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Abstract

In most childhood head and neck cancers, radiotherapy is an essential component of

treatment; however, it can be associated with problematic long-term complications.

Proton beam therapy is accepted as a preferred radiation modality in pediatric cancers to

minimize the late radiation side effects. Given that childhood cancers are a rare and

heterogeneous disease, the support for proton therapy comes from risk modeling and a

limited number of cohort series. Here, we discuss the role of proton radiotherapy in

pediatric head and neck cancers with a focus on reducing radiation toxicities. First, we

compare the efficacy and expected toxicities in proton and photon radiotherapy for

childhood cancers. Second, we review the benefit of proton radiotherapy in reducing

acute and late radiation toxicities, including risks for secondary cancers, craniofacial

development, vision, and cognition. Finally, we review the cost effectiveness for proton

radiotherapy in pediatric head and neck cancers. This review highlights the benefits of

particle radiotherapy for pediatric head and neck cancers to improve the quality of life in

cancer survivors, to reduce radiation morbidities, and to maximize efficient health care

use.
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Introduction
Pediatric cancers represent a unique challenge in terms of both curing the disease and

minimizing long-term treatment-related complications. Radiotherapy (RT) toxicities are

especially relevant to cancers involving the head and neck sites given the proximity of

multiple vital organs. Because pediatric head and neck cancers are often treated with RT

for improved local control because of the difficulty in achieving gross total resection, late

radiation toxicities are even more relevant for this disease site because pediatric head

and neck cancers represent at least 12% of all pediatric cancers and are increasing faster

than pediatric cancers overall [1]. Of those patients with pediatric cancers surviving 5

years or longer, approximately 80% were treated with RT [2]. For cancers involving the

head and neck area, the most common pathologic types are lymphomas, including

Hodgkin lymphoma and non-Hodgkin lymphoma; neural tumors, including neuroblastoma

and retinoblastoma; and soft tissue sarcomas, including rhabdomyosarcoma [1].

The types and risks of late radiation-associated toxicities are often dependent on the

dose and extent of the radiation fields. Patients with leukemia, lymphoma, and
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neuroblastoma often receive radiation doses of less than 30 Gy and are subject to increased risk of cataracts, growth delays,

dental complications, and secondary tumors. By contrast, patients with rhabdomyosarcomas, other soft tissue sarcomas, and

other solid tumors, such as squamous cell carcinomas, are treated with radiation doses of 50 Gy or higher, additionally

predisposing them to increased risk of hypopituitarism, bone hypoplasia, and hearing, vision, salivary, swallowing, and soft

tissue toxicities.

The increased conformality and lack of exit dose in particle therapy, in particular, in proton therapy, represent an important

advance to reduce the long-term radiation toxicities associated with pediatric head and neck cancers. The first part of this

review discusses the advantages of proton beam therapy (PBT) over photon beam therapy in reducing late radiation toxicities,

in particular, in secondary malignancies. The second part reviews the acute toxicities and long-term morbidities from PBT in

pediatric head and neck cancers. Finally, we consider future applications for PBT and other modalities in pediatric head and

neck cancers.

Proton versus Photon RT for Pediatric Head and Neck Cancers
Photon beam RT has been the conventional treatment for pediatric cancers using 3-dimensional conformal radiotherapy (3D-

CRT) and, recently, the more-conformal intensity-modulated radiotherapy (IMRT) or volumetric-modulated arc therapy

(VMAT). Compared with 3D-CRT, IMRT had comparable locoregional control approaching �90% at 3 years [3–5] and fewer

grade �3 acute toxicities in pediatric head and neck cancers. The IMRT decreases high-radiation doses to critical structures at

a cost of increased integral radiation doses to a larger volume of healthy tissues.

