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Background: DNA mismatch repair (MMR) deficiency has attracted

considerable attention as a predictor of the immunotherapy efficacy of solid

tumors, including gastric cancer. We aimed to develop and validate a

computed tomography (CT)-based radiomic nomogram for the preoperative

prediction of MMR deficiency in gastric cancer (GC).

Methods: In this retrospective analysis, 225 and 91 GC patients from two

distinct hospital cohorts were included. Cohort 1 was randomly divided into a

training cohort (n = 176) and an internal validation cohort (n = 76), whereas

cohort 2 was considered an external validation cohort. Based on repeatable

radiomic features, a radiomic signature was constructed using the least

absolute shrinkage and selection operator (LASSO) regression analysis. We

employed multivariable logistic regression analysis to build a radiomics-based

model based on radiomic features and preoperative clinical characteristics.

Furthermore, this prediction model was presented as a radiomic nomogram,

which was evaluated in the training, internal validation, and external validation

cohorts.

Results: The radiomic signature composed of 15 robust features showed a

significant association with MMR protein status in the training, internal

validation, and external validation cohorts (both P-values <0.001). A radiomic

nomogram incorporating a radiomic signature and two clinical characteristics

(age and CT-reported N stage) represented good discrimination in the training

cohort with an AUC of 0.902 (95% CI: 0.853–0.951), in the internal validation

cohort with an AUC of 0.972 (95% CI: 0.945–1.000) and in the external

validation cohort with an AUC of 0.891 (95% CI: 0.825–0.958).
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Conclusion: The CT-based radiomic nomogram showed good performance

for preoperative prediction of MMR protein status in GC. Furthermore, this

model was a noninvasive tool to predict MMR protein status and guide

neoadjuvant therapy.
KEYWORDS

gastric cancer (GC), radiomics, microsatellite instability, nomogram, LASSO, DNA
mismatch repair deficiency
Introduction

Gastric cancer (GC) is one of the most common malignant

diseases and ranks as the fourth leading cause of cancer-related

death worldwide (1). According to 2020 statistics, the incidence

and mortality of GC both ranked third among solid tumors in

China (1). The first diagnosis of GC patients with locally

advanced disease is approximately two-thirds, so most

guidelines recommend comprehensive therapy as the standard

treatment method, mainly including neoadjuvant therapy plus

surgery (2, 3). Kim et al. found that GC patients with cStage III

disease with microsatellite instability-high (MSI-H) had better

survival than those with microsatellite stability (MSS) after

neoadjuvant chemotherapy (4). A meta-analysis of four

randomized clinical trials of adjuvant chemotherapy based on

immunotherapy in GC showed that the overall survival of GC

patients with microsatellite instability (MSI) was significantly

better than that of patients with MSS (hazard ratio [HR], 0.69;

95% CI, 0.55 to 0.88; P = 0.003) (5). However, An et al. showed

that in MSI-H patients with stage II or III GC, adjuvant

chemotherapy based on 5-FU did not receive any benefit,

which gives a guideline that these patients are not suitable for

the 5-FU-based chemotherapy drugs (6). MSI is caused by a lack

of DNA mismatch repair protein deficiency (dMMR), which

accounts for 6%–25% of GC patients (7). Interestingly, MSI

creates a high mutation burden, increases the number of

neoantigens in tumor tissues, and these individuals exhibit

high levels of immune checkpoint molecules (8, 9). As a result,

comprehensive therapy based on anti-PD-1/-L1 Abs may be a

good option for MSI GC patients. Thus, assessing the MMR

status of all GC patients is a level I recommendation in the

current guidelines.

In clinical practice, immunohistochemistry (IHC) or DNA

detection is the primary technology to evaluate MSI using

postoperative tumor tissues. Although preoperative

gastroscopy tumor samples could also be used to detect MSI,

sampling bias and poor DNA quality may lead to misleading

findings (10, 11). Thus, there is insufficient evidence to choose an

appropriate neoadjuvant therapy for patients who are suffering
02
from locally advanced GC. Furthermore, gastroscopic biopsy is a

procedure that requires good physical condition for the patient,

but it cannot be conducted on patients who have inadequate

circumstances, including poor coagulation, cardiopulmonary

dysfunction, and unacceptable gastroscopy. In some primary

hospitals, there is difficulty in implementing these technologies.

Therefore, developing a relatively non-invasion and acceptable

strategy for detecting the MMR status of GC patients is an

urgent task (12).

In comparison to gastroscopic biopsy and surgery without

invasive injury, computed tomography (CT) is a noninvasive

technology commonly used for the diagnosis, response

evaluation, and postoperative follow-up of gastric cancer (13).

