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Tick-pathogen-host interactions have been closely studied to understand the molecular
mechanisms of pathogen transmission for tick-borne diseases, including Lyme disease, babesiosis,
spotted fever diseases, and Tick-borne encephalitis, among others. Such studies have yielded
insights into disease processes and have identified promising candidates for vaccines against
tick-borne diseases (Dai et al., 2009; Schuijt et al., 2011; de la Fuente et al., 2016). In addition to
these vaccine targets, the advent of “omics” technologies, such as transcriptomics and proteomics,
has opened the doors for discovery of a wide variety of tick bioactive molecules (Francischetti et al.,
2005, 2008, 2011; Untalan et al., 2005; Aljamali et al., 2009; Kongsuwan et al., 2010; Karim et al.,
2011; Diaz-Martin et al., 2013; Oliveira et al., 2013; Egekwu et al., 2014; Radulovic et al., 2014;
Tirloni et al., 2014; Karim and Ribeiro, 2015; Oleaga et al., 2015; Bullard et al., 2016; Kim et al., 2016;
Moreira et al., 2017). While some of these bioactive molecules may be applicable for the treatment
of tick-borne diseases, many are promising candidates for the treatment of other pathogens or
human diseases. Therefore, we propose that careful study of tick bioactive molecules, such as those
discovered in “omics” studies, is a promising rich source of novel therapeutics.

TICK-PATHOGEN INTERACTIONS

Tick-borne pathogens have a complex lifecycle that involves both a tick and vertebrate host. Within
the natural cycle, uninfected ticks acquire pathogens when taking a blood-meal on an infected
host. The microbes enter with the blood into the tick’s gut. At this point, some pathogens, such as
Anaplasma phagocytophilum (the causative agent of human granulocytic anaplasmosis), migrate to
the salivary glands (Hodzic et al., 1998). Others, such as Borrelia burgdorferi (the etiologic agent of
Lyme disease) remain in gut (De Silva and Fikrig, 1995). The pathogens are then maintained within
the tick organs during molting (De Silva and Fikrig, 1995; Hodzic et al., 1998). Upon the next blood
meal, the infectious microbes exit into a vertebrate host with the tick saliva, which is made in the
salivary glands (De Silva and Fikrig, 1995; Hodzic et al., 1998). Therefore, microorganisms that
remain in the gut through molting must migrate to the salivary glands during the next blood meal.

The complex processes of acquisition and transmission of tick-borne pathogens require specific
interactions between the tick, microbe, and host. Indeed, disruption of some tick-pathogen
interactions has been shown to decrease transmission (Ramamoorthi et al., 2005; Dai et al., 2009;
Zhang et al., 2011; Narasimhan et al., 2014; Coumou et al., 2016). Likewise, vaccination against
some tick saliva or salivary gland proteins decreases the ability of the tick to feed on a mammalian
host (Gomes et al., 2015; Contreras and de la Fuente, 2016, 2017), which could reduce transmission
of pathogens. Therefore, tick proteins that interact with pathogens or facilitate tick feeding have
been studied as potential vaccine targets for tick-borne diseases. However, many of these proteins
perform biological functions that could also be exploited for therapeutic development.
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TICK BIOACTIVE MOLECULES

Perhaps the best-studied source of tick bioactive molecules
is tick saliva. Tick saliva includes a cocktail of potent
proteins that aid in the feeding of the tick on a mammalian
host and improve pathogen transmission from a tick to
a mammalian host. These proteins are known to act as
anticoagulants, immunosuppressants and immunomodulators,
platelet inhibitors, vasodilators, inhibitors of wound healing,
and facilitators of tick attachment (Reviewed in Kazimírová and
Štibrániová, 2013). Many of these functions have potential uses
in the treatment of disease.

