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A segmentation algorithm to isolate areas of ventilation from hyperpolarized helium-3 magnetic resonance imaging (HP >He MRI)
is described. The algorithm was tested with HP *He MRI data from four healthy and six asthmatic subjects. Ventilated lung volume
(VLV) measured using our semiautomated technique was compared to that obtained from manual outlining of ventilated lung
regions and to standard spirometric measurements. VLV's from both approaches were highly correlated (R = 0.99; P < 0.0001) with
a mean difference of 3.8 mL and 95% agreement indices of —30.8 mL and 38.4 mL. There was no significant difference between the
VLVs obtained through the semiautomatic approach and the manual approach. A Dice coeflicient which quantified the intersection
of the two datasets was calculated and ranged from 0.95 to 0.97 with a mean of 0.96 + 0.01 (mean + SD). VLV obtained through the
semiautomatic algorithm were also highly correlated with measurements of forced expiratory volume in one second (FEV,) (R =
0.82; P = 0.0035) and forced vital capacity (FVC) (R = 0.95; P < 0.0001). The technique may open new pathways toward advancing
more quantitative characterization of ventilation for routine clinical assessment for asthma severity as well as a number of other

respiratory diseases.

1. Introduction

Recent advancements in hyperpolarized helium-3 magnetic
resonance imaging (HP *He MRI) enable direct visualization
of ventilation in the lung [1, 2]. While normally ventilated
lungs have been found to exhibit a homogeneous distribution
of gas signal, obstructed lungs such as in asthma show areas
of signal depletion, often referred to as ventilation defects [1-
5]. It is increasingly accepted that quantifying spatial patterns
in the ventilation distribution can provide rich insight on the
severity of asthma and how well a specific patient responds
to a prescribed therapy [1, 2]. Additionally, such information
may provide novel perspectives in the fundamental nature of
asthma with regard to whether it is a localized airway patho-
logy or a global lung disease.

Traditional analysis of HP *He MRI has primarily been
qualitative in nature, largely restricted to a scoring system
that required a radiologist to visually estimate the number
of ventilation defects [1-4]. These approaches were subjective
and were likely inconsistent and time intensive. A number
of quantitative methods have emerged for the segmentation
of ventilated airspaces. Initial attempts by Kauczor et al. [6]
relied on a thresholding scheme which assumed a Gaussian
distribution of noise. However, such an assumption leads
to an approximately 60% underestimation of the true noise
power [7]. Later efforts by Tzeng et al. [5] and Woodhouse
et al. [8] applied a threshold value that relied on a signal-
to-noise threshold but still required rigorous manually out-
lined lung boundaries. More recent work using class-based
algorithms with lung partitioning using a Gaussian mixture
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model [9] and methods that employ fuzzy C-means and K-
means clustering [10-12] have also been introduced. These
methods were automated but required additional manual
removal of the trachea. By default, the trachea and associated
large airways comprise a majority of the anatomic dead space
which contains the largest percentage of HP *He gas [5]. Since
our goal was to target gas exchange regions, removal of the
trachea and associated large airways would result in a more
accurate assessment of ventilation.

In this study, we introduced a robust, semiautomatic algo-
rithm for rapid segmentation of HP *He MRI into distinct
regions based on ventilation. The ventilated lung volume
(VLV) quantified using our method was compared to that
measured using a conventional manual analysis by a trained
technician to determine the accuracy of our segmentation.
As spirometry still remains as the gold standard for measure-
ment of airway obstruction, we compared measurements of
lung volume from HP *He MRI using our method to forced
expiratory volume in one second (FEV,) and forced vital
capacity (FVC). The scope of this paper is to introduce the
methodology and a preliminary study with data from four
healthy and six asthmatic subjects. The intent is to provide
proof-of-principle, in a fashion that indicates the capability of
this approach in analyzing spatial distributions for ventilation
[5,12,13] and future modeling studies [14, 15] for asthma [1-5]
as well as the potential to be streamlined to other respiratory
diseases such as chronic obstructive pulmonary disease [8, 11,
12] and cystic fibrosis [11, 16, 17].

