
1

Briefings in Bioinformatics, 22(4), 2021, 1–13

https://doi.org/10.1093/bib/bbaa287
Problem Solving Protocol

Deep-joint-learning analysis model of single cell
transcriptome and open chromatin accessibility data
Chunman Zuo and Luonan Chen

Corresponding author: Luonan Chen. Tel.: +86-21-5492-0100; Fax: +86-21-5492-0120; E-mail: lnchen@sibs.ac.cn

Abstract

Simultaneous profiling transcriptomic and chromatin accessibility information in the same individual cells offers an
unprecedented resolution to understand cell states. However, computationally effective methods for the integration of these
inherent sparse and heterogeneous data are lacking. Here, we present a single-cell multimodal variational autoencoder
model, which combines three types of joint-learning strategies with a probabilistic Gaussian Mixture Model to learn the
joint latent features that accurately represent these multilayer profiles. Studies on both simulated datasets and real
datasets demonstrate that it has more preferable capability (i) dissecting cellular heterogeneity in the joint-learning space,
(ii) denoising and imputing data and (iii) constructing the association between multilayer omics data, which can be used for
understanding transcriptional regulatory mechanisms.
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Introduction
The rapid development of single-cell sequencing offers an
unprecedented resolution to study complex biological systems
or processes, including cancer, immune system and cellular
differentiation [1–3]. With the advancement of the scalable
methods for single-cell RNA sequencing (scRNA-seq), such as
10X Chromium, and Smart-seq2 [4], technologies for measuring
other molecular types, i.e. single-cell chromatin accessibility
sequencing (scATAC-seq) [5], DNA methylation [6], proteomics
[7] and metabolomics [8] have been developed. More recently,
technological innovations allow for measuring multiple types
of molecules in the same individual cell, such as sci-CAR-
seq [9], scCAT-seq [10] and SNARE-seq [11]. The resulting

Chunman Zuo is a post-doctor in the Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in
Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China. Her research includes computational biology, bioinformatics and machine
learning.
Luonan Chen is a professor and executive director in the Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center
for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Hangzhou Institute for Advanced Study, University of
Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China; and Center for Excellence in Animal Evolution and Genetics, Chinese
Academy of Sciences, Kunming 650223 China. His interests include systems biology, computational biology, bioinformatics and applied mathematics.
Submitted: 13 July 2020; Received (in revised form): 30 August 2020

© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

single-cell multiomics data potentially provide richer informa-
tion associated with cell states beyond the transcriptome [12].
That is to say that multiomics data can capture complementary
but converging information about a cell.

Gene expression is regulated through a set of transcrip-
tion factors (TFs) binding to its cis-regulatory genomic regions.
scRNA-seq characterize the gene expression level of a cell, and
epigenomic changes such as scATAC-seq reflect the openness
of cis-regulation elements in the nearby genes. The integration
of such two-omics data can provide new insights regarding
the regulatory layers associated with cellular heterogeneity [13].
Many integration tools have been designed for bulk data [14].
For example, MOFA, a generalization of principal component
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analysis (PCA), was proposed to process bulk data, and also
can be applied to single-cell datasets [15]. IntNMF, an extension
of non-negative matrix factorization (NMF), was developed to
integrate multiomics data for disease subtype classification, and
was evaluated to handle single-cell datasets [16, 17]. However,
recent research has found that single-cell data has its unique
characteristics, different from bulk data, and thus novel methods
are required to be developed [18].

Integration of single-cell multiomics data is still a great chal-
lenge due to the inherent highly sparse, great heterogeneity
because of assaying noise, the great dimensional difference
between scATAC-seq and scRNA-seq data, about 10–20 times
[19], and increasingly large-scale datasets [20]. A large number
of methods have been developed for scRNA-seq data integration,
however, only a few methods were proposed for integrating
single-cell multiomics data, and these methods were developed
for the omics data collected from different cells but drawn from
the same cell population [21–24]. For example, Coupled MMF
was proposed to perform clustering of scRNA-seq and scATAC-
seq data through constructing a coupled non-negative matrix
for the gene and cis-regulatory elements [23]. MATCHER was
proposed to predict correlation between scRNA-seq and scATAC-
seq by using Gaussian process latent variable models to infer
pseudotime for each cell [24]. Recently, Seurat (version 3) [25]
and LIGER [22] were developed for integrating scRNA-seq and
scATAC-seq data. Both of these methods firstly transform the
scATAC-seq data into gene activity data like gene expression
data and then identify anchors between the scRNA-seq data
and gene activity data through aligning each other in the low-
dimensional space. However, the alignment efficiency between
two-omics/two-layer-omics data often requires similar cluster-
ing performance from both measurements. It is hard to define
cell clusters through scATAC-seq data due to its extremely spar-
sity property (i.e. over 99% zeros in sci-CAR-seq). Hence, this
improper alignment for these two methods likely affects the
downstream analysis.

