09) 0.35 (0.22) 319 (2.42%) 115 (0.87%) 73 (0.55%)
UTR3′/UTR5′ 204,693 (1.34) 0.58 (0.25) 14,299 (6.98%) 4,974 (2.43%) 3,504 (1.71%)
ncRNA 3,122 (0.02) 0.54 (0.28) 136 (4.36%) 47 (1.51%) 88 (2.82%)
Within MCE 537,966 (3.51) 0.55 (0.26) 35,856 (6.66%) 13,997 (2.60%) 7,721 (1.43%)

aThe percentages are in relation to 15 million SNPs.
bAAF refers to Alternative allele frequency.
cThe percentages are in relation to the number of SNPs within the annotation category.
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the translational and transcriptional efficiency and stability of
mRNAs.33,34 Even apparently silent synonymous mutations have
been shown to affect mRNA folding and stability, altering protein
translation.35 Therefore, in the present study, the putative effects of
all UTR, synonymous, non-synonymous and ncRNA variants on the
secondary structures of RNAs were investigated using the RNAsnp
package.

About 9% (n = 19,296) of the UTR, 11% (n = 19,603) of the non-
synonymous, 8% (n = 12,001) of synonymous and 7% (n = 218) of
the ncRNAvariants were predicted to affect RNA secondary structure
by at least one of the parameters andmodels used (P≤ 0.05 before cor-
recting for multiple testing) (Supplementary Table S4). Although after
correcting for multiple testing, only 15 variants (4 UTR3′, 7 ncRNA
and 4 non-synonymous) remained significant (P ≤ 0.05), the other
variants, however, can still be considered suggestive and be used for
shortlisting candidate functional variants. These variants including
the suggestive ones were located within 12,296 protein-coding genes
and 176 ncRNA transcripts.

3.5. SNPs within evolutionary conserved elements

Genomic regions conserved across distantly related species are as-
sumed to be under purifying selection, and hence variants within
these regions are likely to be harmful. The 15 million SNPs were an-
notated against the 950,084 known ‘most conserved elements’
(MCEs; UCSC23), covering 6.5% of the genome and with their sizes
varying from 1 base to 4.3 kb (median 43 bases).

About 3.5% (n = 537,966) of the 15 million variants fell within
only 2.5% of the MCEs, while the rest of the conserved elements
were devoid of any SNPs. The density of variants within MCEs was
8 SNPs/kb, which was much lower compared with the genome-wide
density of 15 SNPs/kb, supporting their conserved nature. Major pro-
portions of the MCE variants belonged to intronic (38%), exonic
(33%) and intergenic (23%) categories while the remaining 5% fell
within other categories such as UTR (2.2%), up/downstream (1.8%)
and splicing (0.9%) and ncRNA (0.1%). Among the MCE-exonic
variants, 51% (n = 91,789) were AA altering and majority of these
(n = 60,016) were predicted as INTOL as was expected due to the evo-
lutionary conserved nature of these regions.

3.6. Allele frequency distributions of SNPs in different

annotation categories

Frequency distributions of non-reference or alternative alleles (AAF)
of pfVar categories were compared with those of potential neutral var-
iants to investigate differences in their patterns (Figs 2 and 3, Table 1).
This revealed a number of aspects. First, except in the Inbred group, in
commercial chickens the non-synonymous, stop-gain/loss and splicing
variants were heavily skewed to the left, i.e. fell within lower frequency
bins compared with other SNP categories. About 50–61% of the
AA-altering and splicing variants had AAF≤ 0.3, whereas synonym-
ous, intronic and intergenic variants, which are largely assumed to be
neutral, showed more or less even distributions across the frequency
bins (Figs 2 and 3). The overall mean frequency for AA-altering and

Figures 2. (a–d) Frequency distributions of alternative alleles of SNPs from protein-coding regions. X-axis represents the allele frequency (ranges from 0 to 1) and

Y-axis represents percentage of SNPswithin a category. For the broiler, brown egg layer (BEL) and white egg layer (WEL) groups, the Y-axis is scaled from 0 to 25 (in

percentage), and for Inbred group, the Y-axis is scaled from 0 to 50 (in percentage).
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splicing variants was 0.35 (SD: 0.22) compared with 0.58 (SD: 0.25)
for synonymous or 0.63 (SD: 0.24) for intergenic and intronic variants
(t-test, P < 0.001). Apart from the AA-altering and splicing variants,
ncRNA SNPs also showed a left skew in all commercial groups with
∼33–37% belonging to frequency bins ≤0.3.

