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The multiple hit hypothesis for Parkinson’s disease (PD) suggests that an interaction
between multiple (genetic and/or environmental) risk factors is needed to trigger the
pathology. Leucine-Rich Repeat Kinase 2 (LRRK2) is an interesting protein to study in
this context and is the focus of this review. More than 15 years of intensive research have
identified several cellular pathways in which LRRK2 is involved, yet its exact physiological
role or contribution to PD is not completely understood. Pathogenic mutations in LRRK2
are the most common genetic cause of PD but most likely require additional triggers to
develop PD, as suggested by the reduced penetrance of the LRRK2 G2019S mutation.
LRRK2 expression is high in immune cells such as monocytes, neutrophils, or dendritic
cells, compared to neurons or glial cells and evidence for a role of LRRK2 in the immune
system is emerging. This has led to the hypothesis that an inflammatory trigger is needed
for pathogenic LRRK2 mutations to induce a PD phenotype. In this review, we will
discuss the link between LRRK2 and inflammation and how this could play an active
role in PD etiology.
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INTRODUCTION

Parkinson’s disease (PD) is the most common motor neurodegenerative disorder, estimated to
affect about 7 million people worldwide. Pathologically, it is characterized by the degeneration of
the dopaminergic neurons in the substantia nigra (SN), the aggregation of α-synuclein (αSYN)
in cytoplasmic inclusions named Lewy Bodies, and neuroinflammation. The first evidence for
neuroinflammation in PD was the discovery of human leukocyte antigen D-related (HLA-DR)-
positive microglia in the SN of PD patients by McGeer et al. (1988a). Since then, intensive
research has focused on understanding the extent and contribution of neuroinflammation to the
progression of PD. The microgliosis that takes place in PD brain is accompanied by astrogliosis and
an increase in the expression of inflammatory cytokines, chemokines, and prostaglandins (Mogi
et al., 1994, 1996; Hunot et al., 1999; Teismann and Schulz, 2004; Teismann, 2012). Additionally,
immunoglobulins G (IgGs) surround the Lewy Bodies and dopaminergic neurons, which points
to the contribution of both the innate and adaptive immune system to neuroinflammation in PD
(Orr et al., 2005).

INFLAMMATION AND PARKINSON’S DISEASE

Although the etiology of PD is not well understood, it is generally believed that the immune
system plays an active role, and that the neuroinflammation observed in the patient’s brain
might not only be a consequence of the ongoing neurodegeneration, as initially hypothesized
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(Tansey and Goldberg, 2010). The contribution of
neuroinflammation to the pathology could explain the
selective neuronal death in PD. Neuroinflammation induces the
accumulation of cytokines and reactive oxygen species (ROS) in
the brain, to which the dopaminergic neurons from the SN are
particularly susceptible (reviewed in Tansey and Goldberg, 2010;
Dias et al., 2013). Additionally, neuroinflammatory effects might
be more pronounced in the SN, as this brain region displays
the highest density of microglia, which are the brain resident
macrophages, in the brain (Yang et al., 2013).

Genome-wide association studies (GWAS) found a
connection between variations in the HLA locus and sporadic
PD, thereby identifying the immune system as a contributor to
PD susceptibility (Hamza et al., 2010; Saiki et al., 2010; Nalls et al.,
2011; Holmans et al., 2013; Wissemann et al., 2013; Zhang et al.,
2017). As opposed to what was believed in the past, the brain
is not a completely immune privileged organ. Inflammatory
events taking place outside the central nervous system (CNS)
can communicate with the microglia and alter their activation
state leading or contributing to neuroinflammation (McManus
and Heneka, 2017). Communication between the periphery and
the CNS is an important step for the peripheral immune system
to initiate a harmful response in the brain. Peripheral cytokines
and other inflammatory mediators can act on the perivascular
macrophages and macrophages from the circumventricular
organs of the brain, in which the blood brain barrier (BBB) is
more permeable (Lacroix et al., 1998). T cells, B cells, natural
killer cells and dendritic cells are present in other permeable
regions like the choroid plexus and the meninges and may serve
as a bridge to the brain (Korin et al., 2017). More specifically for
enteric inflammation, the inflammatory mediators can act on
the neurons forming the afferent vagus nerve, hence influencing
other regions of the CNS (Perry and Teeling, 2013). Additionally,
disruption of the BBB has been described in pathological
conditions and has been extensively reported in PD patients
(Maiuolo et al., 2018; Sweeney et al., 2018; Fuzzati-Armentero
et al., 2019). The opening of the BBB permits the infiltration of
immune cells into the brain parenchyma, which can exacerbate
the neuroinflammatory environment of the diseased brain. This
is in line with the T cell infiltration that is consistently found
in the SN of patients and PD models (McGeer et al., 1988b;
Brochard et al., 2008).