Deep generative models have emerged as a powerful frame-
work to model the high-dimensional data [26, 27]. Particularly,
VAE, which learns low-dimensional features from the input data
by an encoder, and recovers the input data by a decoder, this
can be done by maximizing the likelihood between recovered
data and input data, and minimizing the Kullback–Leibler (KL)
divergence between learned latent features and true posteriors.
Recently, single-cell variational inference (scVI) adapting a stan-
dard VAE was proposed to analyze scRNA-seq data [26]. However,
a standard VAE uses a single isotropic multivariable Gaussian
distribution over the latent variables and often underfits the
sparsity data [28]. SCALE adapting a VAE that uses Gaussian
Mixture Model (GMM) as the prior over the latent variables was
proposed to analyze scATAC-seq data, the analysis results indi-
cate that the framework integrating VAE and GMM can be used
to process highly sparsity data and learn a more disentangled
and interpretable latent features [27]. Recent rapid development
of deep-learning multimodal technologies [29, 30] and successful
application in integrating multiview biological data [31], demon-
strate their great potential to solve the difficulty of the current
analysis on single-cell multiomics data.

Here, we proposed single-cell multimodal variational
autoencoder (scMVAE) for the integrative analysis of scRNA-
seq and scATAC-seq data that are measured from the same
single-cell by using three types of joint-learning strategies.
scMVAE model uses stochastic optimization and multimodal
encoder, firstly to aggregate the two-omics data across similar
cells and features to approximate the joint latent features to
where GMM is prior, and then to reconstruct the observed

expression values by a decoder per omics data while accounting
for the normalization of each type of data, which can be trained
for very large datasets. In particular, through joint-learning of
two-omics data in an unsupervised manner, scMVAE model
(i) yields biologically meaningful low-dimensional features
that simultaneously represent both these multilayer profiles,
allowing cell visualization and clustering; (ii) denoises and
imputes two-omics data; and (iii) constructs the association
between two-layer data, which can be used to infer the new
regulatory relations. To demonstrate its efficiency, we applied
scMVAE model and other integration methods to both simulated
and real datasets, which demonstrated that scMVAE model
performs more favorably than current state-of-the-art methods.

Methods
scMVAE probabilistic model

scMVAE models the distribution of scRNA-seq and scATAC-seq
from the same cell through three joint-learning strategies: PoE
inference network (detailed in Material S1), neural network, and
direct concatenation of features of two-omics data (Figure 1A–C).
To balance the large dimensional difference between scRNA-
seq and scATAC-seq data, we converted the peak level count
matrix of scATAC-seq data to the gene activity data like gene
expression values of the scRNA-seq data, and modeled each
omics data drawn from one zero-inflated negative binomial
(ZINB) distribution. Specifically, given the K clusters, the joint-
learning features z could be obtained through the multiomics
encoder network via the reparameterization, and c is a categor-

ical variable whose probability is discrete. p
(
z|c

)
is a mixture of

Gaussians distribution parameterized by mean value vector μc

and covariance matrix σc conditioned on c. Considering that x, y
and c are independently conditioned on z, then the multimodal

joint learning distribution p
(
x, y, z, c, lx, ly

)
where lx and ly are one-

dimensional Gaussian variables that serve as the library size
factors of scRNA-seq and scATAC-seq data, respectively, can be
factorized as:

p
(
x, y, z, c, lx, ly

) = p
(
x|z, lx

)
p

(
y|z, ly

)
p (z|c) p(c)p

(
lx

)
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(
ly

)

Each factorized variable defined as follows:

c ∼ Cat
(

1
K

)

z ∼ N
(
μc, σc

2I
)

lx ∼ log norm
(
μlx, σlx

2
)
, ly ∼ log norm

(
μly, σly

2
)
.

