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.e decoction is an important dosage form of traditional Chinese medicine (TCM) administration. .e Mahuang Fuzi Xixin
decoction (MFXD) is widely used to treat allergic rhinitis (AR) in China. However, its active compounds and therapeutic
mechanisms are unclear. .e aim of this study was to establish an integrative method to identify the bioactive compounds and
reveal the mechanisms of action of MFXD. LC-MS/MS was used to identify the compounds in MFXD, followed by screening for
oral bioavailability. TCMSP, BindingDB, STRING, DAVID, and KEGG databases and algorithms were used to gather infor-
mation. Cytoscape was used to visualize the networks. Twenty-four bioactive compounds were identified, and thirty-seven
predicted targets of these compounds were associated with AR. DAVID analysis suggested that these compounds exert their
therapeutic effects by modulating the Fc epsilon RI, B-cell receptor, Toll-like receptor, TNF, NF-κB, and T-cell receptor signaling
pathways. .e PI3K/AKT and cAMP signaling pathways were also implicated. Ten of the identified compounds, quercetin,
pseudoephedrine, ephedrine, β-asarone, methylephedrine, α-linolenic acid, cathine, ferulic acid, nardosinone, and higenamine,
seemed to account for most of the beneficial effects of MFXD in AR. .is study showed that LC-MS/MS followed by network
pharmacology analysis is useful to elucidate the complex mechanisms of action of TCM formulas.

1. Introduction

Allergic rhinitis (AR), an immunoglobulin E- (IgE-) me-
diated inflammatory disease, seriously impairs the quality of
life of patients [1]. Epidemiological surveys show that AR
affects more than 20% of the world’s population and its
incidence has progressively increased in developing coun-
tries [2]. Currently, treatments based on Western medicine
alleviate the symptoms of AR but do not cure. Once drug
treatments stop, the disease relapses [3]. Traditional Chinese
medicine (TCM) has long been used as effective therapeutic
interventions in Asia, particularly China [4]. TCM is pri-
marily based on the use of compound formulas, utilizing a
combination of herbs or their extracts for improved efficacy.

Research into the active and effective compounds of TCM
promotes the development and design of new therapeutic
drugs.

.e decoction is the main form of TCM administration.
.e identification of the chemical components in a decoc-
tion underpins research on the mechanism of action of
TCM. Mahuang Fuzi Xixin decoction (MFXD), a classical
Chinese herbal formula, is widely used to treat AR. MFXD
consists of Mahuang (Herba Ephedrae), Fuzi (Radix aconiti
lateralis praeparata), and Xixin (Radix et Rhizoma Asari),
which are boiled in water at specific proportions before
administration. Pharmacological studies have shown that
MFXD exerts anti-inflammatory and antiallergic effects by
preventing the release of mediators from macrophages and
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mast cells and inhibiting the production of interferon
gamma and interleukin (IL)-4 [5, 6]. MFXD also suppresses
.2 cytokine production and regulates the balance of .1
and .2 responses [7]. Using collected compounds and
targets from databases and references, Tang constructed a
network that shows the interactions of components and
targets and verified the pharmacological activity of four
components (salsolinol, pseudoephedrine, dibutyl phthalate,
and herbacetin) of MFXD in vitro [8]. However, to our
knowledge, there have been no comprehensive studies of the
compounds in the decoction prepared fromMFXD and their
potential therapeutic mechanism in AR.

Network pharmacology is a new field that integrates
pharmacological information, omics, and systems biology
[9]. It is based on the concept that targeting multiple nodes
in interconnected systems, rather than individual nodes,
generates information for the identification of a drug with
better efficacy and fewer adverse effects. TCM formulas
commonly comprise a mixture of several herbs and in-
gredients that deliver synergistic effects by targeting
multiple targets and pathways and modulating the links
between pathways. .us, network pharmacology, which
elucidates interactions between multiple compounds and
targets, is particularly suited for investigating the activities
of TCM [10, 11]. Currently, drug discovery is rapidly
evolving towards systematic and multipharmacological
approaches to address the poor efficacy, loss of efficacy, and
development of drug resistance when single compounds
are used to target single therapeutic targets [12, 13]. Re-
search is now focused on the simultaneous investigation of
targets in the context of entire biological networks [14].
.is network pharmacology approach to drug discovery
and design may identify effective drugs from herbal
medicines.