Prior studies have demonstrated that quantitative radiomic

features of CT images are associated with elements of the

tumor microenvironment, such as the tumor stroma, gene

expression level, and even tumor-infiltrating lymphocytes (11,

14, 15). Referring to the immunohistochemistry scores for a-
smooth muscle actin and periostin, Yuming et al. built a deep-

learning model to precisely assess tumor stroma using CT

images in GC, which can guide treatment decisions and

predict prognosis for patients (11). Human epidermal growth

factor receptor 2 (HER2) status may be accurately predicted

using a radiomic nomogram that combines a radiomic signature

and carcinoembryonic antigen level (CEA) (16). Currently,

Okihide et al. utilized five clinicopathological features (age,

sex, location, T stage, and distant metastasis) to predict MSI

(AUC = 0.82, 95% CI: 0.75–0.87) in GC. However, the main

collecting clinicopathological features are derived from

postoperative gastrectomy (17). As can be observed, predicting

MMR status of GC patients based on clinicopathological features

falls well short of clinical diagnostic standards. Furthermore,

MSI was associated with tumor location, size and lymph node

status in GC CT images (18). According to the above results,

constructing a prediction model based on radiomic features may

produce the desired result for the MSI diagnosis.

Although model-based radiomic features perform well in the

identification of MMR deficiency in colorectal cancer (8, 19), this

is the first study to employ radiomic features to predict MMR
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status in GC. This study aimed to develop and validate a CT-

based radiomic nomogram for the preoperative prediction of

MMR deficiency in GC.
Materials and methods

Patients

This retrospective study was approved by the Ethics

Committee of the First Affiliated Hospital of Nanchang

University and the patients. Cohort 1 included 252 GC

patients who underwent radical gastrectomy were enrolled in

this study with preoperative contrast-enhanced CT examination

from June 2018 to December 2021 at the First Affiliated Hospital

of Nanchang University (Donghu Hospital). Another cohort 2

collected 91 GC patients from April 2020 to December 2021 at

the First Affiliated Hospital of Nanchang University (Xianghu

Hospital). The inclusion criteria were as follows (1):

histologically proven diagnosis of GC; (2) preoperative

contrast-enhanced CT within a month; (3) MMR protein

status tested by IHC; and (4) no preoperative adjuvant

therapy. The exclusion criteria were as follows: (1) any

preoperative adjuvant therapy; (2) poor quality CT images:

poor filling of the stomach with unsatisfactory gastric

distention and substantial motion artifacts; and (3) lack of

clinical data. Cohort 1 was randomly divided into the training

(n = 176) and internal validation (n = 76) cohorts at a rate of 7:3

(Figure 1). The training cohort contained proficient DNA

mismatch repair (pMMR, n = 105) and dMMR (n = 71). The
Frontiers in Oncology 03
internal validation cohort contained pMMRs (n = 46) and

dMMRs (n = 30). Cohort 2 was used as an external validation

cohort, which contained pMMR (n = 64) and dMMR (n = 27).

The collected preoperative clinical characteristics of the

patients included age, body mass index (BMI), sex, tumor

location, CEA status (normal or abnormal), CA19-9 status

(normal or abnormal), CA12-5 status (normal or abnormal),

AFP status (normal or abnormal), and CT-reported T stage (T1,

T2, T3, T4) and N stage (N0, Nx). The normal range of CEA,

CA19-9, CA12-5, and AFP was, respectively, 0–6.5 ng/ml, 0–27

U/ml, 0–35 U/ml, and 0–7 ng/ml. Additionally, we measured

several semantic features to compare the difference in predictive

level with radiomic features, including long diameters of the

tumor, short diameters of the tumor, tumor thickness, and CT

value of the tumor in the portal phase. The reference for CT

imaging classification of gastric cancer was based on the Chinese

Society of Clinical Oncology (CSCO): Clinical guidelines for the

diagnosis and treatment of gastric cancer, 2021 (20). Reference

for CT imaging classification of gastric cancer can be referred to

Supplementary Figure 1.
MMR protein status evaluation

To determine MMR protein status, we employed IHC to test

four correlated proteins, including mutL homolog 1 (MLH1),

mutS homolog 2 (MSH2), mutS homolog 6 (MSH6) and

mismatch repair system component (PMS2). According to

MSI status, GC patients were divided into three groups: MSI-

H, MSI-L, and MSI stability (MSS). The expression level of
FIGURE 1

The technology roadmap represents workflow in this study. The GC cohort 1 was collected from the First Affiliated Hospital of Nanchang
University (Donghu hospital), and the cohort 2 was collected from the First Affiliated Hospital of Nanchang University (Xianghu hospital).
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MMR proteins was used to diagnose MSI status. The positive