Besides, each gene expression level for x or y was indepen-
dently from the following generation process:

μx ∼ Gamma
(
fμx

(
f (z)

)
, fθx

(
f (z)

))
, μy ∼ Gamma

(
fμy

(
f (z)

)
, fθy

(
f (z)

))

x’ ∼ Possion
(
lxμx

)
, y’ ∼ Possion

(
lyμy

)

πx ∼ Bernoulli
(
fπx

(
f (z)

))
, πy ∼ Bernoulli

(
fπy

(
f (z)

))

xr =
{

x’if πx=0
0 otherwise, yr =

{
y’if πy=0
0 otherwise

GMM prior to z is used in MVAE to generate highly realistic
samples by learning more disentangled and interpretable latent
representations, which has been applied to the scRNA-seq and
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Figure 1. Overview of scMVAE model with three joint-learning strategies. (A) Overall framework of the scMVAE model. Given the scRNA-seq data (xi with M variables)

and scATAC-seq data (yi with N variables) of the same cell i as input, the scMVAE model learned a nonlinear joint embedding (z) of the cells that can be used for multiple

analysis tasks (i.e. cell clustering and visualization) through a multimodal encoder with three learning strategies described as (B), and then reconstructed back to the

original dimension as output through a decoder for each omics data. Note: the same cell orders for both omics data ensure that one cell corresponds to a point in the

low-dimensional space. (B) Illustration model of three learning strategies: (i) ‘PoE’ framework was used to estimate the joint posterior by a product of posterior of each

omics data (detailed in Material S1), (ii) ‘NN’ was used to learn the joint-learning space by using a neural network to combine the features extracted by a sub encoder

network for each layer data and (iii) ‘Direct’ strategy was used to learn together by directly using the concatenation of the original features of two-layer data as input.

Here, the neural networks: NN− fμy−l , NN− fσy−l , NN− fμy , NN− fθy , NN− fπy , were removed from the total network under this learning condition. (C) The distribution to

where each variable of scMVAE model belongs. Each omics data were modeled as one ZINB distribution. The detailed description for each variable is given in datasets

and preprocessing.

scATAC-seq in the previous work separately [27, 32]. lx and ly are
regarded as the log-normal distribution that is expected to be

strongly correlated with the empirical log-library size. fθx

(
f (z)

)

and fθy

(
f (z)

)
indicate the feature-specific inverse desperations

that are estimated by the variational Bayesian inference. Neural
network fμx and fμy are constrained during the inference to
encoder the mean proportional genes expressed across all genes
in one cell by the use of the ‘softmax’ activation function at the
last layer, for the scRNA-seq and scATAC-seq data, respectively.
Neural network fπx and fπy encoder whether each gene has been
dropped out because of the capturing efficiency and sequencing
depth, by using the ‘sigmoid’ function at the last layer, for each
of two-omics data.

The training of scMVAE model is to maximize the log-
likelihood of the observed scRNA-seq and scATAC-seq data,
however, since this is intractable, the evidence lower bound
(ELBO) is instead optimized:

log p
(
x, y|z, c, lx, ly

) ≥ Eqϕ

(
z, c, lx, ly|x, y)

)
[
λ1 log

(
pθ1

(
x|z, lx

)) + λ2 log
(
pθ2

(
y|z, ly

))]
− α1DKL

(
q

(
lx|x

) ∥∥∥p
(
lx

)) − α2DKL

(
q

(
ly|y

) ∥∥∥p
(
ly

))

− βDKL

(
q

(
z, c|x, y

) ∥∥∥p (z, c)
)

Two reconstruction terms and regularization terms of KL
divergence associated with library size factor lx and ly were
encouraged to do the data normalization, denoising and imput-
ing. The KL divergence for the latent variable z was used to
regulate it to be a GMM manifold, to enhance the association
with multiomics data. The parameters qϕ , pθ1 and pθ2 are the
multimodal encoders, a decoder for scRNA-seq, and scATAC-seq
data, respectively.

All neural networks use dropout regularization and batch
normalization. Each neural network has one or two fully
connected layers, with 128 or 256 nodes per layer. The activation
functions between two hidden layers are ‘relu’ function. The
Adam optimizer with a 1e−6 weight decay is used to maximize
the ELBO. The scMVAE model is implemented with the pytorch
package, among them, GMM is constructed with the Python
scikit-learn package. Source code is available at the GitHub
repository: https://github.com/cmzuo11/scMVAE.

Datasets and preprocessing

Real data

Two datasets including paired profiles used in our study were
generated by the SNARE-seq technology [11]. Specifically, (i) the
cell line mixture dataset consisting of 1047 cells is derived from

https://github.com/cmzuo11/scMVAE
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mixtures of cultured human BJ, H1, K562 and GM cells; to check
if our model is robust with the sparsity data, we randomly
dropout out nonzero values of two-omics data to zero value,
with the proportion ranges from 0.1 to 0.3, thus generating nine
datasets; (ii) the AdBrainCortex dataset including 10 309 cells is
derived from the adult mouse cerebral cortex. Besides, 549 cells
derived from the human HCT116, HeLa-S3, K562, PDX1 and PDX2
cell lines generated by scCAT-seq technology [10] were used to
validate our method.