Second, although both non-synonymous INTOL and TOL var-
iants showed left-skewed distribution, much greater proportion of
INTOL SNPs (69–73%) fell within lower frequency bins (≤0.3) com-
pared with TOLs (43–47%) in the commercial groups. This pattern
provides confirmation to the assumption that INTOLs are more dele-
terious than the TOLs, but this does not equate the TOL variants with
the neutral ones. Rather the left-skewed distributions of both TOL and
INTOL variants indicate that non-synonymous SNPs in general are se-
lected against.

Third, comparison of frequency distribution of SNPs within MCE
and non-MCE revealed that only those MCE-SNPs belonging to
AA-altering, splicing or ncRNA categories had a marked difference
in the allele frequency distribution compared with non-MCE cate-
gories with the former group clustering around lower frequency
bins (AAF≤ 0.30) (Supplementary Fig. S3a–d). MCE-SNPs belonging
to other annotation categories such as intergenic, intronic, etc.
all showed the same pattern of frequency distributions as of neutral
categories.

Fourth, within the inbred group, all types of variants, irrespective
of their categories, showed very high level of fixation. However, the

number of AA-altering and splicing variants in inbred lines were
much fewer compared with those from commercial groups (Figs 2
and 3). Especially, the number of non-syonymous INTOL variants
in inbred lines was 8–11 times less than those in commercial groups.
This observation indicates that the negative selection has prevented
highly deleterious mutations from reaching fixation in the inbred
lines and the existing INTOL variants are possibly not severely harm-
ful under the environmental conditions these birds are raised.

Finally, Figs 2 and 3 reveal that there were no SNPs within low-
frequency bin (≤0.05). This result was expected due to a number of
reasons. First of all, the allele frequency in the present study was cal-
culated only based on 10–15 individuals per line. This meant that es-
timated frequency within line could not be below 0.03–0.05. Second,
the sequencing of pooled DNA (Pool-seq) is known to be extremely
prone to losing rare and low-frequency variants when performed at
a low depth of sequencing coverage.36,37 In the present study, the se-
quence coverage was 8–17X, which was often lower than the number
of individuals per pool (10–15) and the corresponding number of
chromosomes (20–30) that needed to be sampled. This was com-
pounded by the use of various filtration parameters such as quality
scores, minimum coverage and the evidence of non-reference allele
in both forward and reverse strands, which resulted in the loss of
many true SNPs, especially from low-frequency categories. Cutler
and Jensen37 predicted that filtering SNPs from Pool-seq data with a
Phred quality score of 20 (predicted error rate 1%) would lead to the

Figures 3. (a–-d) Frequency distributions of alternative alleles of SNPs from intergenic, intronic, up/downstream, splicing, ncRNA and UTR categories. X-axis
represents the allele frequency (ranges from 0 to 1) and Y-axis represents percentage of SNPs within a category. For the broiler, brown egg layer (BEL) and

white egg layer (WEL) groups, the Y-axis is scaled from 0 to 25 (in percentage), and for Inbred group, the Y-axis is scaled from 0 to 50 (in percentage).
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loss of 29% of the variants when the coverage is between 11 and 50X,
and majority of these variants will be rare and of low frequency. They
also showed that if the error rate was very low (e.g. 0.1%) and only a
small number of samples were pooled (e.g. 10 samples) that would re-
quire sequencing to a depth of 300X to detect all the variants includ-
ing the rare ones.