The communication between the periphery and the CNS
implies that infections or inflammatory events can act as
environmental factors triggering or contributing to the PD
pathogenesis (Figure 1). This idea is supported by several
epidemiological studies. A first hint came from the Spanish flu
pandemic in 1918. Affected people were reported to develop
transient parkinsonian symptoms the month after infection
(Ravenholt and Foege, 1982; Toovey et al., 2011). More
interesting, an increased risk to develop PD was found in a
cohort of patients with tuberculosis (Shen et al., 2016), vermiform
appendix (Killinger et al., 2018), or inflammatory bowel disease
(IBD) (Wan et al., 2018; Park et al., 2019; Weimers et al.,
2019; Zhu et al., 2019). Furthermore, IBD patients treated
with anti-tumor necrosis factor (anti-TNF) therapy showed no
increased risk for PD, further supporting a contributive role of

inflammation in PD etiology (Peter et al., 2018). This was not
the first time an anti-inflammatory treatment was proposed to
protect against neurodegeneration. Chronic treatment with non-
steroidal anti-inflammatory drugs (NSAIDs) was linked to a
reduced predisposition to develop PD (Chen et al., 2005; Gagne
and Power, 2010), although several other studies failed to confirm
these results (Driver et al., 2011; Ren et al., 2018; Poly et al., 2019).

LRRK2 AND NEUROINFLAMMATION

Approximately 10% of all PD cases have a monogenic origin,
with mutations in genes encoding for α-synuclein (SNCA),
Leucine-Rich Repeat Kinase 2 (LRRK2), Parkin, PTEN-induced
putative kinase 1 (PINK1), or DJ1 as the most studied examples
(Nuytemans et al., 2010). These disease-causing mutations have
indicated key cellular processes in PD etiology. Nevertheless, and
despite being the most common PD-linked gene, the exact role
of LRRK2 still remains unclear. Below, we will discuss evidence
supporting the idea that LRRK2 constitutes a strong link between
inflammation and PD.

LRRK2 was first described in 2004 as a PD-related gene.
The most frequent G2019S mutation accounts for 4% of the
familial and 1% of the sporadic PD cases (Domingo and Klein,
2018). Most of the pathogenic LRRK2 mutations enhance kinase
activity, which has been linked to pathological phenotypes in
neurons (Korecka et al., 2019). LRRK2 has been linked to several
cellular processes including mitochondrial function, endocytosis,
vesicle trafficking, autophagy, and processes at the trans-Golgi
network (reviewed in Wallings et al., 2015; Albanese et al., 2019;
Berwick et al., 2019). More mechanistic insight in these functions
came from the identification of several Rab proteins as bona
fide LRRK2 substrates (Steger et al., 2016; Fujimoto et al., 2017;
Liu et al., 2018; Rivero-Ríos et al., 2019). These small GTPases
are regulators of membrane trafficking and are also involved
in cellular processes essential for immune cell activity such as
phagocytosis, exocytosis, and antigen presentation (reviewed in
Prashar et al., 2017; Wallings and Tansey, 2019). This is in line
with the emerging evidence pointing to LRRK2 as a modulator
of inflammation through a role in immune cells both in the CNS
and the periphery.