.erefore, the aim of this study was to identify the active
compounds in the decoction prepared from MFXD to in-
vestigate their potential synergistic effects on cellular sig-
naling pathways that are associated with AR. In this study,
the combinatorial approach of LC-MS/MS followed by
network pharmacology analysis was established to identify
the active chemical compounds in the decoction prepared
from MFXD and their potential pharmacological mecha-
nism in AR. .is research considers bioactive compounds,
protein targets, protein-protein interactions, genes, and
signaling pathways to elucidate the mechanisms responsible
for the curative effects of MFXD in AR.

2. Materials and Methods

2.1. Materials. HPLC-grade acetonitrile and methanol were
procured from Merck (Darmstadt, Germany). Formic acid
was procured from Sigma-Aldrich (MO, USA). Other
chemicals were of analytical grade.

.e decocting pieces of Mahuang, Fuzi, and Xixin were
purchased from Kangmei Pharmaceutical Co., Ltd.
(Guangzhou, China) and met the standards of the Chinese
Pharmacopeia. Voucher specimens (no. 20191117) were
deposited at the authors’ laboratory at Southern Medical
University.

2.2. Preparation of MFXD. MFXD consisted of Mahuang,
Fuzi, and Xixin at a weight ratio of 2 : 31. Mahuang was
immersed in distilled water (15 times the total weight) for
30min and boiled for 20min. Fuzi and Xixin were then
added to the suspension, which was simmered for another
90min. .e liquid extract obtained was concentrated to
1.52 g/mL under reduced pressure.

2.3. LC-MS/MS Analyses. LC-MS/MS was carried out using
a UPLC-Orbitrap-HRMS platform (.ermo Fisher) with a
Waters ACQUITY UPLC HSS T3 Column
(100mm× 2.1mm, 1.8 μm). .e mobile phases consisted of
acetonitrile (A) and 0.1% aqueous formic acid (v/v) (B) using
a gradient elution of 0% A at 0−1min, 0−20% A at 1−2min,
20−50% A at 2−12min, 50−95% A at 12−15min, and
95−100% A at 15−20min. .e flow rate was set at 0.4mL/
min, and the column temperature was maintained at 30°C.
.e injection volume was 5 μL. .e electrospray ionization
source was set to positive and negative modes. .e mass
range scanned was 100−1000m/z. MS data were collected
with .ermo Xcalibur software (version 4.0).

2.4. Construction of the Chemical Ingredient Database.
We processed the chromatogram by matching the data with
an in-house Orbitrap Traditional Chinese Medicine Library
(OTCML), which provided a list of compounds with their
formulas and MS/MS fragment modes. Based on errors less
than 5 ppm and MS/MS fragment matching, we identified
compounds in decoction prepared from MFXD.

2.5. Oral Bioavailability (OB) Screening. OB is an important
pharmacokinetic property used to assess the rate and per-
centage of an orally administered drug that has been
absorbed into the blood circulation to produce pharmaco-
logical effects. Important parameters of the identified
compounds, such as Caco-2 cell permeability, human in-
testinal absorption (HIA), and OB limits F (F-20%, F-30%),
were screened using ADMETlab, a platform for systematic
ADMET evaluation based on a comprehensively collected
ADMET database [15].

2.6. Potential AR-Associated Targets of the Compounds in
MFXD. Predicting whether a compound interacts with
intended targets is a critical phase of drug discovery [16]..e
targets of compounds in MFXD were obtained from the
Traditional Chinese Medicine System Pharmacology
(TCMSP, http://lsp.nwu.edu.cn/tcmsp.php) and BindingDB
(https://www.bindingdb.org/bind/index.jsp) databases. Af-
ter the deletion of redundant hits, the remaining protein
targets were standardized by their ID and gene symbols in
the UniProtKB database (http://www.uniprot.org/) [17].

Information on AR-associated targets was retrieved from
the therapeutic target disease (http://db.idrblab.net/ttd/),
DrugBank (https://www.drugbank.ca), and DisGeNET
(https://www.disgenet.org/) databases and standardized
using the UniProtKB database.
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2.7. Construction of the Target Protein-Protein Interaction
(PPI) Network. To determine whether the therapeutic tar-
gets of MFXD are associated with AR, we intersected the
drug targets and disease targets to obtain the common
targets, which were considered potential therapeutic targets.