Compared with photon-based RT, including IMRT, proton-beam RT reduces or eliminates unnecessary integral low dose

radiation to surrounding structures while maintaining high conformality. Table 1 compares the published mean doses to

various healthy tissues for orbital and nonorbital tumors. However, a 2012 American Society for Therapeutic Radiology and

Oncology (ASTRO) consensus review [11] did not find sufficient evidence to recommend PBT outside of clinical trials in head

and neck cancers and pediatric non–central nervous system malignancies. This report contrasts with the consensus of most

pediatric radiation oncologists who support PBT for pediatric head and neck malignancies [12]. Furthermore, most studies

forming the ASTRO consensus recommendation were based on passive-scatter proton techniques and not more-recent

intensity-modulated proton therapy (IMPT) techniques, which only recently became available after those guidelines were

published. Figure 1 demonstrates the dose distributions between an VMAT compared with IMPT planning.

Even with passive-scatter techniques, the volumes of low-dose RT are smaller than those of conventional photon-based

RT. Leiser et al [14] demonstrated significant dosimetric sparing with passive-scatter PBT in 26 of 30 critical structures (87%)

Table 1. Comparison of mean radiation doses to indicated organs using IMRT or PBT for orbital and nonorbital head and neck cancers.

Organ

Mean radiation dose, Gya

Type of cancer

Orbital primary Nonorbital primary

IMRT Protons IMRT Protons

Brainstem NS NS 18-26 7-8 Rhabdomyosarcoma

Optic chiasm NS NS 24-33 15-18 Rhabdomyosarcoma

Pituitary 15 4 33-43 24-29 Rhabdomyosarcoma

Optic nerve (ipsilateral) 37 29-45 2-37 0-30 Rhabdomyosarcoma, salivary

Optic nerve (contralateral) NS 0 2-31 0-14 Rhabdomyosarcoma, salivary

Eye (ipsilateral) 40 25-33 1-16 1-9 Rhabdomyosarcoma, salivary

Eye (contralateral) 8 0 2-13 0-3 Rhabdomyosarcoma, salivary

Lens (ipsilateral) 32 10-44 7-9 2 Rhabdomyosarcoma

Lens (contralateral) 3 0-1 6 0-1 Rhabdomyosarcoma

Maxilla 12 7-25 30 15 Rhabdomyosarcoma

Cochlea (ipsilateral) NS NS 39-41 36-37 Rhabdomyosarcoma

Cochlea (contralateral) NS NS 29-32 4-12 Rhabdomyosarcoma

Parotid (ipsilateral) NS NS 38-39 31-37 Rhabdomyosarcoma

Parotid (contralateral) NS NS 11-24 2 Rhabdomyosarcoma

Abbreviations: IMPT, IMPT, intensity-modulated proton therapy; PBT, proton beam therapy; NS, not stated.
aBased on references 6–10.
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for patients with cancers in the orbital, head and neck, pelvic, and trunk and extremity sites. Similarly, a report from MD

Anderson Cancer Center (Houston, Texas) compared proton and photon treatment plans for 6 children with head and neck or

18 children with brain cancers [15]. They found PBT was superior to photon RT in all cases, except for intracranial disease in

which PBT demonstrated variable benefits compared with photon RT, especially for hippocampal sparing. The increasing

implementation of IMPT may further increase target conformality and minimize the dose to healthy tissues. To that end, in 83

children with rhabdomyosarcoma treated with IMPT, overall nonocular grade 3 late toxicities were only 3.6%, and no grade �4

late toxicities were observed with PBT [14].

In head and neck rhabdomyosarcoma, PBT showed significant sparing of multiple healthy tissues, including contralateral

structures such as the optic apparatus, cochlea, and both ipsilateral and contralateral parotid glands [6]. In a small case series

of 7 patients with orbital rhabdomyosarcoma, PBT afforded greater local control rates, approaching 85%, with improved

dosimetric sparing of the ipsilateral and contralateral optic structures and reduced optic toxicity compared with historical

controls treated with photon RT [7]. That finding is consistent with other reports of favorable grade �3 late ocular toxicities,

which have approximated 6.5% [14]. Extrapolating from adult head and neck cancers, PBT also likely reduces mucositis in

pediatric head and neck cancers. Frank and colleagues [16, 17] reported delivery of 70 Gy to oropharyngeal cancers using