For example, coagulation is an important process in many
cancers, as it supports tumor growth, angiogenesis, and
metastasis (Rickles et al., 2001). Additionally, cancer patients
often have complications related to coagulation, such as venous
thromboembolisms (Karakatsanis et al., 2016). Treatment of
some cancers and cancer complications with anticoagulants has
been shown to be effective (Rickles et al., 2001; Karakatsanis
et al., 2016). Tick saliva is a rich source of novel anticoagulants
that could be exploited for the development of anticoagulants
for the treatment of diverse cancers. Indeed, Ixolaris and
Amblyomin-X, anticoagulant and antiangionenic proteins from
Amblyomma cajennense, have shown promising results for the
treatment of glioblastoma (Carneiro-Lobo et al., 2009; Barboza
et al., 2015), renal cell carcinoma (de Souza et al., 2016), and
melanoma (Chudzinski-Tavassi et al., 2010; de Oliveira Ada
et al., 2012) in mice. Additionally, complement inhibitors may
be useful for disorders of inappropriate complement activation
(Baines and Brodsky, 2017) or diseases exacerbated by the
complement system, such as cardiovascular disease (Shields et al.,
2017). Indeed, Ornithodoros moubata Complement Inhibitor
(OmCI) has shown promising results in an in vitro model of
the complement disease paroxysmal nocturnal hemoglobinuria
(Kuhn et al., 2016) and a porcine model of myocardial infarction
(Pischke et al., 2017). Additional uses for salivary gland proteins
include treatment of microbial infections (Cabezas-Cruz et al.,
2016; Abraham et al., 2017), autoimmune disease (Sá-Nunes
et al., 2009; Soltys et al., 2009), and cardiovascular diseases
(Abendschein et al., 2001).

Recently, tick—tick microbiome—pathogen interactions have
begun to be studied to understand the implications of the
tick microbiome in pathogen transmission. Indeed, perturbing
the Ixodes scapularis tick microbiome decreases transmission
of B. burgdorferi (Narasimhan et al., 2014) and increases
transmission of A. phagocytophilum (Abraham et al., 2017).
Study of such interactions can lead to the discovery of novel
mechanisms of interaction and potential therapeutics. For
example, further work into A. phagocytophilum - microbiota
interactions determined that A. phagocytophilum modulates the
tick microbiome during colonization of I. scapularis, which
facilitates its migration from the tick gut to the salivary glands
(Abraham et al., 2017). This occurs through the bacterium
inducing expression of the tick gut protein I. scapularis antifreeze
glycoprotein (IAFGP) (Neelakanta et al., 2010; Abraham et al.,
2017), which decreases microbiota biofilms in the tick gut
(Abraham et al., 2017). The antibiofilm activity of IAFGP makes

it a promising candidate for the treatment of antimicrobial-
resistant bacterial pathogens that form biofilms. Indeed, IAFGP
expression in flies and mice increases their resistance to bacterial
pathogens, such as Staphylococcus aureus (Heisig et al., 2014).
Additionally, testing in a catheter model demonstrated that
IAFGP coatings can inhibit bacterial biofilm formation on
medical devices (Heisig et al., 2014). These studies on IAFGP
function and potential highlight that other interactions within
the tick, such as those between the ticks, pathogens, and
microbiomes, are another rich source of bioactive molecules.

“OMICS” STUDIES FOR THE DISCOVERY
OF BIOACTIVE MOLECULES

The advent of “omics” technologies, including transcriptomics,
proteomics, and genomics, has opened the door for the
discovery of new microbial consortium members, host-microbe
interactions, and bioactive molecules. Such studies have led to the
discovery of many new promising therapeutic candidates, such as
animal venom peptides from mollusks (Verdes et al., 2016) and
antibiotics from bacteria (Wecke and Mascher, 2011).