The proportions of pfVars that appeared in multiple lines (>10
lines) at high frequencies (>0.9) were investigated as these might re-
present variants with adaptive advantage (Table 1). Alternatively,
this is also possible that these variants are only moderately deleterious
or neutral and have increased in frequency through genetic drift or by
hitchhiking with linked variants under positive selection. A very small
proportions (0.5–2%) of stop-gain/loss, INTOL and splicing variants
were detected from multiple lines at high frequency, while for categor-
ies like synonymous, intergenic, intronic, up/downstream and UTR,
the corresponding proportionsweremuch higher, above 7% (Table 1).
This agrees with the general expectation that the former group of var-
iants are selected against due to their potential harmful effects. Since
stop-gain variants result in the premature termination of proteins, they
were further investigated which revealed that in most cases (85%) they
were located: (i) in genes that have other paralogs in the genome,
which might minimize their impact (64%); (ii) in uncharacterized
hypothetical genes for which no functions are yet known and these
genes may be prediction artefacts (25%); (iii) near the end of coding
sequence thus allowing the translation of at least 90% of the length of
the protein retaining most of its functionality (16%) or at the very be-
ginning of the protein (12%) (Supplementary Fig. S4). A similar obser-
vation was reported by Ng et al.38 Yet there were a few stop-gain
variants that did not conform to any of these rules, yet were detected
at very high frequencies (>0.9) from multiple lines (>10). These in-
cluded three stop-gain mutations from the genes: C1ORF101
(Chr3_34083273), CCDC60 (Chr15_9679384) and GLOD4
(Chr19_6926808). Their relative position within the respective pro-
teins (calculated by dividing the position of the variant with the pro-
tein length) varied from 0.33 to 0.67. These variants may therefore
have some selective advantage in domesticated chicken lines. Similarly,
over 80% of the INTOL variants detected from multiple lines at high
frequencies were located within genes with one or more paralogs or in
novel genes with unknown function as discussed above.

Over 14% (n = 2,248,437) of the 15 million SNPs were private to
individual lines. Of these, only 12.5% SNPs were fixed or nearly fixed.
Althoughmuch smaller proportions of private fixed variants belonged
to AA-altering and splicing categories (Table 1), these could be im-
portant for the lines in question.

3.7. SNPs within regions of selection signature

One of the signatures of positive selection is that it creates regions of
local fixation compared with the overall pattern of diversity in the en-
tire genome—a phenomenon known as a ‘selective sweep’.17 The re-
gions of local fixation were investigated by calculating pooled
heterozygosities (Hp) in sliding windows using the SNP data for indi-
vidual broiler, BEL and WEL lines. Since only the windows with >10
SNPs were analysed, the number of analysable windows varied from
44,237 to 45,378 per line (Supplementary Table S5). The average Hp
values varied not only among the lines (0.22–0.36) but also among
chromosomes (0.16–0.43), which is likely due to the wide variation
in recombination rates among chromosomes.39 Therefore, in deciding
the threshold Hps for detecting putative selective sweep (pSS) regions,
chromosome-specific permutation analysis was performed within
each line. Proportion of the windows with fixation signal varied

considerably across the lines ranging from 0.7 to 9.8% at P < 0.001
while with relaxed thresholds (at P < 0.01 or P < 0.05), the number in-
creased considerably.

Differentiating the signatures generated by true selective sweep is
challenging, because similar effects might be left on the genome by
demographic events and population structure.17 While the permuta-
tion test improves the confidence in detecting pSS, comparison of
the signals across populations can further confirm the results and min-
imize the incidence of false signals from the confounding effects of
demographic events.18 Therefore, in the following sections, we focus
only on the common windows that passed critical Hps (at P < 0.05) in
all the lines within a group (broiler, BEL or WEL) or across groups.
Sex chromosomes were excluded from analyses to avoid interpret-
ational problems as the lines were differentially consisted of either
male or female samples.