Simulated data: three simulated dataset with paired profiles
generated by the following strategy: (i) a scRNA-seq data
with two clusters of cells was simulated by Splatter [33],
with the following parameters: batchCells = 3000, nGenes = 200,
dropout.type = experiment, dropout.mid = 5, dropout.shape = −1,
de.prob = 0.3; and a scATAC-seq data consisting of 3000 cells
and 500 peaks (nPeaks = 500) were generated by the following
pipeline: the peaks formed two clusters, with each cluster
consisting of 250 specific peaks; and these specific peaks had a
value of 1 or 2 (ratio 1:4) in the cells of the corresponding clusters,
and 0 in other cells. The noised data were further generated
from real data by randomly dropping out nonzero values by 0.75,
and followed by setting the zero values to 1 or 2 (ratio 1:4) by
0.2; (ii) a scRNA-seq data with three clusters was simulated by
the same parameters as (i) but with nGenes = 500, the dropout
ratio for nonzero values of scATAC-seq data is 0.7, and the noise
ratio for zero values is 0.25; and (iii) a scRNA-seq data with
four clusters was simulated by the same parameters as (i) but
with nGenes = 600, and the dropout ratio for nonzero values of
scATAC-seq data is 0.5 and noise ratio for zero values is 0.4, as
well as nPeaks = 600 with each cluster containing 300 specific
peaks.

Preprocessing: the features of scRNA-seq and scATAC-seq
data of the cell line mixture datasets expressed in at least 1% of
cells were firstly kept; the peak level count matrix data were col-
lapsed into ‘gene activity matrix’ by the simplifying assumption
that a gene’s activity can be quantified by summing all counts
within the gene body +2Kbp upstream, by the ‘CreateGeneActiv-
ityMatrix’ function in the Seurat; and then Laplace score method
[34] was used to order features for each omics data based on its
power on preserving data local structure, evaluated by Pearson
correlation between cells, respectively. For the efficiency of the
scMVAE and other compared methods, the top 500 features per
omics data were selected for the input of the method. For the
AdBrainCortex dataset, same processing strategy was used to
deal with two-omics data, but the top 3000 features per data
were selected for the method comparison. Besides, the same
processing method was used to handle two-omics data of scCAT-
seq technology, and the top 500 features per data were selected
for the input of the compared methods.

Visualization and clustering

The uniform manifold approximation and projection (UMAP)
algorithm from uwot R package was applied to map the
raw data and extracted latent features to two-dimension,
and then the ‘Dimplot’ and ‘FeaturePlot’ functions from the
Seurat were used to visualize the cell embedding and gene
expression level between different cell population. Additionally,
‘K-means’ from the Python package ‘scikit-learn’ was used
to cluster the cells based on the extracted low-dimensional
features. The random seed 200 was set to repeat the result.

Evaluation of clustering results

The Rand Index (RI) quantifies the clustering similarity between
two classifications by considering matched and unmatched

assignment pairs independent of the number of clusters. The
Adjusted RI (ARI) score is calculated by considering grouping by
chance with RI by

ARI = RI − exp ected RI
max(RI) − exp ected RI

The ARI score ranges from 0 to 1, with 0 indicating random
labeling and 1 indicating completely matching.

Normalized mutual information (NMI)

NMI (Y, C) = 2 × I (Y; C)

[H(Y) + H(C)]

Where Y and C are categorical distribution for the real class
and predicted cluster labels, I is the mutual entropy function and
H is the Shannon entropy function.

Evaluation of clustering results for the real datasets

We defined the clustering score to evaluate if the predicted cell
clustering dissects the real cellular heterogeneity. Specifically,
we created the contingency table based on two clustering meth-
ods: classification of each cell based on whether its expression
level of genei (i.e. known marker gene for one cluster) is larger
than 0 or not; and classification of each cell predicted by each
computational method. Fisher exact test was used to test if these
cells expressing genei were significantly enriched in clusterm. The
clusterm is considered as cell population expressing genej if the

corresponding P-value < 0.05. Here, the formula − log
(
p − value

)
is regarded as the clustering score.

Besides, we applied the Gini-index (GI) [35] based measure
to quantify a cluster-specific score by considering the associa-
tion between marker gene and cell clustering. Specifically, the
average of each marker and housekeeping gene were calculated
for each cluster; the GI for each gene including marker gene
and housekeeping gene was calculated by the ‘gini’ function
from reldist [36]; and then the fold-change between GI per each
marker and the average of that of all housekeeping genes as the
AGI to evaluate the specific level of each marker gene for a clus-
ter clusterm. The higher AGI score, the better the cell clustering.