.e common target proteins were used to construct the
PPI network on the Search Tool for the Retrieval of Inter-
acting Genes/Proteins (STRING) 11.0 platform (https://
string-db.org/) using the minimum required interaction
score of 0.400. Subsequently, the topological property of the
PPI network was analyzed using plugins in Cytoscape 3.7.2.
Genes were ranked to define hub genes using cytoHubba
with the maximal clique centrality (MCC) algorithm. .e
module was extracted by MCODE using a node score cutoff
of 0.2 and K-core of 2.

2.8. Target Pathway andEnrichmentAnalysis. To analyze the
gene ontology (GO) functional annotations and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment of genes and their roles in signal transduction,
the Database for Annotation, Visualization, and Integrated
Discovery (DAVID 6.8) was employed. DAVID is an online
analytical program that provides a comprehensive set of
functional annotation tools to explore the biological func-
tions of genes from gene lists [18]. DAVID can identify and
describe the biological processes, cellular components,
molecular functions, and pathways that are associated with
genes of interest.

2.9. Construction of Compound-Target-Pathway Networks.
To understand the underlying mechanism ofMFXD in AR, a
large-scale combinatorial network was established by inte-
grating data obtained on drug information, drug-target
interaction, and target-related pathway interactions.
.rough the hierarchical network, we characterized the
relationships and pathways targeted by MFXD in AR.

3. Results and Discussion

3.1. Analysis of Chemical Compounds fromMFXD. .e total
ion chromatogram of MFXD is shown in Figure 1. .is was
matched with the OTCML database, jointly constructed by
.ermo Scientific and Tsinghua University as a reference for
compound identification. Using electrostatic field orbital
trap high-resolution MS for fragment MS acquisition, more
than 1,200 reference compounds of TCM have been col-
lected in this database. More than 7,000 second-order MS
images of the highest quality are available, enabling the rapid
and accurate characterization of TCM components and
natural products. A total of 24 compounds in MFXD were
identified through chromatogram matching. Table 1 shows
retention time, experimental and calculated m/z values,
molecular formulas, errors in parts per million (ppm), and
the major MS/MS fragments. .e mass error of all identified
compounds was less than 5 ppm.

If a compound is poorly absorbed following oral ad-
ministration, the pharmacological effects may not be real-
ized, even if the compound has potent effects on the
pharmacological target in vitro [19]. In this study, Caco-2,
OB limits F (20% and 30% bioavailability), and HIA were
used to assess the components identified in MFXD. .e
results from OB and MS were combined to select com-
pounds that were considered to be orally bioactive in the
decoction prepared from MFXD. Table 2 presents the
ADMET properties of the 24 components identified in
MFXD. Most of the compounds showed favorable ab-
sorption properties.

3.2. Construction and Analysis of the Component-Target In-
teraction Network. .e TCMSP database contains 499
Chinese herbs with 19,384 compounds, 3,311 targets, and
837 associated diseases [20]. BindingDB is an experimental
protein-small molecule database for virtual compound
screening based onmaximal chemical similarity and support
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Figure 1: Total ion current chromatogram of LC-MS/MS of MFXD.
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Table 1: Results of LC-MS/MS analysis of MFXD.

No. Retention time .eoretical m/z Measured m/z Error ppm Molecular formula Major MS/MS fragments Compound