IMPT had no grade �2 anterior mucositis and no grade 4–5 toxicities. A systematic review by Doyden et al [18] demonstrated

that PBT better-minimized radiation doses to the salivary glands, spinal cord, brainstem, skull base structures, esophagus, and

larynx compared with photon RT. Of note, the advantages of PBT persisted even when compared with the latest advances in

photon treatments, including tomotherapy and VMAT [19–21]. When calculating the clinical advantage in terms of normal

tissue complications probability (NTCP) in 45 cases of locally advanced head and neck cases, IMPT provided better than 10%

reduction in xerostomia and mucositis in more than 50% of patients compared with IMRT or with VMAT. By contrast, a mixed

photon-proton plan only reduced NTCP toxicities by approximately 10% in select cases. Tables 2 and 3 summarize the acute

and late toxicities observed in children receiving photon or proton head and neck RT.

Several confounding factors may affect adequate PBT, especially IMPT, to the head and neck region. The first complex

issue is the small volumes of critical organs, especially the serial structures, such as the optic nerves and chiasm, receiving a

high radiation dose. Moreover, IMPT plans are usually designed either with single-field optimization or multifield optimization

(MFO) in which the weighting of the spot size for all fields are optimized together. In contrast to single-field optimized IMPT,

MFO-IMPT often provides more-conformal target-dose distribution and better sparing of critical structures. However, MFO-

IMPT is more susceptible to both range uncertainties at the sharp dose gradient at the end of range of a proton beam as well

as setup uncertainties. In the head and neck region, those uncertainties are further amplified because of intrafractional

changes in soft tissue geometries, weight loss during treatment, and interfractional changes in the paranasal sinus densities.

In addition, the use of radiobiological equivalent (RBE) and linear energy transfer (LET) model-based planning may better

reduce possible side effect from the RBE at the end of the range [30]. To overcome the sensitivity of MFO-IMPT plans to

various uncertainties, robust optimization to account for those range uncertainties is incorporated into IMPT planning [31].

Furthermore, frequent verification simulations are performed, especially for tumors adjacent to the paranasal sinuses. In

Figure 1. Comparison of IMPT

and VMAT dose distributions.

IMPT (left) and VMAT (right)

plans with isodose line plans

(right). Isodose lines: green:

5640 cGy; orange: 4320 cGy.

Abbreviations: cGy, centigray;

IMPT, intensity-modulated

proton therapy; VMAT,

volumetric-modulated arc

therapy. Reproduced with

permission from Chen et al

[13].
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addition, the differences in spot size may affect treatment planning. Smaller spot sizes may increase dose homogeneity and

reduce doses to healthy tissues at the potential costs of reducing plan robustness. Consequently, a minimum monitor unit

constraint is necessary to improve plan robustness. For pediatric patients, the increased proximity of critical structures and

frequent cancers involving, or in proximity to, the paranasal sinuses requires extra care during treatment planning.

Furthermore, improved planning may be achieved with noncoplanar beams as well as multiple beam angles. However, for

tumors impinging on certain critical organs, such as the brain or brainstem, caution with PBT may be needed because the LET

at the end of the range may increase the risk of symptomatic brain necrosis. Therefore, care must be taken when treating

patients with PBT.

With reduced toxicities, PBT in childhood head and neck cancers has been shown to have similar outcomes as photon

beam therapy. Several groups have demonstrated equivalent rates of local control for orbital and other head and neck

Table 2. Rates of acute toxicities for pediatric head and neck

cancers.

Toxicity

Grade �2 acute

toxicities,a %

Cancer typesIMRT Protons

Mucositis 91 46 Salivary

50 Esthesioneuroblastoma

32 Mixed head and neck tumors

24 Sarcoma

Dermatitis 55 6.9 Salivary

62.5 Esthesioneuroblastoma

27 Sarcoma

Dysphagia 27 0 Salivary

37.5 Esthesioneuroblastoma

20 Sarcoma

Otitis externa 18 8 Salivary

Abbreviation: IMPT, intensity-modulated proton therapy.
aBased on references 9 and 22–24.