2. Materials and Methods

2.1. Subject Enrollment. The Health Insurance Portability
and Accountability Act-Compliant research protocol in this
study was approved by both Boston University and Brigham
and Women’s Hospital Institutional Review Boards. Written
informed consent was obtained from all recruits, which
consisted of four healthy subjects (two men and two women:
age range 21-23 years; mean age 22 years) and six asth-
matic subjects (one man and five women: age range 19-23
years; mean age 22 years). Before the first study visit, each
subject participated in a screening day visit during which
a methacholine challenge was administered to determine a
PC,, dose that elicited a 20% drop in baseline FEV,. This
index was used to separate healthy from asthmatic subjects.
For our protocol, healthy subjects were nonsmokers with no
history of respiratory diseases and exhibited PC,, values of
>25mg/mL. Asthmatic subjects consisted of those with a
history of asthma who exhibited PC,, values of <8 mg/mL.
The demographics are detailed in Table 1.

2.2. Image Acquisition Protocol. Standard spirometry mea-
surements were recorded with the subject in supine position.
Each subject was instructed to inhale a ~1 liter mixture of
~33% HP *He-67% N, from functional residual capacity
(FRC). Images were acquired on a General Electric Signa LX
1.5 MRI scanner equipped with a heterodyne system which
included frequency mixers to image at the *He NMR fre-
quency of 48.65Hz. The system interfaced with a flexible
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quadrature lung coil (Clinical MR Solutions, Brookfield, WT)
tuned to the same frequency. Hyperpolarization of the *He
gas was initiated through a collision spin exchange with
vaporized rubidium optically pumped using a custom-built
polarizer. The scans employed a Fast Gradient Echo pulse
sequence that compiled coronal multislice images with a
field of view (FOV) of 46 cm, 128 x 256 matrix dimensions
(zero-padded to 256 x 256), 13 mm slice thickness, 0 mm gap
between slices, 1.8 mm in-slice resolution, 31.25kHz band-
width, 14-18° flip angle, TE/TR 1.228 ms/50-75 ms, and inter-
leaved data acquisition. Typically, 8-14 slices were obtained
for each subject, depending on the anterior to posterior depth
of the lung.

2.3. MR Image Processing. A detailed schematic of our semi-
automatic segmentation method is illustrated in Figure 1.
Our methods will refer to various panels in Figure 1. There
are three steps to our semiautomatic segmentation method.
(1) A preprocessing routine is applied involving statistical
noise subtraction. (2) The image pixels are correspondingly
clustered into ventilation classes to refine our initial seg-
mentation. (3) The trachea and major airways are removed
to obtain a final binary image representative of ventilated
airspaces.

2.3.1. Statistical Noise Subtraction. HP *He MR images were
first preprocessed through a denoising scheme by determin-
ing an optimal threshold from a sampled background noise
distribution located outside of the lung field. This space com-
prised an automated 25 x 50 pixel box in the bottom center
of each image slice (Figures 1(a) and 1(b)). The distribution
is fitted through a nonlinear regression with an adjusted
Rayleigh curve

2 2
o~(@f+0) /20

r(f) = (of +6) ——, g

where f is the intensity of background noise, with parameters
o and «. In contrast to a similar technique previously applied
in brain tissue segmentation [18, 19], our approach employed
an additional shifting parameter, §, which accounted for hor-
izontal shifts in curve-fitting and provided a much stronger
fit to the sampled data. An optimal threshold, 7,, was sub-
sequently derived from the minimization of an error term

(=S N+ Y r(), )
=0 =

where the function, g( f), constituted the subtracted distribu-
tion calculated by the difference between the best-fit adjusted
Rayleigh curve, r(f), and the pixel intensity distribution of
the sampled background noise, h( f). Consider

g(f)=r(f)-h(f). (3)

The purpose of the preprocessing was to automatically
remove discernible sites of noise artifacts to construct an
initial binary mask (see Figure 1(a)).
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TABLE 1: Subject demographics and spirometry measurements.