staining of all four proteins represented MSS/MSI-L (pMMR),

but the MMR proteins with anyone assessed as negative

represented MSI-H (dMMR) (21).
CT image acquisition

Before abdominal contrast-enhanced CT, all patients

received Racanisodamine Hydrochloride injection 20 mg via

intramuscular injection and drank 1,000–2,000 ml of water. The

picture archiving and communication system (Carestream,

Canada) was used to export CT images of the portal venous

phase. Contrast-enhanced CT scanning of cohort 1 was

performed using a 192-channel CT (Siemens Healthcare) in

Donghu hospital. Cohort 2 was scanned by 256-channel CT

(Siemens Healthcare) and 320-channel CT (Aquilion ONE) in

Xianghu hospital. The acquisition parameters were as follows:

tube voltage of 80 to 120 kVp; tube current of 120–300 mAs; the

pitch of 0.6 to 1.25 mm; an image matrix of 512 × 512; and

reconstruction slice thickness of 1 or 2 mm. After intravenous

injection of contrast media (1.5 ml/kg, at a rate of 2.5–3.5 ml/s),

the arterial phase and portal venous phase were acquired within

25–30 s and 65–70 s, respectively.
Radiomic features extraction

The extent of the tumor lesion was enhanced and more

easily distinguished between the tumor and peripheral normal

tissue during the portal venous phase, and many previous studies

used this phase to segment tumor lesions (22, 23). In this study,

we employed ITK-SANP software (version 3.6.0, USA) to

manually segment regions of interest (ROIs) (Figure 2).
Frontiers in Oncology 04
Lesions were located by significantly enhanced parts and

thickening of the gastric wall for incorporation with the

clinical characteristics of pathology specimens (24). The ROIs

were manually drawn carefully to highlight neighboring upper

and lower slices of the solid tumor, while we were careful to

avoid involving the normal gastric wall and nearby air or fluid

(8). Radiologist 1 (Zhu with 5 years of experience) delineated the

ROI of all 343 GC patients. We randomly selected 30 patients,

re-drew their ROIs for feature extraction by Zhu one month

later, and analyzed the result to prevent intraobserver differences

from affecting the reproducibility of radiomic features. To

confirm the interobserver reproducibility, a second radiologist

(Zhou, who has 10 years of experience) delineated the ROIs for

these 30 patients (16). Radiomic features were extracted using

PyRadiomics software (version 2.2.0) (25). Finally, eight

hundred and fifty-one radiomic features were extracted and

classified into four categories: shape, size, texture, and wavelet

(Supplementary Table S1).
Radiomic feature selection and radiomic
signature establishment

Intra- and interclass correlation coefficients (ICCs) were

used to evaluate the reproducibility and robustness of the

extracted radiomic features. Only radiomic features with an

ICC ≥0.8 were considered highly stable and retained for

subsequent analysis. A Z-score normalization was used to

standardize the radiomic feature data in the training, internal

validation, and external validation cohorts. Then, we employed

the Mann–Whitney U test to identify significantly different

features between the pMMR and dMMR groups, with P <0.05

in the training cohort (15). The least absolute shrinkage and

selection operator (LASSO) regression was used for feature
FIGURE 2

Manual segmentation of tumor with a GC patient. (A) A slice portal venous phase of contrast-enhanced CT images of the tumor. (B) the red
label masks a slice CT image of the tumor with manual segmentation. (C) Three-dimensional (3D) image of the tumor with
manual segmentation.
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selection and radiomic signature construction in the training

cohort. We used 10 cross-validations to define the regularization

parameter l. Finally, the radiomic score (Rad-score) was

developed and demonstrated as a formula that was calculated

by determining a linear combination of the selected features and

the product of their respective coefficients. The R software

package “Glmnet” was used for LASSO logistic regression.

The discriminative ability of the radiomic signature for

predicting MMR deficiency was based on the receiver

operating characteristic (ROC) curve and the area under the

curve (AUC).
Establishment of the
radiomic nomogram

A univariate logistic regression analysis was used

to investigate the correlation between MMR deficiency

and clinical characteristics in cohort 1 GC patients.

Multivariate logistic regression analysis was used to build a

prediction model by incorporating radio-score and clinical

characteristics with P-values <0.05 in the univariate logistic

regression analysis. The chosen features with P-values <0.05 in

the multivariable analysis were used to build a radiomics-based

model, which was presented as a radiomic nomogram in the

training cohort. The ROC curve was applied to evaluate the

discriminative performance of the radiomic nomogram in

training, internal validation, and external validation cohorts.