Table 3. Late toxicities associated with head and neck radiotherapy for pediatric cancers.a

Organ and types of

toxicities

Rates of toxicities,

cumulative mean (Range), %

Types of toxicities

Reported dose

when toxicity

observed, Gy

Photon

radiotherapy

Proton

radiotherapy

Dental abnormalities 35 (32-100) 7 (3-30) Tooth, agenesis, microdontia, enamel dysplasia,

xerostomia, TMJ dysfunction, osteoradionecrosis

20

Craniofacial malformations 77 (5-97) 25 (21-70) Bone and soft tissue hypoplasia Bone: 30

Soft tissue: 4

Hypopituitarism: GH deficiency 19 (5-40) 19 (13-22) Decreased height, decreased bone mineralization GH: 18

Other endocrinopathy 9 (7-9) 10 (5-10) Delayed puberty, sexual dysfunction, subclinical

hypothyroidism

GnRH: 40

ACTH: 24

TSH: 24

Optic toxicities 23 (10-83) 10 (0-14) Cataract

Keratinization

Retinopathy

Optic neuropathy

2

30

45

50

Hearing toxicities 19 (17-75) 7 (0-11) High frequency hearing loss 45

Secondary cancers 3 (2-10) 1 (0-6) Breast cancer, meningioma 1.8

Abbreviations: TMJ, temporomandibular joint; GH, growth hormone; GnRH, gonadotropin-releasing hormone agonist; ACTH, adrenocorticotropic hormone; TSH, thyroid-stimulating

hormone.
aBased on references 5, 7, 14, and 25–29.
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rhabdomyosarcomas of .95% and 90%, respectively [8, 32, 33]. Although the University of Pennsylvania group reported

excellent 2-year local control rates of 92.1% for photon RT and 85.4% for proton RT [22], there were no differences between

proton and photon modalities on multivariate analysis. Consistent with the findings of other groups, local failure in the

University of Pennsylvania cohort was associated more with both lower chemotherapy dose and lower radiation dose [32].

Similar rates of local control have been observed in other series [14, 25]. For most other head and neck cancers, efficacy of

PBT has been limited to small case series [22, 33, 34, 35], and it is difficult to compare differences between modalities. Thus,

extrapolating from rhabdomyosarcomas, PBT for childhood head and neck cancers provides similar efficacy as photon beam

therapy.

Overall, PBT is more conformal than 3D-CRT. Furthermore, IMPT provides even improved dose distributions compared

with passive-scatter PBT, and likely IMRT, as well as VMAT, especially with lower isodose lines. However, VMAT is often

technically more conformal than IMPT in high-dose regions as well as in lateral dose gradients. Consequently, IMPT and

VMAT planning should be compared, when possible, for optimal planning.

The Benefit of Proton RT in Reducing Radiation-Induced Toxicities

Acute Toxicity

Irradiation of the head and neck region is often associated with severe acute toxicities, leading to mucositis, dysphagia, and

weight loss, which necessitates feeding tube placement in at least 30%–50% of cases. In a study of adults, Grant et al [9]

demonstrated PBT compared with photon beam therapy reduced the rates of grade 2-3 mucositis (46% versus 91%), grade 2-

3 dysphagia (0% versus 21%), and weight loss (1.2% weight gain versus 5.3% weight loss). Although rates of feeding tubes

after photon RT in the pediatric population are not well established, Betchel et al [36] described 33% of pediatric patients

required nutritional support after PBT. Weight loss .5% of baseline was associated with a maximum esophageal dose .50

Gy or a mean oropharyngeal dose .30 Gy. Because those patients were treated with passive scatter-beam proton RT, IMPT

may potentially lower feeding tube rates. Vogel et al [22] reported on 69 children, treated with PBT to the head and neck

region, predominantly with rhabdomyosarcoma or Ewing sarcoma. Grade 3 mucositis, dysphagia, and weight loss were very

low at 4%, 7%, and 22%, respectively [22]. However, the benefits of PBT on mucositis, dysphagia, weight loss, and feeding

tube placement require further study in the pediatric population. As a caveat, at least 1 study did not find any difference

between photons and protons for acute mucosal toxicity or late mucosal toxicity, which occurred in 57% and 10% of patients,

respectively [36].