Common signals were detected only from 143 widows in broilers,
163 in BEL and 49 in WEL. Many of these windows were adjacent or
overlapping and hence were joined to obtain non-overlapping regions
that resulted in 60 discrete pSS regions for broiler, 66 for BEL and 25
for WEL (Supplementary Fig. S5). The relatively lower number of
shared regions in the WEL group was due to a single line—WEL5,
which elicited very few fixation signals (only 4% windows compared
with ∼14% in other WEL lines). This is due to the fact the WEL5 had
higher level of fixation relative to other lines and as a result had low
critical Hps from the chromosome-wise permutation analyses causing
very few windows to elicit selective sweep signal. If WEL5 is excluded
from the comparison, 208 windows and 100 non-overlapping pSS re-
gions are found to be shared among the other four WEL lines. Across
different groups, we discovered only seven windows shared between
broilers and BELs, five between BEL and WEL (excluding WEL5)
and only one shared between broiler and WEL (Supplementary
Fig. S5).

As a proof that our approach could detect sweep regions, our re-
sults were compared with previous studies. This demonstrated that
many of the genes that were partly or fully covered within our pSS re-
gions had also been detected by other studies. Some notable genes
among these are the following: BCDO2 (β-carotene oxygenase 2)
that has been found associated with yellow skin in domestic chick-
ens;40 TSHR (thyroid-stimulating hormone receptor) playing import-
ant roles in regulation of metabolic functions and reproduction in
commercial chickens;26 IGF1(insulin-like growth factor-1) and
HNF4G (hepatocyte nuclear factor 4 gamma) which are candidates
for growth;26,41 PMCH (pro-melanin concentrating hormone) that
plays important role in regulating appetite and metabolic func-
tions;26,42 INSR (insulin receptor), which affects growth traits with
a central role in insulin signalling;26 and NELL1(NEL-like 1) gene,
potentially associated with skeletal integrity in broiler.41 Moreover,
over 91% of the pSS regions also overlapped with one or more
QTLs (in chicken QTLdb) associated with production, behavioural-
and health-related traits such as body weight, growth performance,
meat quantity and qualities, fat content, egg production and qualities,
feather pecking and antibody response to various pathogens. This pro-
vided further support in favour of predicted selection pressure on these
regions.

The pSS regions harboured a large number of variants (6K–12K
depending on groups), either fixed or segregating. While it is expected
that the variants directly under selection will be fixed or be at high fre-
quency (AAF > 0.9), the other functionally active segregating variants
within the pSS regions may be selectively advantageous or deleterious
and will exert their effects quantitatively on the associated phenotype.
About 38–56% of the variants in pSS regions were fixed in different
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groups. Many of the fixed variants, however, are likely to be neutral
which might have reached fixation through hitchhiking just by being
closely linked to causal mutations. Therefore, we decided to focus
mainly on the pfVars viz. AA-altering, splicing, RNA structure-
altering, MCE variants or those in ncRNAs. This resulted in 4,679
variants from all the pSS regions of which only 17% (n = 815) were
fixed in at least one chicken group and 2% (n = 106) were fixed across
the groups (Supplementary Fig. S6).We hypothesized that if a window
elicited selection signal from more than one group and if variants
therein were present ubiquitously and were fixed across the groups,
this most likely represented old selection—possibly associated with
traits that promote high production rates or better performance as a
result of commercialization of the chicken or are relevant to adapta-
tion in domesticated situations. On the other hand, if a pSS region
was detected within a single group and variants were fixed only within
that group, it was probably associated with group-specific traits. The
major findings are discussed in the following sections.

3.7.1. Ubiquitously present pfVars in the BCDO2

gene are candidates for yellow skin trait

Yellow skin colour is a ubiquitous feature in all Western commercial
chicken.40 It has been postulated that in chicken the trait is expressed
due to the presence of one or more cis-acting and tissue-specific regu-
latory variants that inhibit(s) the expression of the BCDO2 gene,
which otherwise is responsible for degradation of carotenoid. In a pre-
vious study, Eriksson et al.40 suggested a minimum haplotype of
23.8 kb on chromosome 24 to be shared across diverse domesticated
chicken breeds with yellow skin, and this haplotype is expected to har-
bour the causal mutation for the trait.