AGI = gini
(
genei

)
1

|Ghk |
(∑

genej∈Ghk
gini

(
genej

))

where Ghk indicates the gene set of the housekeeping genes that
are downloaded from the previous study [37], and | Ghk | is the
number of housekeeping genes. Also, we applied this metric to
evaluate the quality of denoised scRNA-seq data, by considering
the information of marker genes, housekeeping genes and cell
clustering predicted by the latent features that are extracted
from the compared computational methods.

Evaluation of consistency between two-omics data

Kappa coefficient, a statistical measure to test the reliability of
interrater, is used to assess the consistency between cell clusters
predicted by each omics data [38]. Specifically, we applied the
Seurat to assign cell cluster for each recovered omics data, and
then used ‘Kappa.test’ function from fmsb [39] to calculate the
kappa coefficient between two cell assignments. Calculation of
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Cohen’s kappa can be performed as follows:

k = Po − Pe

1 − Pe

Where Po indicates the actually observed consistency
between two raters, and Pe indicates the hypothetical probability
of chance consistency.

Pearson and Spearman correlation methods were used to
assess the similarity level of the same gene from each denoised
omics data. Besides, the known transcriptional regulations
between TFs and target genes (TGs) of human and mouse were
downloaded from the TRRUST v2 database [40] to biologically
interpret the similarity of two denoised data by assessing how
much these denoised data can recover these known relations
between TFs (indicated by scRNA-seq) and TGs (indicated by
scATAC-seq). Here, the correlation of each regulation larger than
0.3 is regarded as it is recovered.

Prediction and validation of transcriptional regulatory
relationships

We adopt the following steps to predict the relations between
TF and TG. (i) We identify TF motifs enrichment in each locus
based on the raw scATAC-seq data by chromVAR [41], with the
default parameters. Note that we focused on the 70 689 loci
covered by 3000 genes on AdBrainCortex dataset. (ii) We infer
a possible TF–TG pair if a TF can bind to at least one loci of a
TG. (iii) We calculate the Pearson correlation between each TF
(indicated by scRNA-seq) and TG pair (indicated by scATAC-seq),
and determine if each pair significantly happens based on the
empirical test: a P−value of the correlation of each TF–TG pair can
be estimated by comparing it with the correlation of randomly
selected gene pairs, 106 times, and the P − value of each pair less
than 0.05 is regarded as it is a final prediction of the regulations.

We validate the predicted TF–TG pairs with RegNetwork
database [42], a comprehensive set of experimentally observed
and predicted transcriptional regulatory relationships, in the
following way. Specifically, regarding genei among all 128 TFs
collected in the chromVAR, 98 TFs are founded in RegNetwork,
x of which regulate genei among our identified 12 TFs using
chromVAR, and y of which regulate genei. The fold-change

enrichment
(
y/12

)
/
(
x/98

)
for genei larger than 1 is regarded

as our predicted TF–TG pairs, which are over-represented in the
RegNetwork database.

Prediction of cluster numbers K

For each omics data, we followed SC3 [43] method to determine
the suitable cluster number K, by the following steps: (i) calcu-
lating the eigenvalues of ZTZ, where Z is the z-score matrix of
the raw count matrix; (ii) determining k based on the number
of eigenvalues that are significantly different from the Tracy-
Widom distribution with mean and s.d. [44]. The minimum value
of k for multiomics data is regarded as the final predicted cluster
number.

mean =
(√

n − 1 + √
p
)2

,

s.d. =
(√

n − 1 + √
p
) (

1√
n − 1

+ 1
p

) 1
3

.

Where n and p indicate the number of genes and cells,
respectively.

Results
scMVAE model for joint-learning single-cell multiomics
data

scMVAE model combines the MVAE and the GMM to model the
joint-learning distribution of two-omics data from the same
individual cells, by using three learning strategies (Figure 1A–C).
To balance the large dimensional difference between two-omics
data, we converted scATAC-seq data to the gene activity data,
and modeled each of these two datasets drawn from a ZINB
distribution, as used in the previous study [45]. Specifically, we
modeled the observed gene expression data xi (from scRNA-
seq data x) and gene activity data yi (from scATAC-seq data y)
in the same cell i drawn from a generative model of the form

p
(
x, y, z, c, lx, ly

)
, where lx and ly are different one-dimensional

Gaussian variables that serve as the cell-specific normalized
factors of scRNA-seq and scATAC-seq data, respectively; the
joint-learning features z is a low-dimensional latent vector rep-
resenting remaining variation of these multilayer profiles, which
is used to represent each cell as a point in the low-dimensional
space, to do the visualization and clustering; and c is one specific
clustering pattern of cells with K clusters, or one of the compo-
nents of GMM over K clusters. Since z is conditioned on c, and x
and y are independently conditioned on z or f (z), p