Subject ISV‘E‘F A}%f’ Heciilt, Weli(z}m BMI FEE/P O/flfrz . F\ic’ FEV,/FVC FEXIg/r I;XC PC,,
Healthy
H1 F 23 153 44 18.8 2.98 100 3.41 87.4 101 >25
H2 F 22 175 68 22.2 3.67 109 3.88 94.6 108 >25
H3 M 23 180 82 25.2 4,18 88 4.35 96.1 115 >25
H4 M 21 189 73 20.4 4.02 79 4.11 97.8 116 >25
Asthmatic
Al F 19 155 54 22.3 2.81 87 3.36 83.6 93 0.12
A2 F 23 157 61 24.7 2.81 91 3.21 87.5 101 0.17
A3 F 21 163 73 275 3.35 102 3.73 89.8 104 1.1
A4 M 23 188 93 26.4 4.43 86 5.63 78.7 94 0.17
A5 F 22 172 80 26.9 3.45 94 4.32 79.9 92 3.31
A6 F 22 157 55 22.1 2.51 80 3.34 75.1 87 0.12
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FIGURE 1: Detailed schematic of semiautomatic segmentation algorithm. The example shown here is from a healthy subject. The first step
is a statistical noise subtraction to generate an initial binary mask of the input image (a). Thereafter, the resultant lung mask (b) is refined
through a four-class FCM clustering which partitions the entire image into four categories: negligible ventilation, low ventilation, intermediate
ventilation, and high ventilation (c). Pixels that fall within the negligible ventilation class are subsequently discarded to form a corrected mask
(d). Through a semiautomatic trachea removal involving a seeded region-growing algorithm, an area filter for connectivity, and a series of
morphological operations, a final binary image representative of ventilated airspaces is obtained (e).



2.3.2. Segmentation Refinement. Pixel intensities across the
entire image space were correspondingly partitioned through
a clustering scheme. Here, we describe the clustering using
fuzzy C-means (FCM) clustering [10, 11]. However, this step
can also be replaced by a K-means clustering algorithm [12,
13] as both these algorithms use the same cost function.
Briefly, the algorithm initializes four random cluster centers
in which a corresponding membership function, u;, is cal-
culated. The membership function is based on a distance
measure which describes the degree of similarity between
each data point and each cluster center given by

_ 1
C
Y51 (Di/Dye

where C is the number of distinct clusters, and m € [0, 00)
is a weighing parameter used to control the level of fuzziness
in the classification scheme, typically initialized to 2 [20]. The
variables, Dj and D, constitute the distance between point
k to the cluster center of clusters i and j, respectively. From
the resultant calculation of the membership, u;,, a new cluster
center for each class, c;, is calculated across all data points,
given by the following relationship [20]:

)2/(m—1) ’ (4)
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Using these new cluster centers, c;, the membership uy is
updated, and the process is iteratively repeated, based on
minimization of the following objective function [20]:
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A predefined criterion, ¢, between 0 and 1, is set such that
when reached, the algorithm is terminated. Following previ-
ous publications [10, 11], we split the ventilated lung region
into four clusters that corresponded to negligible ventilation,
low ventilation, intermediate ventilation, and high ventilation
(Figures 1(c) and 1(d)). Since our eventual areas of interest
comprised ventilated regions within the lung, pixel intensities
designated to the negligible ventilation class were treated as
part of the background.

2.3.3. Semiautomatic Trachea Removal. Typically, we acqui-
red 8-14 image slices anterior to posterior for each subject.
Some of these images contain the trachea and the main
stem bronchi, particularly in the middle slices, which, by
default, hold the largest percentage of HP *He gas. Since the
trachea and associated large airways are not directly involved
in gas exchange, it became crucial to remove them for an
accurate assessment of ventilation (Figure 1(e)). Therefore, we
employed a slice-by-slice seeded region-growing algorithm
[21, 22] which detected edges based on the intensity levels of
connected pixels.