1 3.78 170.0215 170.0211 −2.3526 C7H6O5

169.0135

Gallic acid125.0239
97.0291
79.0187

2 4.02 151.0997 151.0992 −3.3091 C9H13NO
134.0965

Cathine117.0698
115.0543

3 4.03 165.1154 165.1158 2.4226 C10H15NO
148.1024

Ephedrine133.0804
117.0619

4 4.11 271.1208 271.1199 −3.3196 C16H17NO3

270.1133
Higenamine162.0554

107.0498

5 4.12 165.1154 165.1149 −3.0282 C10H15NO
132.1010

Pseudoephedrine114.8160
91.1290

6 4.30 179.1310 179.1316 3.3495 C11H17NO

180.1383

Methylephedrine162.1277
117.0700
72.0809

7 4.48 594.1585 594.1578 −1.1781 C27H30O15

577.1541

Vicenin-2457.1118
379.0798
337.0703

8 4.75 290.0790 290.0796 2.0684 C15H14O6

289.0715

Catechin245.0815
203.0708
109.0289

9 5.25 578.1636 578.1623 −2.2485 C27H30O14

577.2036
Kaempferitrin431.0986

285.0396

10 5.42 432.1057 432.1051 −1.3886 C21H20O10

433.1122

Vitexin415.1014
313.0701
283.0597

11 5.57 164.0474 164.0482 4.8766 C9H8O3

163.0393
p-Coumaric acid119.0496

93.0341

12 5.97 302.0427. 302.0492 2.1520 C15H10O7

245.0447
Quercetin152.0185

150.9975

13 6.33 272.0685 272.0679 −2.2053 C15H12O5

271.0613

Naringenin chalcone151.0032
119.0497
93.0342

14 6.35 162.0317 162.0312 −3.0858 C9H6O3

161.0237 Umbelliferone133.0288
78.0768

15 6.98 589.2887 589.2889 3.3939 C31H43NO10

540.2580
Benzoylmesaconine508.2311

105.0331

16 7.67 218.1671 218.1665 −2.7502 C15 H22 O

219.1738

Germacrone201.0905
145.1008
135.1165

17 7.83 146.0368 146.0365 −2.0543 C9H6O2

119.0488
Coumarin103.0538

91.0538
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vector machine methods [21]. We screened the targets from
the TCMSP and BindingDB databases for the 24 active
compounds. A total of 198 targets were obtained after the
deletion of redundant hits (113 from TCMSP and 138 from
BindingDB).

To visualize the relationship between compounds and
their targets, we constructed a compound-target interaction
network (Figure 2). .is network had a density of 0.022 with
a characteristic path length of 3.396 and an average number
of 4.918 neighbors. In the compound-target network,
multiple compounds could act on the same target protein
and a single compound could be associated with multiple
target proteins. For instance, prostaglandin G/H synthase 2
(PTGS2-P35354) and sodium-dependent noradrenaline
transporter (SLC6A2-P23975) represented the hub nodes
with a high degree of distribution, whereas peripheral nodes,
such as gallic acid, interacted with the progesterone receptor
(PGR-P06401) and represented a lower degree of distribu-
tion. .ese results were consistent with the common
characteristics of TCM, in which multiple compounds and
multiple targets are observed.

3.3. Construction and Analysis of the Target PPI Network.
.rough the comparative analysis of 198 component targets
and AR-related disease targets, we identified 37 common
potential targets for MFXD in AR (Table S1). .e STRING
database is a commonly used tool for predicting PPI and
producing integrated and objective association networks
[22]. Using the common protein targets as input for network
visualization, a diversified PPI network was created
(Figure 3(a)). .e network systematically summarized the
interactions of MFXD targets associated with AR treatment.
PSIP1 was not analyzed in the PPI network, as it does not
interact with other proteins. .e network shows viable
protein target nodes (n� 36) connected by edges (n� 135)

Table 2: ADME profile of the compounds from MFXD.

Compounds Caco-2 HIA F20 F30
Gallic acid −5.767 0.431 0.673 0.616
Cathine −4.783 0.877 0.851 0.869
Ephedrine −4.956 0.902 0.853 0.879
Higenamine −5.293 0.538 0.226 0.386
Pseudoephedrine −4.956 0.902 0.853 0.879
Methylephedrine −4.477 0.809 0.701 0.707
Vicenin-2 −6.624 0.226 0.447 0.253
Catechin −6.495 0.400 0.488 0.404
Kaempferitrin −6.364 0.399 0.584 0.325
Vitexin −6.317 0.263 0.494 0.287
p-Coumaric acid −4.892 0.745 0.699 0.536
Quercitrin −6.469 0.155 0.515 0.242
Naringenin chalcone −5.198 0.472 0.596 0.519
Umbelliferone −4.601 0.797 0.534 0.441
Benzoylmesaconine −6.087 0.301 0.332 0.41
Germacrone −4.378 0.768 0.661 0.625
Coumarin −4.142 0.848 0.288 0.257
Ferulic acid −4.943 0.635 0.680 0.509
Hypaconitine −5.513 0.343 0.265 0.350
Deoxyaconitine −5.469 0.349 0.261 0.355
Atractylenolide II −4.35 0.866 0.564 0.549
Nardosinone −4.353 0.826 0.633 0.585
β-Asarone −4.379 0.763 0.722 0.681
Linolenic acid −4.729 0.805 0.568 0.396

Table 1: Continued.