(
x, y, z, c, lx, ly

)

can be written as p
(
x|z, lx

)
p
(
y|z, ly

)
p
(
z|c

)
p(c)p

(
lx

)
p
(
ly

)
, where p(c)

is a discrete distribution of K clusters, p
(
z|c

)
follows a mixture of

Gaussian distribution with a mean vector μc and a covariance
matrix σc for each clustering pattern c. In our work, we used
three types of strategies to transform two-layer omics data (xi,yi)
of each cell i to the d-dimensional vector of latent features zi

on the manifold learned by a multimodal encoder network, to
construct the complex association between two-layer data, and
then mapped the latent features through two decoder networks
back to the original dimensionality to represent both omics data
of each cell, respectively (Figure 1A–C).

Model evaluation and comparison on the simulated
multiomics datasets

We compared the scMVAE model with several benchmark
methods for visualization and clustering using three simulated
two-omics datasets, which was generated by Splatter and an in-
house program, respectively. Available cell labels as the ground
truth were used to evaluate the clustering result. Specifically,
we simulated three datasets of 3000 cells containing two, three
and four cell types, with different sparsity and separation for
scRNA-seq data and scATAC-seq data, respectively (Figure 2A,
Figure S1A). By default, scMVAE and scVI extract 10 features
from the input data. We also applied the MOFA to reduce
the input data to the 10 features, but only one feature was
retained after running the software. We then visualized these
features extracted by these tools with the top two factors:
principal components (PCs) or UMAPs, as well as raw data
as a comparison. Besides, Seurat was used to process each
omics data as follows: extracting top 10 PCs, and then reducing
these PCs to two-dimensions for visualization. Since IntNMF
needs the predefined cell cluster number, we preset it to
two, three and four, respectively. In summary, each cell type
was assigned almost by different feature embeddings from
scMVAE, compared to MOFA, IntNMF and all other single-omics
methods, especially for the complex scenarios, which indicates
that the nonlinear joint-learning of multiomics data from
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the same cell can capture more useful feature representation
than that from linear joint-learning PCA or NMF, and single-
omics method; MOFA and IntNMF perform better than single-
omics methods in the simple scenario, but reversely on the
complex dataset, which indicates that the linear joint-learning
method cannot efficiently detangle the complex relationship
between two-omics data; and the embeddings inferred by the
PoE and NN strategy were almost different from one cell type to
another, compared to those by the shallow direct concatenation,
particularly in the complex conditions (Figure 2A).

We then applied K-means clustering on the latent features
extracted by above computational methods, and assessed their
clustering accuracy based on the ARI and NMI by comparing
predicted cell clusters with the ground truth. Note: the default
method in Seurat was used to predict cell clusters for each omics
data. The results show: scMVAE performs better than MOFA, Int-
NMF and all single-omics methods, except that scMVAE-Direct
performs worse in the complex scenarios; MOFA performs better
than IntNMF and all single-omics methods, but worse than
those in the complex conditions (Figure 2B). Additionally, these
original count data for each technology were used to validate
the recovery accuracy. We calculated the correlation of recovered
data and original data by spearman correlation for each method
(Figure S1B), which shows that scMVAE performs best.

To assess the scalability of training, we randomly subsam-
pled 18 datasets with different sizes of cells and genes from
AdBrainCortex dataset of about 10 000 mouse brain cells [11].
To facilitate the comparison with state-of-the-art algorithms
for modeling of the single-cell multiomics data, we limited the
maximum number of variables for each omics data to the 3000
variables selected by Laplace score. We found that all methods
were able to process those big data, but scMVAE performs faster
compared to MOFA and IntNMF (Figure 2C), thanks to its reliance
on a fixed number of cells at each iteration of iterative stochastic
optimization. It is emphasized that scMVAE can get the optimal
solution converged at most 30 min across all simulated datasets,
but MOFA and IntNMF both reach 700 min, increasing with the
size of cell or feature.

scMVAE captures cellular heterogeneity in the
joint-learning latent space

We next evaluated the extent to which the latent features
inferred by scMVAE characterize biological variability between
cells. By default, scMVAE model extracts four-dimensional
features from the original cell line mixture datasets with paired
profiles. For comparison, we also applied single-omics methods:
PCA and scVI to separately map the scRNA-seq and scATAC-
seq data to four dimensions, and two-omics methods: CCA,
IntNMF and MOFA to simultaneously map two-omics data to
four dimensions, and then visualized these four-dimensional
features as well as raw data with UMAP. In summary, the feature
embeddings extracted by multiomics methods except IntNMF
were better separated between cell types than those by single-
omics methods, scMVAE and MOFA perform better than CCA;
and the features extracted from scRNA-seq by any single-omics
method perform better than those from scATAC-seq data, which
indicates that scRNA-seq data have richer information about
cell state compared to scATAC-seq data (Figure 3A and B).