The use of proteomic and transcriptomic analyses has
uncovered many novel tick-microbe interactions. Additionally,
these studies have yielded a multitude of predicted tick
bioactive molecules, such as anticoagulants, platelet aggregation
inhibitors, vasodilators, antimicrobials, immunosuppressants,
immunomodulators, and inhibitors of wound healing (Table 1;
Francischetti et al., 2005, 2008, 2011; Untalan et al., 2005;
Aljamali et al., 2009; Kongsuwan et al., 2010; Karim et al., 2011;
Diaz-Martin et al., 2013; Oliveira et al., 2013; Egekwu et al., 2014;
Radulovic et al., 2014; Tirloni et al., 2014; Karim and Ribeiro,
2015; Oleaga et al., 2015; Bullard et al., 2016; Kim et al., 2016;
Moreira et al., 2017). These studies have also identified new
classes of protein families as well as many proteins of unknown
function (Table 1; Francischetti et al., 2005, 2008, 2011; Untalan
et al., 2005; Aljamali et al., 2009; Kongsuwan et al., 2010; Karim
et al., 2011; Diaz-Martin et al., 2013; Oliveira et al., 2013; Egekwu
et al., 2014; Radulovic et al., 2014; Tirloni et al., 2014; Karim and
Ribeiro, 2015; Oleaga et al., 2015; Bullard et al., 2016; Kim et al.,
2016; Moreira et al., 2017). The vast majority of these bioactive
proteins have not been studied in detail, and it is likely that
many may be homologs or overlap in function. Therefore, the
actual number of discovered bioactive proteins with divergent
mechanisms of action is likely less than the total of these studies.
However, these studies highlight that there is a vast array of
potential bioactive molecules within tick-microbe interactions
awaiting further study.

DEVELOPMENT OF BIOACTIVE
MOLECULES INTO THERAPEUTICS

Although “omics” studies have identified a plethora of potential
therapeutics, these studies have not led to FDA approval of
any novel drugs. In fact, at the time of this publication, no
arthropod compound identified by proteomics, transcriptomics,
or genomics is in clinical trials in the United States. Asmentioned
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TABLE 1 | Proteomic and transcriptomic studies that have predicted novel tick proteins.

Tick Sourcea Analysisb Total

identifiedc
Bioactive

functiond
Protease

inhibitore
Proteasef Unknown

functiong
Other

predicted

functionh

Citationi

Amblyomma

americanum cement

cone

Proteomics 33 0 1 4 18 10 Bullard et al., 2016

Amblyomma

americanum saliva

Transcriptomics

and proteomics

895 7 23 18 517 330 Radulovic et al., 2014

Amblyomma

americanum salivary

glands

Transcriptomics

and proteomics

5,792 81 98 37 2,608 2,968 Karim and Ribeiro, 2015

Amblyomma

americanum salivary

glands

Transcriptomics 2,002 14 13 2 1,674 299 Aljamali et al., 2009

Amblyomma

maculatum salivary

glands

Transcriptomics

and proteomics

15,914 800 379 311 5,389 9,035 Karim et al., 2011

Amblyomma sculptum

midguts, ovaries and

salivary glands

Transcriptomics 27,308 285 79 132 2,312 24,500 Moreira et al., 2017

Hyalomma marginatum

rufipes

Transcriptomics

and proteomics

2,084 35 62 3 722 1,262 Francischetti et al., 2011

Ornithodoros coriaceus

salivary glands

Transcriptomics

and proteomics

726 60 6 13 127 520 Francischetti et al., 2008

Ornithodoros erraticus

midgut

Proteomics 555 8 0 15 79 453 Oleaga et al., 2015

Ornithodoros moubata

saliva

Proteomics 193 9 2 7 51 124 Diaz-Martin et al., 2013

Rhipicephalus

(Boophilus) microplus

midgut

Proteomics 142 0 0 3 8 131 Kongsuwan et al., 2010

Rhipicephalus

(Boophilus) microplus

saliva

Proteomics 187 57 29 4 60 35 Tirloni et al., 2014

Rhipicephalus

(Boophilus) microplus

whole ticks

Proteomics 20 0 0 0 12 8 Untalan et al., 2005

Rhipicephalus

sanguineus saliva

Proteomics 19 2 0 0 4 13 Oliveira et al., 2013

Ixodes pacificus

salivary glands

Transcriptomics 557 46 21 1 463 26 Francischetti et al., 2005

Ixodes scapularis saliva Proteomics 582 33 43 33 112 361 Kim et al., 2016

Ixodes scapularis

synganglion

Transcriptomics 41,249 140 0 0 12,660 28,449 Egekwu et al., 2014

aSource of the tick sample including species name and organ.
bType of analysis performed on the tick sample.
cTotal number of proteins or transcripts identified by the study.
dTotal number of predicted proteins that were classified by the study as having a potential bioactive activity, including anticoagulants, platelet aggregation inhibitors, vasodilators,