No. Retention time .eoretical m/z Measured m/z Error ppm Molecular formula Major MS/MS fragments Compound

18 8.00 194.0579 194.0581 1.0306 C10H10O4

193.0502
Ferulic acid177.0542

134.0363

19 10.28 615.3044 615.3030 −2.2753 C33H45NO10

556.2893

Hypaconitine524.2627
338.1745
105.0333

20 11.23 629.3200 629.3193 −1.1123 C34H47NO10

570.3052
Deoxyaconitine538.2784

105.0331

21 11.83 232.1463 232.1457 −2.5846 C15H20O2

215.1791

Atractylenolide II159.1165
145.1009
95.0853

22 12.84 250.1569 250.1560 −3.5977 C15H22O3

233.1522

Nardosinone191.1428
95.0852
71.0128

23 13.88 208.1099 208.1094 −2.4026 C12H16O3

191.0700
β-Asarone176.0465

168.0779

24 15.94 278.2246 278.2241 −1.7971 C18H30O2

109.1009
Linolenic acid95.0852

81.0696
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with an average node degree of 7.5 and average local
clustering coefficient of 0.548. .e PPI enrichment p value
was less than 1.0 e−16; thus, proteins have more interactions
among themselves than would be expected for a random set
of proteins of similar size drawn from the genome. Such a
significant enrichment indicated that the proteins are at least
partially biologically connected as a group.

.e genes ranked by the MCC algorithm were selected
using the cytoHubba plugin. .e predicted top 10 con-
tributing hub genes were TNF, PPARG, ALB, PTGS2, IL-10,
ACTB, NR3C1, ACE, SERPINE1, and AHR, which were
considered crucial targets of MFXD against AR.

Two significant modules were selected from the PPI
network by MCODE (Figures 3(b) and 3(c)). For module 1,
the genes were significantly enriched in the nuclear factor-
κB (NF-κB) signaling pathway and tumor necrosis factor
(TNF) signaling pathway. Cluster 2 genes were significantly
enriched in the T-cell receptor signaling pathway..ese data
suggested that MFXD likely acts on AR through all three
signaling pathways.

3.4. DAVID Pathway Analysis. To further investigate the
multiple mechanisms of MFXD at a systematic level, 37
common genes were uploaded into DAVID 6.8. Functional

association clustering analysis discovered 14 annotation
clusters, and the highest enrichment score was 4.07. .e top
20 terms in molecular function, cellular component, and
biological process are presented in Figures 4(a)–4(c),
respectively.

GO enrichment analysis showed that the target genes
were expressed in the plasma membrane, cell surface, cell
membrane, and other cell compartments. At the molecular
level, the target genes were involved in drug binding, enzyme
binding, G-protein acetylcholine receptor activity, and
steroid binging. At the cellular level, they were related to cell
apoptosis, proliferation, and migration. Moreover, biologi-
cal processes were also enriched with inflammation-related
terms. AR is a chronic inflammatory disease that involves the
release of various inflammatory mediators [1]..erefore, the
inhibition of the inflammatory response is a therapeutic
strategy for AR.

KEGG pathway annotation showed that 31 of the 37
(86.1%) potential target genes were enriched and involved in
153 pathways associated with the immune system, cardio-
vascular system, cancer, inflammation, and diabetes. As AR
is an allergic disease, pathways that are associated with the
immune system and inflammation were selected
(Figure 4(d)). For example, the Fc epsilon RI, B-cell receptor,
T-cell receptor, and Toll-like receptor signaling pathways are
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Figure 2: Compound-compound target network of MFXD consists of 24 compounds and 198 compound-target nodes (the yellow
rectangles are the compounds and the red triangle targets are compound targets).
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involved in the regulation of the immune system and the
TNF and NF-κB signaling pathways are involved in in-
flammation. We also identified the PI3K/AKT, cAMP, and
AMPK signaling pathways in this analysis. .e PI3K/AKT
signaling pathway is important for cell growth, differenti-
ation, metabolism, survival, and apoptosis [23]. Recent re-
search has revealed that the PI3K-AKT signaling pathway
regulates mast cell activity and is modulated in AR [24, 25].
Moreover, the central and peripheral regulation of energy
homeostasis relies on the cAMP signaling pathway [26].
KEGG pathway analysis showed that the active components
of MFXD act on the gene nodes within the PI3K/AKT and
cAMP signaling pathways (Figure 5). .ese data are con-
sistent with the multiple effects that TCM has on different
signaling and cellular pathways [27].