A calibration curve was applied to evaluate the radiomic

nomogram in all cohorts. To estimate the clinical usefulness

of the prediction models, decision curve analysis (DCA) was

performed to assess the net benefit of the radiomic nomogram

and signature in the training, internal validation, and external

validation cohorts.
Statistical analysis

In this study, we employed IBM SPSS Statistics (Version

20.0, USA) to assess the clinical data. The t-tests or the Mann–

Whitney U-test were used to compare the numerical data (age

and BMI), while the Chi-square or Fisher tests were used to

compare the categorical data (sex, sex, tumor location, CEA,

CA19-9, CA12-5, AFP level, CT-reported T stage, and N stage)

in the training, internal validation, and external validation

cohorts. Furthermore, the t-test or the Mann–Whitney U-test

was used to assess the correlation between radiomic features and

MMR status in the training cohort, which was the first

dimensionality reduction. The R software (version 3.3.1,

Austria; http://www.R-project.org) was used to study the

radiomic feature data and build a prediction model. A P-value

of <0.05 was defined as statistically significant.
Frontiers in Oncology 05
Results

Patients’ clinical characteristics

The characteristics of GC patients are presented in Table 1.

Cohort 1 was randomly divided into a training cohort (n = 176,

average age: 62 years old; range: 23–87 years old) with 107 males

and 69 females, and an internal validation cohort (n = 76,

average age: 62 years old; range: 30–83 years old) with 50

males and 26 females. There were 91 GC patients, 55 males

and 36 females (average age: 61 years old; range: 37–78 years

old) in the external validation cohort. In the training cohort,

statistically significant differences in age, sex, tumor location,

CEA level, and CT-reported T stage were identified between

pMMR and dMMR patients (P-value <0.05), while other clinical

features (BMI, CA19-9 level, CA125 level, AFP level, and CT-

reported N stage) showed no statistically significant differences

(P-value >0.05). Furthermore, we found that age and CT-

reported N stage showed statistically significant differences

between pMMR and dMMR patients in the internal validation

cohort. There were also only two clinical features (sex and CEA

level) that had significant differences in the external

validation cohort.
Radiomic signature establishment

Of eight hundred and fifty-one radiomic features extracted

from the delineated ROIs, 49 features with ICCs <0.8 were

excluded (Supplementary Table S2). A total of 802 radiomic

features were found to be substantially different between pMMR

and dMMR patients, and they were used to build a radiomic

signature via least absolute shrinkage and selection operator

regression with tenfold cross-validation. Finally, 15 radiomic

features were chosen to evaluate the Rad-score of each GC

patient (Supplementary Table S3). The difference in Rad-

scores was statistically significant between pMMR and dMMR

patients in training, internal validation, and external validation

cohorts (P-value <0.001). The radiomic signature in the training

cohort is depicted in Figure 3.

The Rad-score of the dMMR group was significantly higher

than that of the pMMR group in training, internal validation,

and external validation cohorts. The AUC of the radiomic

signature for the training cohort was 0.876 (95% CI: 0.824–

0.928) (Figure 4A). The training cohort had a sensitivity of

77.4%, a specificity of 83.8%, and an accuracy of 81.3%. In the

internal validation cohort, the AUC of the radiomic signature

was higher than that of the training cohort (AUC = 0.966, 95%

CI: 0.933–0.999) (Figure 4B). The internal validation cohort had

a sensitivity of 75.9%, a specificity of 95.7%, and an accuracy of

88.0%. Furthermore, the AUC of the radiomic signature for the

external validation cohort was 0.913 (95% CI: 0.857–0.969) with
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a sensitivity of 74.1%, specificity of 84.4%, and accuracy of

81.3% (Figure 4C).
The performance difference between CT
features and selected radiomic features
to predict MMR status

To compare the performance between semantic features and

15 selected radiomic features to predict MMR status, we

constructed predictive models, respectively. The highest AUC

values of semantic features were 0.64 (95% CI: 0.52–0.75) and

0.64 (95% CI: 0.53–0.74) in the internal validation and external

cohorts (Table 2). However, 15 selected radiomic features
Frontiers in Oncology 06
showed significantly better performance, with the highest AUC

values of 0.82 (95% CI: 0.72–0.90) and 0.71 (95% CI: 0.60–0.80)

in the internal validation and external cohorts (Table 3). The

AUC value of the radiomic signature was also significantly

higher than the combined CT features model in the internal

validation and external cohorts.
Construction of radiomic nomogram

In the univariate and multivariate logistic regression

analyses, age, CT-reported N stage, and Rad-score were

independent predictors for assessing MMR status. In the

univariate analysis, sex and CEA level were significantly
TABLE 1 Characteristics of GC patients in training, internal validation and external validation cohorts.