In the present study, the 40-kb window (Chr24:6120000–
6160000) that covered the minimum haplotype of yellow skin trait
elicited fixation signals in all the broiler and BEL lines. Within the
WEL group, however, only two of the five lines produced signal for
this window and as a result it was not detected as a common pSS re-
gion from theWEL group. Closer inspection of the variants within the
window revealed that there were several pfVars (n = 13), of which
seven were located directly within the yellow skin haplotype and
were completely fixed across all the commercial lines including the
WELs (Supplementary Fig. S6). All of these variants are located either
within the BCD02 gene or nearby this gene and hence can be consid-
ered as candidate causal mutations. These include: 1 intergenic-MCE,
3 intronic-MCE, 2 non-synonymous TOL and 1 UTR5′ SNP that was
suggestively RNA structure altering. In spite of complete fixation of
these variants, the failure to detect a signal for the region from certain
WEL lines suggests that the sweep region is smaller than the 40-kb
window size used in this study, which is consistent with the size of
shared haplotype (23.8 kb). Erriksson et al.40 speculated that the cau-
sal mutation(s) of the yellow skin trait will bewithin evolutionary con-
served region(s) and will be regulatory in nature. Considering these,
the variants within MCEs appear to be the most likely candidates.

3.7.2. Ubiquitously present non-synonymous SNPs in

the TSHR gene are potential causal mutations of a

known sweep locus

Two recent studies have, respectively, detected and validated a strong
signature of selection overlapping the TSHR gene.26,43 Although the
first study speculated the gene to be associated with domestication in
chicken, the later study found a more recent origin of this signature
and concluded that the TSHR mutation was neither a pre-requisite
nor a critical factor in domestication process; instead it is most

probably related to the improvement of chickens that began during
the industrial revolution. Although the causal mutation(s) within
this region and its phenotypic effects are yet to be established, the bio-
logical significance of the TSHR gene on the regulation of metabolic
activities and reproduction, particularly in extending the mating sea-
son, is well known.44,45 Rubin et al.26 detected a non-synonymous
variation within the TSHR gene that they suspected was the causal
mutation.

The present study also detected a strong signal covering part of the
TSHR gene from the analyses of broilers and BEL lines. Within the
WEL group, four of the five lines were significant for the same
TSHR window but due to failure in getting signal from a single line,
it was not ultimately picked up as a common signal. About 62%
(n = 221) of the variants within the gene had average frequency
>0.90 suggesting a very strong selection pressure. There were only
two fixed pfVars in this region though (Supplementary Fig. S6): a non-
synonymous TOL mutation and a non-synonymous INTOL SNP, the
same variant that had also been detected by Rubin et al.26 This
INTOL variant also coincided with an MCE. Both the variants were
completely fixed in all the commercial lines except in a single WEL
line, although in this line the variants prevailed at high frequency
(0.6–0.8). These variants were also fixed in non-commercial lines
such as RI-J and inbred lines. These could therefore be the candidate
causal mutations.

3.7.3. The putative sweep regions show enrichment of

non-coding mutations within higher frequency classes

Plotting the ratio of the number of non-coding and coding variants
against allele frequency reveals that there is a significant enrichment
of non-coding mutations at higher frequencies compared with coding
variants (P < 0.001 in χ2 test) (Fig. 4). This is expected as non-
synonymous, splicing or stop-gain/loss variants can have radical im-
pacts on the translated protein, whereas the functional non-coding
variants may be much more tolerated due their regulatory roles on
gene expression.9 This is consistent with the observations from various
genome-wide association studies that revealed that majority of the
genetic variants associated with complex traits lie within non-coding
regions of the genome.8,9

Between 37 and 45% of the pSS regions across all the groups were
completely devoid of genes and coincided entirely with intergenic re-
gions and 54–70% of all the pSS regions showed fixation of only non-
coding variants including intergenic, intronic, up/downstream and

Figure 4. Ratio of non-coding putatively functional variants (pfVars) with AA

altering and splicing types at different allele frequency bins within selective

sweep regions. The non-coding pfVars included intergenic, intronic, UTR and

down/upstream variants from most conserved elements, variants located

within known ncRNAs and variants that were predicted to alter RNA

secondary structure. The graph indicates that high-frequency variants are

enriched with non-coding types. BR, BEL and WEL refer to broiler, brown

egg layer and white egg layer groups, respectively.
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UTR SNPs. For instance, some of the genes found within the pSS re-
gions were particularly enriched for fixed intronic pfVars (Supplemen-
tary Fig. S6) and most of these genes have previously been detected in
other selection signature studies26,41 as well, thereby strengthening
their likelihood to be within true sweep regions. It is possible that
these intronic variants exert their effects through regulation or disrup-
tion of transcriptional activities, splicing efficiency of their host genes
or expression of alternative transcripts.46