Acute and late salivary toxicity is another major side effect in head and neck RT affecting young children. Acute and late

salivary toxicities in children irradiated to the head and neck region are approximately 25% and 10%, respectively. Bölling et al

[23] demonstrated that the dose to the submandibular gland may be important in pediatric patients because maximum doses

to the submandibular gland, but not the parotid gland, were associated with acute salivary toxicity [36]. Furthermore, PBT was

associated with 8.3-fold less salivary toxicity compared with photon-based RT. Similarly, for children with salivary gland

tumors, PBT was associated with lower doses to the salivary glands as well as optic apparatus and the pituitary, spinal cord,

mandible, oral cavity, and larynx compared with photon RT.

Although protons may reduce many of the common side effects associated with head and neck RT, one underappreciated

acute side effect of PBT is increased skin toxicity; PBT is well known for the increased skin toxicity because of the challenges

in controlling skin dose. This lack of skin sparing by photons over protons likely results from both the effect of additive range

uncertainties for proton therapy as well as the use of more field angles and/or arc therapies for photon therapy. To that end,

Phillips et al [37] reported that proton irradiation was associated with .5.7-fold risk for alopecia compared with photon

irradiation. Skin sparing may be better with IMPT compared with passive-scatter proton therapy. Furthermore, the skin dose in

IMPT, as in IMRT- and VMAT-based photon techniques, may be optimized by reducing target volumes several millimeters

from the skin surface. However, the skin dose with IMPT is still often more robust compared with photon-based techniques,

which may be even more pronounced with head and neck cancer, in which target volumes often are close to the skin.

Late Toxicities

Given the potential for long-term survivors of childhood cancer, late toxicity must be carefully considered, both in quality and

quantity of life. This concern is supported by the observation that the cumulative mortality attributable to nonrecurrence causes

increases from 2% at 15 years to 7% at 30 years, whereas the mortality from recurrent cancer increases from 6.3% to 7.8%
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during that same time frame [38]. With a median follow-up of 10.5 years, 77% of long-term survivors of childhood head and

neck cancer experience grade �3 late toxicities [39]. In a long-term follow-up of 17 children receiving head and neck photon

RT for rhabdomyosarcoma, late effects of treatment were seen in all patients and included facial-growth retardation in 11

(65%) and dental abnormalities in 7 patients (41%) [26]. Similarly, Meazza et al [40] reported assessment of late toxicity in 36

patients treated for head and neck rhabdomyosarcoma with photon-based RT. The most common side effects were facial

growth retardation (72%; 26 of 36) and dental abnormalities (69%; 25 of 36). Xerostomia occurred in 38% of all patients [40].

Furthermore, visual or orbital toxicities occurred in 3 of 11 (27%) 5-year survivors of nonorbital head-and-neck

rhabdomyosarcoma treated with photon RT [26]. In addition, in a similar patient population, auditory toxicities were observed in

20% of patients treated with photon RT.

By contrast, PBT appears to substantially reduce late radiation complications because grade �2 and �3 late toxicities were

35% and 17% at 10 years and 45% and 17% at 20 years, respectively [41]. Fukushima et al [27] followed 60 patients 15 years

or younger treated between 1983 to 2011 with PBT. A total of 32% (19 of 60) of patients had �1 grade �3 toxicity, most

commonly associated with facial deformities and/or central nervous system damage. By contrast, the severity of other late

toxicities, including hormone deficiencies, hair loss, hypothyroidism, and dental dysgenesis were mostly grade 1-2. Similarly,

Leiser et al [14] reported low rates of grade 3 toxicities at 5 years for ocular and nonocular rhabdomyosarcoma of 18.4% and

3.6%, respectively.