Characteristics

Training cohort
(n = 176)

P-value

Internal validation cohort
(n = 76)

P-value

External validation cohort
(n = 91)

P-value
pMMR dMMR pMMR dMMR pMMR dMMR

Age (year) 59.70 ± 9.91 65.94 ± 11.47 <0.001 58.15 ± 11.72 64.23 ± 12.18 0.033 61.72 ± 8.15 61.30 ± 11.29 0.828

BMI 22.10 ± 3.39 21.98 ± 3.47 0.825 22.29 ± 3.08 22.40 ± 2.81 0.884 22.54 ± 2.93 22.80 ± 3.68 0.714

Sex 0.024 0.715 0.001

Male 71 36 31 19 46 9

Female 34 35 15 11 18 18

Tumor location 0.039 0.855 0.558

Upper-third 31 10 11 6 15 4

Middle-third 26 17 10 8 18 10

Lower-third 48 44 25 16 31 13

CEA level 0.003 0.299 0.030

Normal 87 69 38 28 54 27

Abnormal 18 2 8 2 10 0

CA19-9 level 0.617 0.694 0.719

Normal 86 56 37 23 50 22

Abnormal 19 15 9 7 14 5

CA12-5 level 0.781 1.000 0.579

Normal 98 67 44 29 62 25

Abnormal 7 4 2 1 2 2

AFP level 0.722 0.153 0.508

Normal 101 69 46 28 63 26

Abnormal 4 2 0 2 1 1

CT-reported T stage <0.001 0.258 0.141

T1 18 11 7 6 6 2

T2 16 12 4 3 7 4

T3 32 19 14 14 19 14

T4 39 29 21 7 32 7

CT-reported N stage 0.089 0.019 0.647

N0 42 45 18 20 48 19

N1 + N2 + N3 63 26 28 10 16 8

Rad-scores −2.36 ± 2.63 1.01 ± 1.73 <0.001 −3.52 ± 4.00 1.67 ± 1.57 <0.001 −2.33 ± 3.80 0.93 ± 1.24 <0.001
front
pMMR, proficient DNA mismatch repair; dMMR, deficient DNA mismatch repair; BMI, body mass index; CEA normal range: 0–6.5 ng/ml; CA19-9 normal range: 0-27 U/ml; CA12-5
normal range: 0-35 U/ml, AFP normal range: 0-7 ng/ml. The bolded P-value showed statistically significant (P-value<0.05).
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correlated with MMR status, while no statistically significant

correlation was found in the multivariate analysis (Table 4).

Then, we used age, CT-reported N stage, and the Rad-score to

build a radiomic nomogram to predict MMR status in the three

cohorts (Figure 6A). The radiomic nomogram showed good

performance for predicting MMR status in the training cohort

with an AUC of 0.902 (95% CI: 0.853–0.951), in the internal

validation cohort with an AUC of 0.972 (95% CI: 0.945–1.000),

and in the external validation cohort with an AUC of 0.891 (95%

CI: 0.825–0.958) (Figure 5). The training cohort showed a

sensitivity of 80.3%, a specificity of 91.4%, and an accuracy

of 86.9%. The internal validation cohort had a sensitivity of

70.0%, a specificity of 97.8%, and an accuracy of 86.8%. The

external validation cohort had a sensitivity of 77.8%, a specificity

of 81.3%, and an accuracy of 80.2%. The calibration curve of

the radiomic signature and nomogram of three cohorts is
Frontiers in Oncology 07
presented in Figure 6B and Supplementary Figure 2,

suggesting that the prediction model was acceptable. The

DCA showed that the radiomic signature and nomogram

would offer a more net benefit than either the default of all

dMMR or non-dMMR in the three cohorts (Figure 6C and

Supplementary Figure 2).
Discussion

In this study, we developed and validated a prediction model

to assess the MMR status of GC patients based on a radiomic

signature and two clinical features: age and CT-reported N stage.