In its simplest form, the technique requires an initiation
point, known as a seed, which is often manually selected by
the user [21, 22]. Each connected component of the seed is
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then flagged, and a difference measure is calculated by a pre-
defined criterion at each iteration. The goal of the algorithm is
to enable a final segmentation of regions as homogeneous as
possible while constrained by each pixel’s connectivity to the
initial seed point. A basic model was defined by Adams and
Bischof, using a running mean calculated at each iteration
starting at a designated seed point [21]. Given T as the set of
all as-yet unallocated pixels which border at least one of the
regions,

T=<|x¢OAi|N(x)nOAi¢O}. %)
i=1 i=1

The difference measure, §(x), bound by the running mean is
described by the following expression, where g(x) is the gray
value of the image point x. Consider

8 (x) = ‘g(x)—mean [g(y)]‘ (8)
yEA

i(x)

From the set of unallocated pixels, T, which border at least
one of the regions connected to the seed point, a minimum
distance, (z), was set as the segmented space [21]. Consider

& (2) = min {8 ()} . €

A detailed schematic is illustrated in Figure 2. The tech-
nique was knowledge based and required two inputs: a user-
defined bounding box to limit the processing space to the
trachea and an initial seed point composed of a single pixel
manually selected inside the trachea (Figures 2(a)-2(c)). Fol-
lowing interrogation of each pixel within the isolated bound-
ing box, an outlined space was obtained (Figure 2(d)). Each
element within the image space was correspondingly labeled
based on connectivity (Figure 2(e)), and an area filter was
applied to isolate the trachea (Figure 2(f)). The area filter
was based on pixel connectivity in which connected areas
of fewer than 50 pixels were selectively removed. A simple
binary subtraction between the input (with the trachea) and
output images (without the trachea) yielded a binary image
with the trachea selectively removed (Figure 2(g)).

We discarded residual artifacts from the crude binary
image subtraction through morphological operations. A
binary erosion (Figure 2(h)) was first used. Then, each con-
nected element was labeled, and another area filter was
applied to selectively remove connected areas of fewer than 50
pixels (Figure 2(i)). Finally, a binary dilation was applied (Fig-
ure 2(j)). The rationale was to target weakly connected areas
usually comprising the larger associated airways extending
from the main stem bronchi. The details on the operators are
outlined by Serra [23]. Briefly, given the mask as a discrete
Euclidian image, A(m, n) € Z?, dilation of A by a structural
element, B, is expressed as follows:

A®B={c|c=a+bac ADbeB}. (10)
The erosion of A by B is given as

AeB={c|(B). c A}. (11)
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FIGURE 2: Semiautomatic trachea removal. The example shown here is from an asthmatic subject. A corresponding HP *He MRI image (a) and
a binary ventilation image (b) are displayed in which a user-selected bounding box captures the trachea (c). An initial seed point is selected
within the trachea, and a region-growing algorithm is applied to yield a resultant binary extraction (d). Thereafter, each element within the
image space is labeled based on connectivity (e), and an area filter is used to isolate the trachea (f). A simple binary subtraction between
the isolated trachea is then used (g) followed by a binary erosion (h). Then, each element within the image space is labeled again based on
connectivity to isolate the right and the left lungs (i), and a binary dilation is thereafter applied (j)-(k) with a corresponding HP *He MRI

showing the outlined boundaries (1).

X

FIGURE 3: Template for morphological operations. Bounding box
shown in gray illustrates the boundaries to which morphological
operations were applied based on one-quarter of the width (x) and
one-half the height (y) from the centroid.

For our processing scheme, we used a disk structural ele-
ment for both binary erosion and binary dilation. We applied
these operations to a fixed template based on the maximum
width and height of the segmented lung slice as illustrated in
Figure 3. This was done to maximize removal of the larger
attached airways while minimizing morphological distortion
particularly along the concave lung base.

2.4. Statistical Data Analysis. To assess the accuracy of our
method with the manual analysis currently employed to

assess ventilation heterogeneity from HP *He MRI, all images
were processed by a trained lab technician (5 years experience
with HP *He MRI) using a MATLAB-coded software (Math-
Works, Natick, MA). In the manual analysis, lung contours
and ventilation defects were outlined manually, and the VLV
was calculated from the number of the pixels in the regions
identified as being ventilated. A paired t-test was used to
compare the VLVs from the manual and semiautomated
methods. An unpaired ¢-test was used to compare the VLV
between the healthy and the asthmatic subjects. A Dice
coefficient was also calculated to measure the agreement or
similarity between the VLV using our approach, A, and the
manual approach, B [24]. The Dice coefficient ranges from 0
to 1, with 1 indicating perfect agreement. Consider
Dice (A,B) = w (12)
|Al + B
We performed a linear regression analysis across all sub-
jects and calculated a correlation coefficient and the slope
between semiautomatic and manual methods. Bland Altman
analysis [25] was used to determine the 95% limits of agree-
ment calculated from the mean and standard deviation of the
volume difference between the two methods of segmentation.
VLVs through our algorithm were compared to PFTs, specif-
ically, to FEV, and FVC, functional measures that vary with
the size and level of lung obstruction. Finally, an unpaired ¢-
test was also used to compare FEV, and FVC between the
healthy and asthmatic subjects.