We then applied the K-means clustering on the low-
dimensional features extracted by scMVAE model and assessed
the clustering performance by comparing the results with the
single-omics method: scVI and Seurat for each omics data,
separately, and two-omics method: MOFA, IntNMF and CCA. Due

to the lack of the ground truth for the real data, we evaluated
clustering accuracy by clustering score and AGI. The results
show that the multiomics methods (except IntNMF) perform
better than single-omics methods, and the CCA method has poor
performance when integrating two-omics data simultaneously
(Figure 3C and D). Besides, 1004 cells of the cell line mixture
datasets (96%) have the same cell type annotation based on
the prediction of MOFA and scMVAE, and are kept for further
comparison.

Finally, by generating nine datasets, the nonzero values of
two-omics data of 1004 cells randomly dropped out to zero with
ranging from 10% to 30% were used to test whether scMVAE is
robust with the sparsity data. For comparison, we used the same
deep-learning structure of our scMVAE model to process these
nine datasets. ARI and NMI were applied to compare the cluster-
ing accuracy between scMVAE and MOFA. We found that scMVAE
has a stable and higher clustering accuracy than MOFA under
various combinations of scRNA-seq and scATAC-seq sparsity
data (Figure 3E and F).

Besides, we noted that scMVAE and MOFA accurately cap-
ture the cellular variability of multiomics data generated from
scCAT-seq technology, but IntNMF cannot (Figure S2A); and the
clustering accuracy based on ARI and NMI of scMVAE and MOFA
is significantly higher than that of IntNMF (Figure S2B), which
indicates that there are some specific properties of single-cell
that bulk multiomics methods cannot capture efficiently.

Additionally, motivated by the recent study [46], we bench-
marked the influence of the ZINB and NB distribution on two
cell line mixture datasets from two technologies (Figure S2A and
B, Figure S3A–C), found that the clustering accuracy difference
between ZINB and NB distribution is generally small (	ARI =
0.03, 	NMI = 0.04 for scCAT-seq data, 	clustering score = 2
for SNARE-seq data), and scMVAE model with ZINB distribution
performs slightly better than NB distribution on SNARE-seq, but
slightly worse than scCAT-seq data. Hence, we implemented
both distributions in our code to improve its adaptability. We also
observed that ZINB or NB distribution with GMM prior performs
slightly better than Gaussian prior on the cell clustering (Figure
S2A and B, Figure S3A–C).

We further investigate if our clustering estimated method
can find suitable clusters on the real datasets (Methods). The
results show that the estimated clusters are close to that of the
references, clustering results are similar to the reference sets,
feature embeddings are not influenced by the cluster numbers,
and cell clustering and feature embeddings of scMVAE model
with ZINB or NB distribution, GMM and Gaussian priors are not
influenced by the cluster number (Figure S4A–C and S5A–C).

scMVAE model significantly enhances the consistency
between two-omics data on the denoised datasets
compared to original noisy datasets

An important feature for scMVAE is the ability to enhance the
consistency between two-omics data which usually have very
low correlation due to inherent highly sparse, great heterogene-
ity resulting from assaying noise. This estimation of scMVAE
could be used to denoise each data and enhance the consistency
between two-omics data by using the joint learning of two-
omics data. We compared the consistency of cell clustering
between two-omics data of cell line mixture datasets of SNARE-
seq denoised by scMVAE model, CCA, MOFA and each scVI model
for each omics data, as well as the raw data. All these denoised
data come from the same model as used in scMVAE captures
cellular heterogeneity in the joint-learning latent space. The
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Figure 2. Visualization, clustering and run-time comparison on the simulated datasets. (A) Dot plot of the top two factors (PCs for Dataset1 and 2; UMAPs for Dataset

3) extracted from each of corrupted omics data of three simulated datasets, and latent features extracted by single-omics methods: scVI and Seurat for each omics

data (upper layer for each dataset), and joint-learning latent features extracted by IntNMF, MOFA and scMVAE model, respectively (lower layer for each dataset). Cells

are colored by their true cell types. For each dataset, the final subplot indicates its corruption rate of each omics data. (B) Clustering accuracy was evaluated by ARI

and NMI between true cell label and predicted cell cluster by single-omics methods: scVI and Seurat; and multiomics methods: IntNMF, MOFA and scMVAE model,

respectively, for each of three simulated datasets. (C) Run-time comparison for fitting four models on the 18 simulated datasets which were generated by randomly

selected different sizes of cells and features from AdBrainCortex datasets with 3000 features per omics data. Algorithms were tested on a machine with one 40-core