Hearing loss represents another significant morbidity for children irradiated for head and neck cancers. The combined

Intergroup Rhabdomyosarcoma Studies (IRS) II and III reported a 17% rate of hearing loss [28]. Neuro-otologic morbidity is, in

part, related to cochlear irradiation with maximum radiation doses kept to ,32 Gy to minimize the risk of hearing loss [42].

Extrapolating from medulloblastoma, IMRT reduced cochlear doses compared with conventional RT among 26 children

treated for medulloblastoma [43]. However, there were no differences in hearing loss between photons and protons likely

because of the inclusion of cisplatin and/or other ototoxic chemotherapies [29, 44]. By contrast, Moeller et al [45] reported a

very low rate of ototoxicity in children with medulloblastoma treated with PBT. These results must be interpreted cautiously,

however, because of the role of ototoxic chemotherapy in medulloblastoma management.

Radiation-Induced Malignancies

Radiation-associated malignancies are one of the most feared complications in irradiating pediatric cancer patients. For

survivors of childhood cancers, the 20- and 30-year risk for developing second malignancies approximates 3.2% and 7.9%,

respectively [46, 47]. The risk of second malignancies continues to increase, even after the age of 50 years, with a cumulative

incidence of 16.3% by age 55 years [48]. However, PBT has consistently decreased the estimated radiation-induced cancer

risk in pediatric patients. Leiser et al [14] observed only 1 radiation-induced malignancy in 83 patients (1%) with

rhabdomyosarcoma. Reporting the 10-year cumulative incidences of secondary tumors is survivors of retinoblastoma, PBT

was associated with significantly lower in-field malignancies (0% versus 14%) and all malignancies (5% versus 14%)

compared with photon RT [49]. Mizumoto et al [41] reported long-term follow-up for 62 patients treated with PBT followed for

more than 5 years; of which, 46 (74%) were treated to the head and neck and brain regions. No secondary tumors occurred

within the irradiated field.

Because secondary malignancies are difficult to assess in longitudinal studies, given the relative recent widespread

implementation of proton therapy, much effort has been devoted to estimating metrics for cancer risk based on dosimetric

assessment of RT plans. However, Ngyuen et al [50] has questioned the reliability of those cancer risk models because of high

degrees of uncertainty in dosimetry. Even though those uncertainties limit the validity of cancer risk models for a single

modality, comparisons of cancer risks between proton and photon treatment plans can still be made because the ratio of

absolute risks between 2 modalities is less sensitive to those uncertainties. In a prospective, phase II study comparing the

integral dose for passive-scatter PBT versus IMRT for rhabdomyosarcoma in 54 patients, the integral dose for IMRT was 1.8

times greater in the head and neck region and 3.5-fold greater for orbital site [10, 51]. In addition, IMPT in parameningeal head

and neck rhabdomyosarcoma reduced the estimated risk of secondary cancers by 1.75-fold compared with passive-scattered

protons, 2-fold compared with IMRT, and 2.5-fold compared with 3D-CRT [52]. Similarly, compared with photon plans,

Stokkevåg et al [53] demonstrated that IMPT achieved significantly better dose conformity, resulting in a 6-fold reduction in risk

of second malignancies.

Moteabbed et al [54] calculated the lifetime attributable risk (LAR) of second cancers in pediatric patients irradiated with

passive-scatter PBT, IMPT, IMRT, or VMAT. The LAR for soft tissue or skull malignancies ranged from 0.01% to 2.8% for PBT

and 0.04% to 4.9% for photon-based therapy [54]. Of note, that LAR was independent of the number of fields used for proton
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or photon RT. Although the authors did not find a difference in cancer risk between passive-scatter PBT or IMPT, their study

calculated the lifetime risk for proton modalities using a 12-mm spot size. That larger spot size may not have fully realized the

advantages of IMPT delivered with smaller spot sizes. To that end, Moteabbed et al [55] demonstrated that IMPT using larger

spot sizes did not provide a dosimetric advantage over passive-scattered proton beams. Decreasing the spot size lowered the

mean doses to healthy tissues by up to 11.6%, providing a maximum NTCP reduction of 5.4% relative to passively scattered

PBT [55].