The radiomic nomogram performed well in predicting MMR

status in the training (AUC = 0.902), internal validation (AUC =

0.972), and external validation (AUC = 0.891) cohorts.
BA

FIGURE 3

Feature selection using LASSO logistic regression and the least absolute shrinkage. (A) LASSO coefficient profiles of the features. Different color
line shows the corresponding coefficient of each feature. (B) Tuning parameter (l) selection in LASSO model. The first vertical line was drawn
via ten-fold cross-validation based on minimum criteria.
B CA

FIGURE 4

The ROC curves of the radiomic signature in the (A) training cohort, (B) internal validation cohort, and (C) external validation cohort.
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An increasing number of studies have confirmed that MSI-H

or MMR deficiency is a remarkable biomarker for the diagnosis,

treatment, and prognosis of GC patients (26, 27). MSI is defined

as a phenotype of high mutation genomic MS, which is on

account of MMR deficiency. Currently, MSI or MMR deficiency

is detected by IHC and PCR-based molecular testing using

tumor tissue after gastrectomy (28, 29). However,

postoperative pathological results did not give timely advice on

neoadjuvant therapy for individuals with locally advanced GC.

Although preoperative gastroscopy can sample tumor tissue for

testing MMR status, two limitations remain: histological

assessment is also impacted by tumor tissue dynamic

progression and geographic heterogeneity. Ottini et al.

confirmed the heterogeneity of intratumoral MSI patterns
Frontiers in Oncology 08
observed in GC biology by assessing the microsatellite allele

pattern in various sections of the same tumor studied (30).

Similarly, Mathiak et al. showed that a biphasic MSH2

expression status in the same GC neoplasm (5%–23% of the

tumor area was MSS and 85% MSI) (31). Radiomics features

extracted from CT images were used in this study to assess the

whole tumor and were easily repeated throughout the treatment

period with no invasion. Previous studies showed that dMMR

GC was significantly associated with CT semantic features,

including a lower location, fewer lymph nodes, and smaller

tumor thickness, implying that dMMR may be evaluated via

radiomic features (18). To our knowledge, this is the first study

to assess the potential of radiomic features to predict MMR

status in GC based on preoperative clinical characteristics. Our
TABLE 2 The performance of CT features extracted by radiologist to predict MMR status

Semantic features
AUC (95%CI)

Internal validation cohort External validation cohort

Long diameters of tumor (mm) 0.57 (0.45–0.69) 0.63 (0.52–0.73)

Short diameters of tumor (mm) 0.54 (0.42–0.65) 0.55 (0.44–0.66)

Tumor thickness (mm) 0.53 (0.42–0.65) 0.58 (0.47–0.68)

CT value of tumor in PP (HU) 0.53 (0.41–0.65) 0.64 (0.53–0.74)

Location (up and mid vs low) 0.53 (0.42–0.65) 0.57 (0.46–0.67)

CT-reported N stage (N0 vs Nx) 0.64 (0.52–0.75) 0.52 (0.42–0.63)

CT-reported T stage 0.60 (0.49–0.71) 0.60 (0.49–0.70)

Combined semantic features model 0.63 (0.49–0.76) 0.53 (0.39–0.66)
MMR status. 95% CI, 95% confidence interval.
TABLE 3 The performance of selected radiomic features to predict MMR status.

Radiomics features
AUC (95% CI)

Internal validation cohort External validation cohort

Original shape elongation 0.82 (0.72–0.90) 0.68 (0.57–0.77)

Original shape flatness 0.61 (0.49–0.72) 0.57 (0.45–0.66)

Original shape surface area 0.68 (0.57–0.79) 0.59 (0.48–0.69)

Original glcm Imc2 0.72 (0.60–0.82) 0.68 (0.57–0.77)

Wavelet LHL glcm cluster shade 0.56 (0.44–0.67) 0.58 (0.48–0.69)

Wavelet LHL glcm cluster tendency 0.61 (0.50–0.72) 0.69 (0.59–0.78)

Wavelet LHL glcm Idn 0.67 (0.56–0.78) 0.54 (0.43–0.64)

Wavelet HLL glcm Idn 0.66 (0.55–0.77) 0.59 (0.48–0.69)

Wavelet LHL glrlm run entropy 0.65 (0.53–0.76) 0.70 (0.60–0.79)

Wavelet LHH first order 10 percentile 0.53 (0.41–0.64) 0.59 (0.48–0.69)

Wavelet HHH first order total energy 0.66 (0.54–0.76) 0.61 (0.50–0.71)

Wavelet HHL first order total energy 0.65 (0.53–0.76) 0.63 (0.52–0.73)

Wavelet HLH glszm small area high gray level emphasis 0.69 (0.58–0.79) 0.68 (0.57–0.77)

Wavelet LHL gldm small dependence emphasis 0.56 (0.44–0.67) 0.71 (0.60–0.80)