antimicrobials, immunosuppressants, immunomodulators, and inhibitors of wound healing.
eTotal number of predicted proteins that were classified by the study as potential protease inhibitors. Some protease inhibitors can have bioactive functions of interest, such an

immuosuppressant activity.
fTotal number of predicted proteins that were classified by the study as potential proteases, which can have bioactive functions of interest.
gTotal number of predicted proteins that were classified by the study as having an unknown function.
hTotal number of predicted proteins that were classified by the study as having other functions, such as cell junction, energy metabolism, and cytoskeletal functions.
iCitation for the study.

above, this is partially due to lack of follow-up studies on the
mechanisms, uses, and optimization of the drug candidates.
However, this is likely also due to issues specific to arthropod
compounds.

Arthropod compounds often have high cytotoxicity and/or
are unstable (Ratcliffe et al., 2014). Therefore, the development
of some compounds will require basic research into optimization
of the compound, dosage, synthesis methods, and delivery
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mechanism. For example, Cantharidin, a small molecule toxin
from beetles in the Meloidae family, has potent anti-cancer
activities and has been shown to be effective against a large
variety of cancers (Reviewed in, Deng et al., 2013; Puerto
Galvis et al., 2013). However, this compound also has significant
toxicity in mammals related to its anticancer activity (Deng
et al., 2013; Puerto Galvis et al., 2013; Ratcliffe et al., 2014).
Extensive studies have been undertaken to reduce this toxicity
through modification of the compound (Deng et al., 2013; Puerto
Galvis et al., 2013), alternative production and delivery methods
(Chang et al., 2008; Han et al., 2013; Yu and Zhao, 2016), or
combination therapies (Wu et al., 2015). These efforts highlight
that the resolution of issues, such as toxicity, will require the
investment of time and money into basic scientific research for
the development process.

Additionally, there are concerns with developing individual
compounds from a complex mixture, such as tick saliva.
Tick saliva contains a cocktail of potent proteins, and the
production of these proteins changes throughout tick feeding
(Kim et al., 2016). This suggests that saliva proteins may work
synergistically within the context of tick feeding for differing
functions or similar functions (e.g., various immunosuppressants
could work in concert for greater immunosuppression) at
specific time points. Additionally, it is possible that separately
encoded proteins or subunits may be necessary for proper
function. Therefore, studying individual genes or proteins
may miss potential therapeutics. In these cases, it would be
necessary to consider co-expression of proteins and/or identify
interacting partners within the tick saliva to capture the optimal
combinations.

It is worth noting that is some instances the lack of
progress toward a viable therapeutic candidate is due to the
high cost of drug development rather than a lack of follow-
up research. For these compounds, investing in the approval
process is not attractive for pharmaceutical companies (Shlaes

et al., 2004; Kinter and DeGeorge, 2016). This is the case for
many antimicrobials, such as arthropod-derived antimicrobial
peptides that target bacterial and fungal pathogens (Ratcliffe
et al., 2011).

CONCLUSIONS

Tick-derived bioactive molecules are a promising source of new
therapeutics. However, the discovery and development of such
compounds is in its infancy. Although some drug candidates have
shown promising pre-clinical results, these compounds could
fall into the so-called “Valley of Death,” the gap between basic
research and translation into treatments. For some therapeutics,
this is due to the broad issues common to potential therapeutics:
lack of funding for translational research and/or lack of viable
pathways for clinical development (Butler, 2008; Collins et al.,
2016). However, as discussed in this article, this can also be due
to a lack of basic research assessing biological function, potential
uses, or optimization of the compound. For tick bioactive
compounds to be successfully developed into therapeutics, it will
require the investment of basic researchers into the discovery and
approval of therapeutic candidates.
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