Overlaying the known QTLs with the pSS regions reveals that the
regions harbouring only non-coding fixed pfVars overlapped with
QTLs of complex traits. For example, a large number of pSS regions
detected in our study overlapped with QTLs for bone traits such as
bone strength, bone-mineral content, bone-density, etc., suggesting a
multi-gene hypothesis for regulation of these traits. Most of these pSS
regions also coincided with QTLs for other traits as well, which fur-
ther indicates possible pleiotropic effects of the same genes onmultiple
traits.47,48 Only one of the pSS regions (B-R47 in Supplementary
Fig. S5) from broiler lines, however, overlapped with only bone-
related QTL(s) viz. Tibia width47 and mineral density in femur
bone,48 thereby allowing its closer inspection. Both the QTLs, how-
ever, were detected with only suggestive significance and as a result
their effect size is expected to be small, which is an indication of in-
volvement of regulatory causal variant(s). This pSS region overlaps
with the PAPPA2 (Pappalysin 2) gene. The protein encoded by this
gene cleaves the IGFBP-5 (insulin-like growth factor binding protein
5), which is an important stimulator of bone formation.49 Among all
the variants detected from and around this gene, only non-coding
SNPs reached fixation including 46 intronic, 2 upstream and 37 inter-
genic variants. Only one of the fixed intronic variant (Chr8:6817157)
coincided with anMCE. This particular variant was found to be fixed
in all the broiler andWEL lines and also in two of the five BEL lines. It
is possible that this is a functional variant with a regulatory role.

3.7.4. Evolutionary intolerant non-synonymous SNPs

prevailing at high frequencies may confer adaptive

advantage

From the pSS regions, 11 non-synonymous INTOL variants were
detected that reached fixation in one or more groups. Apart from
the one INTOL SNP from the TSHR gene that has been discussed
above, the other 10 variants were detected from the following genes:
GCNT3 (n = 2), PLA2R1 (n = 1), FOXI1 (n = 1), ZNF507 (n = 1),
ADAMTS7 (n = 1) and ENSGALG00000023731 (novel chicken
gene; n = 4). Even though the pSS regions overlapping these genes
were detected from specific groups (either BEL or WEL), a number
of these INTOL (n = 5) variants prevailed ubiquitously at high fre-
quency or at complete fixation in all or most of the lines irrespective
of groups. Some of the variants also coincided with MCEs. Their
high frequency implies that even though evolutionary intolerant,
these variants possibly confer important adaptive advantages. Classic
examples of genetic defects being selected as adaptive advantage in-
cludes the prevalence of certain blood-related disorders in
malaria-infected regions as a means to confer resistance to the latter
disease50 and the increase in frequency of the risk allele of diabetes
mellitus during food scarcity in the past.51 It is, however, also possible
that the fixed INTOL variants detected in the present study are not ac-
tually beneficial but have been hitchhiked to fixation with linked cau-
sal mutation.52

Exploring the functions of the above genes harbouring the INTOL
variants reveals that they perform a variety of functions which may
be related to commercially important traits in chicken. The GCNT3