3. Results

A typical segmentation of the ventilated regions in the HP
*He MRI into three distinct classes of ventilation is shown
in Figure 4. In our limited subset of six asthmatics and four
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FIGURE 4: Segmented lung volumes for a healthy and an asthmatic
subject. Panels (a) and (c) show a slice of the HP *He MRI for a
healthy and an asthmatic subject, respectively. The corresponding
segmented images are divided into clusters of high, intermediate,
and low ventilation as shown in panels (b) and (d). Note the
increased predominance in pockets of hypointense areas indicating
low ventilation in the asthmatic subject as compared to the healthy
subject.

healthy subjects, the asthmatics showed increased predomi-
nance in pockets of hypointense areas indicating low ventila-
tion in the asthmatics as compared to the healthy subjects.
We compiled a total of 109 coronal slices for ten subjects.
For healthy subjects, segmentation with the semiautomatic
approach yielded a mean VLV of 3.88 + 0.75L (mean +
SD), compared to the manual approach, which gave a mean
VLV of 3.90 + 0.72 L. For asthmatics, the mean VLVs of the
semiautomatic approach were 3.83 + 1.11 Land 3.85+ 1.17L
with the manual approach. There was not a statistically signi-
ficant difference in FEV, between the semiautomatic and
manual approaches (P = 0.41). The resulting dice coefficients
for each subject are illustrated in Table 2. The coeflicients
ranged from 0.95 to 0.97 with a mean of 0.96 + 0.01.

Across each coronal slice of the lung, VLV measurements
obtained through both methods were highly correlated (R =
0.99; slope = 1.1; P < 0.0001) (Figure 5(a)). From the
Bland-Altman analysis, the mean VLV difference was 3.8 +
17.3 mL. The lower and upper 95% limits of agreement were
-30.8 mL and 38.4 mL, respectively (Figure 5(b)). Compari-
son to spirometry yielded a high correlation to measurements
of FVC (R = 0.93; slope = 1.21; P < 0.0001) (Figure 6(a))
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TABLE 2: Summary of ventilated lung volumes measurements and
the corresponding dice coeflicients.

VLV VLV .
Semiautomatic Manual DIC?
segmentation (L)  segmentation (L) coefficient
Healthy
HI1 3.05 3.14 0.96
H2 3.82 3.73 0.97
H3 4.88 4.87 0.96
H4 3.78 3.84 0.96
Asthmatic
Al 3.50 3.55 0.96
A2 3.24 3.19 0.97
A3 3.16 3.14 0.96
A4 6.04 6.19 0.96
A5 3.80 3.80 0.96
A6 3.23 3.23 0.95

and FEV, (R = 0.84; slope = 1.22; P = 0.0035) (Figure 6(b)).
For healthy subjects, mean FEV, was 3.71 + 0.53 L and mean
FVC was 3.94+0.40 L; for the asthmatic subjects, mean FEV
was 3.23 £ 0.69 L and mean FVC was 3.93 £ 0.92 L. There was
no statistically significant difference in FEV, (P = 0.27) and
FVC (P = 0.99) between the healthy and asthmatic subjects.

4. Discussion

To this day, HP *He MRI has confirmed and advanced a num-
ber of new perspectives in asthma. For one, when exposed to
airway smooth muscle provocation, the lungs will constrict
heterogeneously with the number and size of ventilation
defects directly correlating to the level of clinical severity [1-
4]. In cases of very severe asthma, heterogeneously distri-
buted ventilation defects may be even present at baseline [1,
2]. More recently, there is even some evidence that the size
and location of many of these ventilation defects in asthmatic
lungs tend to not change with time or repeated bronchocon-
striction [1, 3]. These notions are primarily qualitative as they
are based on visual inspection of ventilation images. How-
ever, together they raise intriguing clinical and structure-
function questions regarding whether one could apply a
quantitatively robust method for diagnosing the severity of
baseline asthma and for evaluating the efficacy of treatment.