Several studies have reported the dysregulation of
inflammatory events by LRRK2 in vivo. Already in 2009,
Lin et al. (2009) reported an increase in microgliosis and
astrogliosis in A53T αSYN transgenic mice in the presence of
LRRK2 G2019S. However, no effect of the G2019S mutation
could be observed in microglia in a different transgenic αSYN
model (Daher et al., 2012). In 2015, Daher et al. (2015) reported
an increased activation of microglia in the SN of a G2019S
LRRK2 transgenic rat after recombinant adeno-associated viral
vector (rAAV)-mediated αSYN overexpression. This increase in
neuroinflammation was accompanied by a more pronounced
neurodegeneration and could be abolished by the inhibition of
LRRK2 kinase activity. Recently, another study showed increased
expression of CD68 in microglia from G2019S LRRK2 mice
injected with recombinant αSYN fibrils, as well as increased
expression of pro-inflammatory markers such as IL-6, TNFα
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FIGURE 1 | Environmental factors such as inflammatory bowel disease or infections can trigger neuroinflammation and contribute to the pathogenesis of Parkinson’s
disease. The presence of LRRK2 mutations exacerbate the pro-inflammatory state of the immune cells from the periphery. Infiltration of monocytes, T cells or
cytokines through the blood brain barrier can induce the activation of microglia in the brain. The neuroinflammatory environment affects the dopaminergic neurons in
the substantia nigra, contributing to the neurodegeneration.

and C1qa and astroglial markers like Vim, CD44 and Cxcl10
(Bieri et al., 2019). In addition, a physiological role for WT
LRRK2 in neuroinflammation is supported by studies using
LRRK2 knock out (KO) models. Genetic ablation of LRRK2 was
reported to protect against dopaminergic neurodegeneration
induced by lipopolysaccharide (LPS), as well as against the
neuroinflammation and neurodegeneration induced by rAAV-
based overexpression of αSYN (Daher et al., 2014). LRRK2
KO animals displayed a reduced number of CD68 and iNOS
positive cells and reduced myeloid cell activation as shown
by the absence of a shift in morphology from ramified to
amoeboid Iba1+-cells. The evidence that WT LRRK2 is not
only involved in PD-related neuroinflammation is underlined
by the finding that suppressing LRRK2 activity or expression
is also protective against neuroinflammation after exposure to
manganese (Chen et al., 2018) or HIV-1 Tat protein in an HIV-1
associated neurocognitive disorder (HAND) model in vivo
(Puccini et al., 2015). Taken together, LRRK2 is considered
as a pro-inflammatory agent in different neuroinflammatory
animal models with increased LRRK2 kinase activity as a driver
of inflammation.