(glucosaminyl N-acetyl transferase 3, Mucin Type) gene, for instance,
plays an important role in the immune system through the synthesis of
mucins in mucus-secretary epithelial tissues.53 Mucin hyper-secretion
can be a common response to many pathogenic infections and can-
cers.54 The proteins encoded by the PLA2R1 (phospholipase A2 re-
ceptor 1) gene exert various effects in different tissues including
inducement of cell proliferation and production of lipid mediators
by serving as a receptor of phospholipase.55 The region harbouring
this gene overlapped with QTLs associated with several traits most
notably for fat deposition, body weights and egg production perform-
ance. The FOXI1 (Forkhead box I1) gene codes for a transcription
factor that in human is involved in the physiology of several organs
viz. inner ear, testis and kidney.56 A recent study in human has detected
a sweep region covering this gene and predicted that positive selection of
the FOXI1 gene imparts adaptive advantage in kidney-mediated water-
electrolyte homeostasis in African population in response to climatic
condition.57 The pSS region covering this gene, in our study, overlapped
withQTL(s) for growth, age-at-first egg and fear-related behaviour. The
functions of the ZNF507 and ENSGALG00000023731 genes are not
yet well studied, although ZNF507 possibly plays role in transcrip-
tional regulations affecting multiple functions.58 The possible effect
of the ADAMTS7 gene and the fixed pfVars therein is discussed in
the following section.

3.7.5 Broiler or layer-specific variants

About 12% (n = 94) of the pfVars detected from various pSS regions
(Supplementary Fig. S6) were fixed exclusively in broilers while they
were either undetected or segregating in layer groups indicating their
possible association with broiler-related traits. Almost one-third
(n = 28) of these variants resided within the largest broiler pSS region
(B-R09 in Supplementary Fig. S5) on chromosome1 and represented
genes: PARPBP, PMCH, NUP37, CCDC53, GNPTAB, SYCP3 and
CHPT1. This region also harboured the IGF1 gene, which has
known effect on growth, but the single pfVar from this gene (an
intronic-MCE variant) was prevalent not only in broilers but also in
layers in the present study. All these genes from B-R09 region were
also detected within sweep regions in previous studies analysing com-
mercial broiler lines.26,41

The rest of the broiler-specific SNPs were either intergenic or be-
longed to a few genes, namely, ROBO2, AMMECR1, BMPR1B,
SPRED1, MEIS2, ARFGEF2, USE-1 and MYO9B. The MYO9B
(Myosin IXB) gene is interesting as, in human, variants within this
gene have been found associated with inflammatory bowel disease, ul-
cerative colitis and coeliac disease.59,60 In our study, the pSS region
(B-R60 in Supplementary Fig. S5) harbouring this gene coincided
with QTLs associated with antibody responses to Escherichia coli
and Salmonella enteritidis, and growth. We detected one broiler-
specific non-synonymous TOL SNP and several other ubiquitously
present intronic-MCE variants from this gene. Based on the informa-
tion from human studies, we speculate that this gene might have roles
in triggering antibody responses to E. coli and Salmonella in chicken.
Moreover, being a myosin encoding gene, the broiler-specific variant
(s) within this may also affect muscle growth.

A number of layer-specific variants were also discovered—some of
which were fixed exclusively in either BEL or WEL lines while the rest
were fixed in both the layer groups. The variants fixed in both the layer
groups (n = 20) came from nine genes only. Since direct effects of most
of these genes are yet to be established, we investigated the overlapping
QTLs to establish potential association of these genes with layer-
related traits. For instance, a number of pfVars were detected from
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the gene ADAMTS7 (ADAMmetallopeptidase with thrombospondin
type 1 motif, 7) including one non-synonymous INTOLmutation. We
speculate that the variants within this gene may be associated with
egg-shell strength in chicken as one member of the ADAMTS gene
family (ADAMTS1) has previously been shown to be up-regulated
in the uterus of hens laying hard-shelled eggs compared with those lay-
ing soft-shelled eggs.61 The region harbouring the ADAMTS7 gene
overlapped with QTLs for several traits including two for egg-shell
strength and stiffness.62 Nevertheless, since the members of this gene
family are known to perform a variety of physiological roles by encod-
ing enzymes with protease activities, the ADAMTS7 genes may have
wider effects on multiple traits.63

The genes, DOCK2 (dedicator of cytokinesis 2) and GFPT2
(glutamine-fructose-6-phosphate transaminase 2), were detected
from two pSS regions on Chromosome13 and coincided with QTL
(s) associated with age-at-first egg and body weight.64 Both the
genes contained several layer-specific and some ubiquitous variants.
Since age-at-sexual- maturation is correlated to body weight, these
genes possibly have pleiotropic effects on these traits, with the fixed
pfVars probably conferring later maturity in layers.