Wavelet HHL glrlm low gray level run emphasis 0.67 (0.55–0.77) 0.63 (0.52–0.73)

Radiomics signature 0.97 (0.93–1.00) 0.91 (0.86–0.97)
95% CI, 95% confidence interval.
frontiersin.org

https://doi.org/10.3389/fonc.2022.883109
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zeng et al. 10.3389/fonc.2022.883109
study confirmed that the radiomic signature based on CT images

performed well in predicting the MMR status of GC in the

training (AUC = 0.876, 95% CI: 0.824–0.928), internal validation

(AUC = 0.966, 95% CI: 0.933–0.999), and external validation

cohorts (AUC = 0.913, 95% CI: 0.857–0.969). In comparison to

colorectal cancer research, our prediction model appears to have

greater diagnostic power for assessing MMR GC status (8, 19).

Furthermore, a gastroscopic biopsy or surgery is a procedure

that requires good physical condition for the patient, but it

cannot be conducted on patients who have inadequate

circumstances. Thus, this prediction model was a useful

supplement strategy for predicting the MMR status of GC

with a relatively non-invasion technique.

Radiomics converts medical pictures into mineable data by

high-throughput extraction of numerous quantitative based on

shape, size, volume, and other factors, which has proved useful

in the investigation of diseased conditions (32, 33). Radiomic
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features differ from traditional semantic features of medical

images extracted by radiologists in that they contain more

messages about tumors and are more objective (33). In the

radiomic signature, elongation represented the best independent

risk to predict MMR status in GC with an AUC of 0.82 (95% CI:

0.72–0.90) in the internal validation cohort. Likewise, shape-

related radiomic features, such as elongation, flatness, and

surface area, outperformed semantic shape features extracted

by radiologists. Several similar studies confirmed that

elongation, flatness, standard deviation, skewness, kurtosis,

and tumor contrast were promising radiomic features for gene

expression prediction (34, 35). In particular, elongation and

flatness features showed better identification of high Ki-67

expression in adrenocortical carcinoma by the Spearman rank

method (36). The remaining independent predictors of radiomic

features were 11 wavelet features and one gray level co-

occurrence matrix feature. The AUC value of the radiomic
B CA

FIGURE 5

The ROC curves of the clinical risk, radiomic signature and radiomic nomogram (radiomic signature + clinical risk) in the (A) training cohort,
(B) internal validation cohort, and (C) external validation cohort.
TABLE 4 Univariate and multivariate logistic regression analysis of risk factors of MMR status.

Variable
Univariate Logistic Regression Multivariate Logistic Regression

OR (95% CI) P value OR (95% CI) P value

Sex (male vs female) 0.57 (0.34–0.97) 0.036 0.49 (0.21–1.12) 0.094

Age 1.05 (1.02–1.08) <0.001 1.05 (1.01–1.09) 0.014

BMI 0.99 (0.92–1.07) 0.900

CEA level (normal vs abnormal) 0.20 (0.07–0.58) 0.003 2.94 (0.82–10.50) 0.097

CA19-9 level (normal vs abnormal) 1.22 (0.65–2.28) 0.528

CA12-5 level (normal vs abnormal) 0.82 (0.26–2.52) 0.732

AFP level (normal vs abnormal) 1.51 (0.37–6.20) 0.563

Location (up and mid vs low) 1.31 (0.90–1.90) 0.146

CT-reported N stage (N0 vs Nx) 0.36 (0.21–0.61) <0.001 2.30 (1.04–5.07) 0.038

CT-reported T stage 0.94 (0.75–1.19) 0.654

Rad-scores 3.23 (2.38–4.38) <0.001 2.98 (2.18–4.08) <0.001
OR, odds ratio; 95% CI, 95% confidence interval; BMI, body mass index; CEA normal range: 0–6.5 ng/ml; CA19-9 normal range: 0–27 U/ml; CA12-5 normal range: 0–35 U/ml, AFP normal
range: 0–7 ng/ml. The bolded P-value showed statistically significant (P-value <0.05).
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signature was significantly higher than the combined CT

features model in the internal validation and external cohorts

with 0.97 (95% CI: 0.93–1.00) and 0.91 (95% CI: 0.86–0.97).

Several previous researches demonstrated that wavelet features

were significantly correlated with heterogeneity indices at the

cellular level, which were promising radiomic features to

evaluate prognosis in colorectal liver metastases patients (37).

In this study, the radiomic signature that we constructed showed

a reliable model to predict MMR status in GC, outperforming

traditional semantic features extracted by radiologists.