Comparative analysis of these KEGG pathways revealed
that, among the 37 potential target genes identified, genes
that were repeatedly associated with these pathways were
PIK3CG, TNF, PTGS2, CHRM2, CHRM1, GSK3B, ADRB1,
CHRM5, CHRM3, and HSP90AB1.

3.5. Compound-Target-Pathway Network Analysis of MFXD.
Chinese herbal formulas can contain dozens, or even hun-
dreds, of compounds, and each compound can act on one or
multiple targets to exert synergistic therapeutic effects [28]. To
directly explore potential synergistic relationships, a com-
pound-target-pathway combination network was constructed

(Figure 6)..is network revealed thatMFXD containsmultiple
compounds that have multiple targets within multiple path-
ways that are associated with AR treatment. For example,
quercetin acted on 14 targets (such as P48736, P22301, Q75475,
and P08684) and gallic acid acted on three targets (P23219,
P35354, and P48736). P48736 was associated with both
quercetin and gallic acid. Using network topological analysis,
the top 10 compounds that may make major contributions to
AR treatment are presented in descending order: quercetin,
pseudoephedrine, ephedrine, β-asarone, methylephedrine,
α-linolenic acid, cathine, ferulic acid, nardosinone, and
higenamine. Quercetin can stimulate the immune system,
inhibit the release of histamine, decrease the production of
proinflammatory cytokines, increase the synthesis of leuko-
trienes, restrain the formation of IgE antibody, and improve the
.1/.2 balance by participating in multiple signal pathways
[29]. All these mechanisms of action contribute to the anti-
inflammatory and immunomodulatory properties of quercetin,
which can be effectively utilized in the treatment of AR, as
shown in an animal model [30]. Gallic acid alleviates nasal
inflammation via the activation of .1 and inhibition of .2
and .17 cells and has immunomodulatory effects [31].
α-Linolenic acid dampens AR through the eosinophilic pro-
duction of 15-hydroxyeicosapentaenoic acid [32], and
ephedrine has been used as a nasal wash for AR treatment [33].

Most of the compounds, such as kaempferitrin and
pseudoephedrine, interact with PTGS2 (P35354). PTGS2 is
responsible for the production of inflammatory
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prostaglandin E2, which inhibits T regulatory cell differ-
entiation to induce AR-related inflammation [34]. We also
discovered compounds that acted together on the targets
P01375 and P48736 to regulate the Fc epsilon RI signaling
pathway. Gallic acid was observed to interact with PIK3CG
(P48736), a key protein that activates the B-cell receptor,
T-cell receptor, and Toll-like receptor signal pathways. Fi-
nally, targets such as P48736, P01375, P48736, P01375, and
P49841, which may provide protection against AR, inter-
acted with most of the compounds.

4. Conclusion

Unlike Western medicines, TCMs are commonly prescribed
as herbal formulas that contain amixture of herbs. Each herb
may contain many active ingredients that have single or
multiple targets; thus, it is difficult to pinpoint the mech-
anisms of action of TCM. Network pharmacology shares the
core concepts of the holistic philosophy of TCM and meets
the requirements to treat complex diseases systematically
[35]. However, in the traditional research of network
pharmacology, the compounds are mostly collected from
databases. Some compounds cannot be detected in the
decoction, which may yield false positive results.

In this study, LC-MS/MS identification of compounds in
the decoction followed by network pharmacology analyses
provided insights into the mechanism of MFXD in the
treatment of AR. In total, 24 bioactive compounds were
identified in MFXD and 37 common targets were obtained

and analyzed. .e results indicated that MFXD was effective
in the treatment of AR by regulating key pathways, including
the Fc epsilon RI, B-cell receptor, Toll-like receptor, NF-κB,
T-cell receptor, PI3K-AKT, cAMP, and AMPK signaling
pathways. Ten compounds in the decoction prepared from
MFXD were identified as candidates that could target AR.

.ese results reduce the prediction range, increase the
accuracy of the prediction results, and provide important
information for further pharmacological investigations on
MFXD. .is method, LC-MS/MS for bioactive compound
identification followed by network pharmacology analyses,
can increase the understanding of the mechanisms of
Chinese herbal formulas and promote drug research and
development.
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