LRRK2 IN IMMUNE CELLS

In order to understand the physiological and pathological
function of LRRK2, it is essential to identify the cell types in
which LRRK2 plays a major role. Microglia are the first barrier
of the innate immune system in the brain. Therefore, most
efforts to elucidate the function of LRRK2 in neuroinflammation
have focused on this cell type. Reducing the expression or
activity of LRRK2 in microglia was shown to reduce the levels
of pro-inflammatory cytokines such as TNFa, IL6, IL-1b, or
IL-10 in vitro (Kim et al., 2012; Moehle et al., 2012; Russo
et al., 2015) as well as to enhance microglial motility induced
by adenosine diphosphate (ADP) and fractalkine, characteristic
of microglia in a non-reactive state (Choi et al., 2015; Ma
et al., 2016). Contrarily, mutations enhancing LRRK2 activity
such as G2019S or R1441G were reported to shift cultured
microglia to a more pro-inflammatory phenotype (Gillardon
et al., 2012; Caesar et al., 2014; Choi et al., 2015; Russo
et al., 2018). In addition, elevated LRRK2 mRNA levels were
found in human and rodent microglia and protein expression
was induced in microglia after stimulation with LPS in vitro
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(Miklossy et al., 2006; Gillardon et al., 2012; Moehle et al., 2012).
Despite the reported effects in microglia, the relevance of LRRK2
in this immune cell is still under debate. Several studies in wild-
type and BAC LRRK2 transgenic mice could not identify LRRK2
expression in microglia (Biskup et al., 2006; Higashi et al., 2007b;
Westerlund et al., 2008; Mandemakers et al., 2012). Similarly,
in situ hybridization and immunohistochemical studies on brain
sections from PD patients and healthy controls reported no
expression of LRRK2 in microglia (Higashi et al., 2007a; Hakimi
et al., 2011; Sharma et al., 2011; Dzamko et al., 2012, 2017).
LRRK2 expression was also not detectable after LPS stimulation
in microglia isolated from rodent brain (Kozina et al., 2018).
These conflicting results might be due to in vivo vs. in vitro
differences given the alterations in phenotype and expression
profile when microglia are placed in culture (Schmid et al.,
2009; Butovsky et al., 2014). Furthermore, immunohistochemical
detection of microglia in brain is based either on morphological
analyses or myeloid markers like Isolectin B4 (Miklossy et al.,
2006; Moehle et al., 2012). Establishing LRRK2 expression in
microglia is complicated since these markers are also expressed
in peripheral monocytes, which express LRRK2 (Gardet et al.,
2010; Thévenet et al., 2011; Cook et al., 2017) and are known to
infiltrate the brain during disease progression.

As discussed above, CNS resident microglia might not be
the only players in neuroinflammation observed in PD and
other neurodegenerative diseases. Emerging evidence points to
a key role for peripheral immune cells, but how changes in
activation state of these cells contribute to neuroinflammation
and neurodegeneration is one of the outstanding questions in
the field. In this context, LRRK2 is a very attractive target
since the highest LRRK2 expression is found in myeloid cells
like monocytes, dendritic cells and neutrophils, and to a lower
extent, in B and T cells (Gardet et al., 2010; Hakimi et al.,
2011; Thévenet et al., 2011; Daher et al., 2015; Cook et al.,
2017). LRRK2 mRNA and protein levels are upregulated in
macrophages and leukocytes upon in vitro exposure to pathogens
and inflammatory mediators such as IFN-γ, IFN-β, TNF-α,
and IL-6 (Hakimi et al., 2011; Thévenet et al., 2011; Kuss
et al., 2014). In addition, stimulation of Toll-like receptors was
shown to result in phosphorylation, dimerization and membrane
translocation of LRRK2, pointing to activation of its function
(Schapansky et al., 2014). Interestingly, LRRK2 protein levels are
increased in B cells, T cells (CD4+, CD8+, and T regulatory
cells) and CD14+ as well as CD16+ monocytes in PD patients
compared to healthy controls (Bliederhaeuser et al., 2016; Cook
et al., 2017). Moreover, PD patient monocytes were reported to
secrete more inflammatory cytokines, which positively correlated
with LRRK2 expression in T cells from PD patients, but not
healthy controls (Cook et al., 2017). A role for LRRK2 in
peripheral immune cells is also supported by the higher levels
of peripheral inflammatory cytokines in the sera of PD patients
carrying LRRK2 G2019S, as well as in asymptomatic carriers
of the mutation (Dzamko et al., 2016). Further evidence comes
from a more recent study showing that mice overexpressing
mutant but not WT LRRK2 displayed an exacerbated long-term
response to treatment with the systemic inflammatory insult
LPS that leads to neuroinflammation and neurodegeneration

in the SN. Intriguingly, the enhanced neuroinflammation was
induced by peripheral cytokines, rather than by dysfunctional
microglia or infiltration of monocytes or T-cells (Kozina et al.,
2018). An independent study confirmed that a single peripheral
LPS dose causes significantly increased neuroinflammation in
LRRK2 G2019S rats, but not in non-transgenic rats, 10 months
after treatment. However, the lack of dopaminergic degeneration
in this study, despite the chronic neuroinflammation, suggests
that multiple inflammatory triggers may be required for LRRK2
mutation carriers to develop PD (Schildt et al., 2019). This is in
contrast to acute responses to LPS treatment as no differences in
cytokine levels and microglial changes were observed in G2019S
mice compared to control mice, 90 min after LPS treatment
(Schildt et al., 2019).