Not all reports have demonstrated reduced risks of secondary cancer with PBT. Tamura et al [56] calculated the LAR for

PBT and IMRT for 4 anatomic sites, including the head and neck region. For the brain, head, and neck region, the difference in

lifetime risk between PBT and IMRT was 1.02% 6 0.52%. Many factors may have caused the discrepancies between this

report and other series. First, of the 8 cases used to estimate the LAR for irradiation of the head and neck region, 7 cases

(88%) were primary brain tumors, which are associated with similar LARs between photon and proton modalities. One case

was a patient with Ewing sarcoma involving the head and neck. Second, the LAR was estimated for passive-scatter PBT only

and may have missed a greater benefit with IMPT. Thus, most of the evidence indicates that PBT reduces integral dose and

thereby likely reduces the risk of secondary malignancies.

Children with Genetic Conditions That Sensitize Them to Radiation Side Effects

Pediatric head and neck malignancies are rare, with an annual rate of approximating 1 in 100 000 person-years [1]. Although

genetic diseases associated with DNA repair and the maintenance of genomic stability are also rare, cancers including those

involving the head and neck region frequently arise in pediatric and young adult patients. One of the most well-known genetic

diseases is Fanconi anemia, which occurs from defects in a cluster of �17 genes involved in homologous recombination and

occurs with an incidence of 1 in 130 000 births. Adolescents and young adults with Fanconi anemia frequently develop head

and neck squamous cell carcinomas, with an incidence of up to 50% by 40 years old [57]. Because of defects in DNA repair,

patients with Fanconi anemia and head and neck squamous cell carcinoma tolerate chemotherapy and radiation poorly, even

though they frequently present with locally advanced disease [58]. Similarly, Li-Fraumeni cancer syndrome, a germline

disorder in p53, has been associated with many pediatric head and neck cancers, including rhabdomyosarcomas [59], soft

tissue sarcomas [60], and squamous cell carcinomas. Clinical and preclinical evidence suggest that Li-Fraumeni syndrome

may be associated with increased treatment toxicities, including secondary malignancies [61].

Consequently, PBT may benefit children with cancers resulting from germline disorders by increasing conformality and

reducing integral dose. At this point, only case reports support the feasibility of PBT in these settings. Hartman and Hill-Kayser

[62] describe the experience using proton therapy to treat an oropharyngeal squamous cell carcinoma in a child with

dyskeratosis congenita, which is frequently caused by a mutation in the telomere-associated protein DKC1. Although the

patient still experienced greater dermatitis and mucositis, the patient remained disease free and was no longer dependent on a

feeding tube. Similarly, PBT successfully controlled a recurrence of a choroid plexus tumor in a 3-year-old child with Li-

Fraumeni syndrome [63]. Finally, Beckham et al [64] described the first Fanconi anemia patient treated with proton RT for head

and neck cancer who tolerated the treatment remarkably well. Although PBT may benefit patients with cancers associated with

genetic syndromes, care must be taken when determining radiation dose with PBT. Namely, disruption of DNA repair

pathways, especially those involving homologous recombination, may alter the relative biologic effectiveness of particle

therapy beams [65, 66]. Consequently, further study is necessary to define the advantages of proton therapy in children with

germline mutations.