A number of genes with BEL-specific variants on chromosome 6
coincided with a QTL suggestively associated with egg shell colours65

and these include: FRMPD2 (containing 1 stop-gain, 2 non-
syonymous TOL and 11 intronic-MCE-SNPs), HIF1AN (1 intronic-
MCE variant), MYPN (1 non-syonymous TOL SNP) and ATOH7
(2 RNA structure-altering SNPs). The brown colour of egg shell de-
rives from a major pigment called protoporphyrin, which is secreted
from the surface epithelial cells of the uterus and is deposited onto
the shell.66 The shell colouration can be affected by a number of me-
chanisms that control either the production or precipitation of the
protoporphyrin.67 One recent study has suggested that the brown
and white egg layers are not dissimilar in the protoporphyrin con-
tent, but it is the control mechanism affecting the secretion and de-
position of the pigment that causes the difference in egg colour.66

Although no direct evidence was found in the extant literature link-
ing any of the above genes with egg shell colour, but the FRMPD2
(FERM and PDZ domain containing 2) appeared to be a strong
candidate as a regulator of protoporphyrin precipitation. This is
because it encodes a peripheral membrane protein that binds phos-
phatidylinositol 3,4-bisphosphate, which in turn plays important
role in membrane trafficking.68,69 This gene, can therefore, play a
regulatory role in the secretion and deposition of protoporphyrin
on egg shell.

4. Concluding remarks

This paper reports the discovery and characterization of over 15 mil-
lion SNPs from the chicken genome with the goal to delineate those
with potential functional consequences—either having adaptive ad-
vantage or deleterious effect. To our knowledge, this is so far the lar-
gest study of its kind on chicken not only because a huge number of
variants have been detected but also because a large number of popu-
lations and individuals that have been screened. Moreover, a number
of complementary approaches were adopted to identify putatively
functional variants from both coding and non-coding part of the gen-
ome. By investigating local fixation in the genome, this study has also
detected a number of putative sweep regions and candidate casual var-
iants therein. This analysis has confirmed a number of previously
known sweep regions such as those involving the BCDO2 gene for
yellow skin colour and the TSHR gene and has identified novel
regions, e.g. those potentially associated with bone strength and

morphology, antibody response to E. coli and Salmonella, egg-shell
colour and shell strength.

In spite of the discovery of millions of SNPs, the present study
failed to capture the rare and low-frequency variants (AAF < 0.05)—
a major limitation of adopting Pool-seq approach with low coverage.
Low-frequency variants typically represent recent mutations and are
often private to specific populations. Their detection requires screen-
ing of hundreds of individuals from each population, which was be-
yond the scope of the present study. Unlike in human, where
discovery of rare disease-causing variants has medical significance,
for farm animals it is unlikely to be a priority, unless a common disease
is caused by many rare variants as proposed by ‘rare allele model’.70

Instead, for farm animals the priority is to improve commercially
important traits through selective breeding and unless a disease is
common enough it is unlikely to be a major focus in breeding
programmes. Therefore, we argue that even though, low-frequency
variants could not be characterized in the present study, it is the com-
mon variants that would have major application in breeding pro-
grammes of chicken.

Although the present study made efforts to characterize as many
non-coding pfVars as possible using various approaches—viz. finding
variants within conserved loci and known ncRNAs, predicting their
effects on RNA structure and characterizing high-frequency variants
within putative sweep regions—still the effort fell short due to incom-
plete annotation of chicken genome for functional non-coding ele-
ments. Knowledge of these elements, however, is rapidly improving
due to advancements in transcriptome profiling (e.g. RNA-seq) and
our predictive abilities of their functions through in silico analyses.
Better characterization of these variants will therefore be possible in
near future.

In conclusion, it is expected that by providing a large catalogue of
variants in general and potentially functional variants in particular,
this study will have major implications in breeding programmes and
future research in chicken in the areas of genomic selection, genome-
wide association studies, fine mapping of QTL, haplotype mapping
and locating candidate causal variants.
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