Taken together, pathogenic LRRK2 mutations appear to
enhance the immune response during inflammatory conditions,
such as chronic inflammatory diseases or acute infections,
through immune cells from the periphery, which might in
turn increase the susceptibility to develop PD (Figure 1). More
evidence that LRRK2 is involved in such inflammatory conditions
is discussed below.

THE LINK BETWEEN LRRK2 AND
INFLAMMATORY DISEASES

LRRK2 appears to be closely linked to inflammatory bowel
disease (IBD), which is a chronic inflammatory condition of the
digestive tube that includes Crohn’s disease (CD) and ulcerative
colitis (UC). As mentioned previously, IBD is an important
risk factor to develop PD (Wan et al., 2018; Park et al., 2019;
Weimers et al., 2019; Zhu et al., 2019) and evidence points to
LRRK2 as a potential link between these apparently unrelated
disorders. An association between the LRRK2 locus and IBD
has been identified by GWAS (Liu et al., 2015; De Lange
et al., 2017) and exome sequencing revealed that functional
LRRK2 variants confer shared effects on the risk to develop CD
and PD (Hui et al., 2018). Dendritic cells from CD patients
were also shown to exhibit increased LRRK2 levels in vitro.
However, the mechanisms whereby LRRK2 can increase the risk
to develop IBD remain elusive as we only begin to understand
its function in the gut (Takagawa et al., 2018). In a mouse
model for UC-like pathology based on dextran sulfate sodium
(DSS), transgenic mice overexpressing LRRK2 WT exhibited
more severe colitis and increased proinflammatory cytokine
production compared to littermate controls. LRRK2 kinase
inhibitor treatment ameliorated the phenotype in transgenic and
control mice (Takagawa et al., 2018), pointing to a role for the
LRRK2 kinase activity in IBD pathogenesis. This is in line with
the increased kinase activity of the LRRK2 variant N2081D,
which is a risk variant for CD (Hui et al., 2018). In contrast,
an independent study reported exacerbated colitis in LRRK2
deficient mice (Liu et al., 2011), indicating that the exact relation
between LRRK2 and IBD requires further investigation.

Besides IBD, LRRK2 has also been studied in the context
of peripheral infections, especially infections affecting the
gastrointestinal tract. LRRK2 was reported to be protective
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against intestinal Listeria monocytogenes infection (Zhang et al.,
2015). Similarly, LRRK2 appeared crucial for the antibacterial
activity of macrophages during infection with Salmonella
typhimurium in vitro (Gardet et al., 2010), which was confirmed
in vivo using mice lacking LRRK2 (Gardet et al., 2010; Liu et al.,
2017; Shutinoski et al., 2019). The protective effects of LRRK2
during bacterial infections seem to be mediated by its kinase
activity since knockin mice expressing the G2019S variant were
able to better control the infection, in contrast to mice expressing
the kinase dead variant D1994S (Shutinoski et al., 2019).

The idea that LRRK2 may play a crucial role in the gut immune
cells fits perfectly in the concept of the gut-brain-axis in PD.
This connection between both organs could explain the intestinal
symptoms in PD patients, the pattern of αSYN spreading
described by the Braak stages and the link between systemic
inflammation and neuroinflammation (Mulak and Bonaz, 2015;
Santos et al., 2019). The involvement of LRRK2 in this gut-
brain axis remains unclear but might be related to its function
in immune cells given that LRRK2 is upregulated in intestinal
immune cells of CD patients, where it might act as an IFN-γ
target gene (Gardet et al., 2010). In addition, increased LRRK2
activity has been shown to alter bone marrow myelopoiesis and to
have an impact on the intestinal immune system by suppressing
Th17 cell differentiation (Park et al., 2017).