Up until now, much effort has been devoted to extracting
detailed structural information from HP *He MRI. While
qualitative methods of analysis [1-4] have raised the concerns
about consistency, quantitative methods [5, 6, 8-13] have
paved new insights in the characterization of ventilation.
However, many of these segmentation approaches did not
include an extraction and removal of the trachea and main-
stem bronchi with associated large airways [5, 6, 8, 10-13].
To our knowledge, our approach is the first to enable both
a segmentation of ventilated airspaces and a direct selective
removal of these components that constitute the anatomic
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FIGURE 5: Comparison of VLV measured using semiautomatic and
manual segmentation. (a). A high correlation was observed between
the VLV obtained between both manual and automated methods
(R = 0.99, P < 0.0001) (b). A Bland-Altman analysis resulted in a
mean VLV difference of 3.8 + 17.3 mL with lower and upper 95%
limits of agreement of —30.8 mL and 38.4 mL, respectively.

dead space. When we applied our method to just a small pilot-
study number of healthy and asthmatic subjects, we did not
find a statistically significant difference in the VLV between
our semiautomatic method and our manual tracings that
served as the ground truth for our analytical comparisons.
The results obtained from our method were able to produce
high correlations to those obtained through manual process-
ing and showed high degree of similarity and agreement
through the Dice coeflicients and Bland Altman analysis,
respectively.

However, there are some limitations to our technique.
Static scans do not represent real-time ventilation but instead
represent snapshots in real time. True ventilation would
require a multibreath technique [26] necessitating a greater

6.5 -
6.0 | [ ]

5.5 1

4.5 4 -7

4.0 | e

Ventilated lung volume (L)
\

3.5 o

2.5

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Forced expiratory volume in 1 second (FEV1)(L)

()
6.5 -

6.0 - o

5.0 4 -7
4.5 4 e
4.0 4 o

3.5

Ventilated lung volume (L)
AN

3.0 4

2.5 T T T T T 1
3.0 3.5 4.0 4.5 5.0 5.5 6.0
Forced vital capacity (FVC) (L)

(b)

FIGURE 6: Scatter plot of ventilated lung volumes versus measure-
ments of FEV, (a) and FVC (b). Comparison to both measurements
yield positive trend lines with strong association to FVC (R = 0.93,
P =0.0035) and FEV, (R = 0.84, P < 0.0001).

amount of >He gas. Hence, our technique was only capable of
calculating a total VLV based on the gas distributive patterns
at breath-hold. Another limitation is the dependence in user
input in the semiautomatic trachea removal. Varying the size
of the bounding box can certainly impact the semiautomatic
trachea removal algorithm. A crucial element of the approach
is application of an area filter that isolates the trachea. If alarge
region outside the trachea was chosen, then it would indeed
be more difficult to adjust the area filter to discard small
regions of connected pixels and large regions of connected
pixels as opposed to the status quo of just removal of small
regions. The seed point, we believe, should not impact the
trachea because, for the most part, it is nearly homogenous in
signal intensity. However, sensitivity studies in varying both
the seed point and the bounding box can certainly be done
in the future. A final limitation was in the thickness of the
slices. Because these images were acquired at breath-hold,
thick slices of 13.13 mm were compiled in order to cover the
entire extent of the lung while trying to minimize discomfort



suffered by the subject. To compare lung volumes between
each subject, we recommend the use of 'H proton MRI scans
to determine the volume of the thoracic cavity to normalize
for lung size.

5. Conclusion

In conclusion, our work outlines a novel statistically and
quantitatively driven imaging analysis that may provide a
powerful and valuable additional tool for the clinical assess-
ment of asthma severity. With the emergence of modeling
approaches to combine imaging modalities to construct
patient-specific models [14, 15], segmentation of lung ven-
tilation becomes more important than ever. These methods
may provide new perspectives in structure-function relations
and hold the potential to be extrapolated to other respiratory
diseases.
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