Socioeconomic Implications of PBT in Children

Although proton therapy can be implemented for many different types of cancer, PBT requires greater health care

expenditures and may not be accessible to all individuals at this time. Dvorak et al (unpublished data) demonstrated that, for a

single institution, treating patients with PBT instead of IMRT or VMAT increased costs by 22%. However, in the entire patient

population, head and neck pediatric cancers represented only 16% and 2% of the entire population treated with proton or

photon radiation, respectively. Verma et al [67] demonstrated the cost effectiveness of PBT for both pediatric patients as well

as high-risk head and neck cancers. However, disparities exist for access to PBT for children, which depend, in part, upon

insurance, race, household income, and/or parental educational level [68, 69]. Consequently, the benefit of proton therapy for

children is likely tempered by issues with access-appropriate treatment facilities.

Despite the theoretic and empiric advantages of PBT over photon-based therapy, it remains unclear what the ethical

limitations are for ensuring pediatric head and neck cancers are treated with PBT. Johnstone et al [70] argued that the
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dosimetry, as well as emerging clinical evidence, argues that PBT is the only ethical approach for craniospinal irradiation of

children. By contrast, Wolden [71] argues that the existing data should be balanced with the burden of relocation for treatment.

Consequently, the downstream costs of treating secondary cancers, craniofacial abnormalities, and other late complications,

including dental hypoplasia, likely outweigh the upfront financial toxicity of PBT.

Alternative Particle-Based Modalities

Moreover, PBT remains the ‘‘gold standard’’ for particle-based therapies that minimize toxicities with equivalent efficacy as

photon RT in children with cancer. The recent emergence of IMPT may further improve proton beam delivery for head and

neck cancers. The advancement of MFO-IMPT and the potential for LET optimization may hold additional promise to provide

greater conformality, reduce heterogeneity, and further reduce toxicities as well as secondary malignancies.

Carbon ion therapy has demonstrated impressive control rates in a small series of children and adolescents with

rhabdomyosarcomas [72], as well as in chordomas and chondrosarcomas [73]. However, the few centers offering carbon ion

therapy worldwide limits current research into this modality in pediatric head and neck cancers. In addition, the dosimetry of

very high energy electrons (VHEEs), with energy ranging from 100 to 200 MeV, has been shown to be superior to the

dosimetry of VMAT. Figure 2 demonstrates potential benefits of VHEE dosimetry compared with proton and photon RT.

Furthermore, VHEEs have demonstrated better theoretic sparing of central nervous structures compared with pencil-beam

proton therapy [75]. Although both carbon ion therapy and VHEE require much further study, both modalities present

interesting theoretic benefits to further reduce the toxicities associated with pediatric head and neck RT.

Figure 2. Comparison of

VMAT, PPBS, and VHEE

planning. (a–d) Coronal

images through PTV for the

different modalities: (a) VMAT,

(b) PPBS, (c) 100 MeV VHEE

and (d) 200 MeV VHEE. (e)

mean doses to the spinal cord,

parotid glands, oral cavity, and

brain stem, (f) dose volume

histogram for the PTVs and

brain stem. Abbreviations:

PPBS, proton pencil-beam

scanning; PTV, planning target

volume; VHEE, very high

energy electron; VMAT,

volumetric-modulated arc

therapy. Reproduced with

permission from Schuler et al

[74].
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Conclusions
As long-term survival rates of children with cancer increase, so do the children at risk for long-term radiation morbidities.

Irradiation of the head and neck region is associated with multiple radiation complications afflicting the vision, hearing, eating,

and growth. It remains unclear the extent to which particle beam therapy, especially proton therapy, represents a cost-effective

approach to minimize several dosimetric measures of toxicity that have been realized in the clinic. However, PBT has

demonstrated few acute and late radiation toxicities and provides similar rates of locoregional control for pediatric patients with

head and neck cancer. In addition, PBT may benefit children with genetic syndromes that both sensitize them to radiation side

effects and predispose them to head and neck cancers. Emerging technologies provide theoretic benefit for further reducing

radiation toxicities. Thus, improving the technical precision of radiation and medical management of radiation toxicities gives

hope to the survivors of all pediatric cancers, including those of head and neck, who are at risk for, or are suffering from, the

complications of RT.
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