The role of LRRK2 has also been studied in inflammatory
conditions affecting other organs. In line with the reported
protective effects against intestinal infections, mouse
pups carrying the LRRK2 G2019S mutation displayed
reduced viral titers during reovirus (serotype 3TD)-induced
encephalitis. Curiously, mutant LRRK2 induced an enhanced
proinflammatory state that was protective during sepsis, but
proved to be detrimental during encephalitis as it was linked to
a higher mortality rate (Shutinoski et al., 2019). Intriguingly,
opposite findings were described for Mycobacterium tuberculosis,
with an enhanced bacterial control at early stages of infection
in LRRK2 KO animals (Härtlova et al., 2018). LRRK2 was also
found not protective in the autoimmune disease systemic lupus
erythematosus, since LRRK2 levels in B cells positively correlated
with disease severity (Zhang et al., 2019).

CONCLUDING REMARKS

A better understanding of the etiology of PD will be key to
find a disease-modifying therapy. However, it has become more
and more clear that PD is a complex disease with different
factors and pathogenic mechanisms. The multiple-hit hypothesis
for PD suggests that an interaction between genetic and/or
environmental risk factors is needed to trigger the disease and
LRRK2 fits perfectly within this model. The G2019S LRRK2
mutation is highly prevalent and the most common cause
of familial PD, but it has a surprisingly low penetrance of
∼ 25–40% (Goldwurm et al., 2007; Marder et al., 2015; Lee
et al., 2017). Environmental triggers such as inflammation could
synergize with the mutated protein to induce a detrimental
effect. This idea is supported by the finding that inflammation
is required to induce a PD phenotype in mice carrying mutant
LRRK2 (Kozina et al., 2018). Additional multiple-hit studies to

model LRRK2-PD might be instrumental to further unravel the
pathogenic role of LRRK2.

The present knowledge of LRRK2 biology strongly points
toward the immune system. Future studies focusing on peripheral
immune cells are required, given the low LRRK2 expression
in microglia and dopaminergic neurons (Gaiter et al., 2006;
Melrose et al., 2006). It is intriguing to see that current studies
point to opposite inflammatory effects of LRRK2 in the CNS
vs. the periphery. While LRRK2 activity might be indirectly
detrimental for the brain, it seems protective against some
inflammatory insults in the periphery. LRRK2 kinase activity
is positively linked to a pro-inflammatory response and might
thus be beneficial to control peripheral pathogen infections. This
might help explain the high prevalence of the LRRK2 G2019S
mutation as an evolutionary advantage. Still, the protective
effect of LRRK2 activity appears to depend on the specific
pathogen. This apparent incongruency might be explained by
differences in microorganisms or insults studied, and/or cell
type-specific functions of LRRK2. One could argue that LRRK2
mediates different functions in different immune cells. This
could clarify why LRRK2 protects against S. typhimurium and
L. monocytogenes infections, which rely on the gut immune cells,
but at the same time aggravates M. tuberculosis infections, which
affects the respiratory system. This cell type/organ specificity is
in line with the observation that LRRK2 KO mice are more
susceptible to intestinal, but not systemic L. monocytogenes
infections (Zhang et al., 2015).

The prominent role of LRRK2 in peripheral immune reactions
that might lead to dysregulated microglial activity and thus
contribute to neuroinflammation and neurodegeneration in
PD can provide new therapeutic approaches. However, it also
potentially complicates current therapeutic strategies relying on
highly brain permeable LRRK2 kinase inhibitors. Although no
side effects have been reported upon inhibition of LRRK2 in
the brain, decreased systemic LRRK2 activity may induce a
more permissive immune system, resulting in an inadequately
controlled infection, dependent on the pathogen.

It will be interesting for future studies to identify in more
detail the role of (mutant) LRRK2 during peripheral infections
in terms of pathogen-specific mechanisms and the involvement
of specific immune cells. These kind of studies will not only
provide insight in the biology of inflammatory processes and thus
support the development of specific therapies but might also help
to understand how infections and environmental factors increase
PD susceptibility.
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