Additionally, many studies have focused on the correlation

between MMR status and different clinical features, which can be

used to discriminate molecular expression levels and give

individualized therapeutic guidance (38, 39). Previous studies
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showed that dMMR GCs were significantly correlated with

female sex, advanced age, distal location, and intestinal type

(40, 41). Martinez and coworkers discovered that GC patients

with dMMR showed an earlier clinical stage (TNM stage I or II)

and Borrmann type I or II, while they were initially diagnosed

(21). In our studies, we found that the dMMR phenotype was

also significantly associated with older age and fewer CT-

reported lymphatic metastases. However, no association was

detected between dMMR and CEA, CA19-9, CA12-5, or AFP

levels in the blood tumor markers. Furthermore, Yexing and

colleagues built a radiomic nomogram based on the radiomic

signature and clinical features that performed well in

determining HER2 status (16). We employed age, CT-reported

N stage, and the Rad-score to develop a radiomic nomogram to
B C

A

FIGURE 6

Radiomics nomogram developed with ROC, calibration curves, and decision curve analysis (DCA). (A) A radiomic nomogram was constructed in
the training cohort via radiomic signature, age and CT reported N stage. (B) Calibration curve of the radiomic nomogram in the training cohort.
(C) DCAs for radiomic nomogram and signature in the training cohort.
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predict MMR status. The radiomic nomogram showed good

performance for predicting MMR status in the training cohort

with an AUC of 0.902 (95% CI: 0.853–0.951), in the internal

validation cohort with an AUC of 0.972 (95% CI: 0.945–1.000),

and in the external validation cohort with an AUC of 0.891 (95%

CI: 0.825–0.958). Okihide et al. constructed a clinical features

model to predict dMMR, which showed lower evaluating

capability with an AUC of 0.82 (95% CI: 0.75–0.87) and the

model was not tested by the validation cohort, which may make

the model unrepresentable (17). Therefore, our radiomic

nomogram can efficiently discriminate dMMR GCs using a

radiomic signature and clinical features in the preoperative.

Currently, radiomics-based GC research has focused on

preoperative lymph node metastasis, Lauren categorization, the

tumor immune milieu, genetic subtypes, and GC prognosis

prediction (42–47). Identifying dMMR is crucial in our

research since it guides preoperative clinical management for

GC patients. Firstly, dMMR seems to be a biomarker for GC,

which was associated with less lymphatic metastasis and an

earlier T stage (41). Secondly, GC patients with confirmed MMR

status are extremely important in clinical practice for guiding

adjuvant and perioperative treatment (48, 49). A 1,990 GC

patient study showed that dMMR GCs did not have better

benefits in terms of disease-free survival (DFS) than pMMR

GCs following R0 resection (6). When GC patients were treated

only with surgery vs groups treated with chemotherapy, stage II

or III GCs with dMMR status were correlated with better overall

survival (OS) (50). The above results were confirmed by a

multinational meta-analysis, which showed that GC patients

with pMMR benefit from surgery plus chemotherapy rather than

dMMR (51). Thirdly, MMR status might be associated with a

response to immune checkpoint inhibitors in GC patients. A

meta-analysis including 2,545 GC patients (including phase III

KEYNOTE-062, CheckMate-649, JAVELIN Gastric 100, and

KEYNOTE-061) revealed that GC patients with dMMR should

be identified as a highly immunosensitive and specific subgroup

for anti-PD-1 therapy (5), because of their intrinsic mutational

burden-activated expression of immune checkpoints and

inflammation (4, 52). Therefore, when patients are diagnosed,

their MMR status must be accurately identified in order to

provide a customized therapeutic schedule.

In this study, the main limitation is the retrospective nature

of the study, which might have resulted in selection bias.

However, we first built and validated a radiomic nomogram to

assess the MMR protein status of GC patients based on the

radiomic signature and clinical features. Secondly, because the

distinction between tumor tissue and adjacent normal gastric

tissue can be maximized in the portal venous phase, the radiomic

features were only extracted from CT images of the portal phase.

We will use other phases to evaluate MMR protein status in the

future. Thirdly, although the study cohorts were collected from
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two hospitals, multi-center cohorts are really needed to verify the

generalization ability of the predictive model. Fourthly, at the

same time, we should design prospective research to

demonstrate the practicability of the radiomic model.
Conclusion

We developed and validated a radiomic nomogram model

that might be accurate to assess the MMR protein status of GC

patients based on the radiomic signature and clinical features

(age and CT-reported N stage). This prediction model is also a

noninvasive detection model that can guide preoperative

clinical management.
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