Intel(R) Xeon(R) Gold 5115 CPU addressing with 132GB RAM, and two NVIDIA TITAN V GPU addressing 24GB.
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Figure 3. Feature embedding and clustering comparison on the original cell line mixture datasets. (A) UMAP visualization of the raw data and features separately

extracted from scRNA-seq (upper layer) and scATAC-seq (lower layer), by Seurat and scVI, respectively. (B) UMAP visualization of the extracted features from the

multiomics method: CCA, IntNMF, MOFA and scMVAE model. (C) Clustering accuracy was evaluated by clustering score between cell cluster predicted by nine

computational methods (i.e. Seurat, scVI (scRNA-seq), IntNMF, MOFA, CCA, scVI (scATAC-seq) and scMVAE model) and cell assignments based on whether each cell

expresses one marker gene. Each subpie plot shows the clustering score of nine methods for each cluster, and ideally, it is distributed on the diagonal. X and Y axis

indicate marker genes and cell clusters, respectively. (D) Clustering accuracy was evaluated by AGI score based on the clustering assignment predicted by computational

methods (i.e. Seurat, scVI, MOFA and scMVAE model) and the expression level of marker gene and housekeeping genes. Note: the higher the score, the better the

clustering performance. (E) Clustering accuracy was assessed by ARI to compare different methods under the nine datasets with different sparsity levels of scRNA-seq

and scATAC-seq data. (F) Clustering accuracy was assessed by NMI to compare different methods under the nine datasets with different sparsity levels of scRNA-seq

and scATAC-seq data.

similarity of cell clustering is assessed by Kappa coefficients.
Generally, the interrater reliability between two denoised omics
data learned by deep-learning models is higher than other meth-
ods; scMVAE is better than scVI model that processes each omics
data separately, which indicates that deep-joint-learning models
can construct the association between different modalities data;
and the Kappa coefficients of MOFA was the same with raw data,
which indicates that MOFA is unable to denoise or improve the
raw multiomics data in this case (Figure 4A, Figure S6).

Next, we applied the correlation methods including Pearson
and Spearman to evaluate the similarity of the expression level
of the same genes of two denoised omics data. In summary,
the correlation between two denoised data learned by deep-
learning models is significantly higher than that by other mod-
els; and among them, the correlation of scMVAE model with

scMVAE-NN and scMVAE-PoE strategies are significantly higher
than scMVAE-Direct, which is consistent with the previous study
that this shallow model scMVAE-Direct with the concatenation
of the original features of two-layer data as input is hard to
construct the associations between different modalities [47]; and
the correlation of CCA is higher than MOFA; and the correlation
of MOFA model is the same with raw data (Figure 4B), which is
consistent with the conclusion about cell clustering as Figure 4A.

Besides, we check whether two denoised omics data learned
by scMVAE model can reflect real transcriptional regulations.
Specifically, we calculated the Pearson correlation between a TF
quantified by scRNA-seq data and a TG quantified by scATAC-
seq data within each cell cluster. The results show that scMVAE
model with two strategies: scMVAE-NN and scMVAE-PoE can
identify 100% of known TF–TG pairs [40]; scMVAE-Direct and scVI
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Figure 4. Consistency of clustering and features between two-omics data on the denoised cell line mixture datasets by scMVAE. (A) The consistency was evaluated by

the Kappa coefficient between the clustering assignment of two-omics data denoised by MOFA, CCA, scVI and scMVAE model, as well as raw data. (B) Features similarity

was assessed by Pearson and Spearman correlation between two-omics data denoised by MOFA, CCA, scVI and scMVAE, as well as raw data. (C) Pearson correlation

between known TF–TG pairs of two-omics data denoised by MOFA, CCA, scVI and scMVAE model, as well as raw data.

can identify 87% and 53% of total known pairs; but the corre-
lations by CCA and MOFA are almost as the same as raw data,
which indicates that scMVAE can construct the associations
between the modalities by the way of joint-learning (Figure 4C).

Finally, we tested whether scMVAE model is robust to
improve the consistency between the modalities under the
sparsity data, which is evaluated based on the same dropout
out datasets as used in Figure 3E and F. After processing each
data by MOFA and scMVAE model, we compared the similarity
of cell clustering and expression level between these methods.
The results show that scMVAE model has a more stable and
higher consistency than MOFA between two denoised omics
data under nine combinations of scRNA-seq and scATAC-seq
data (Figure S7).

Similarly, scMVAE can improve the consistency of two-omics
data of scCAT-seq technology (Figure S2C). Besides, we noted that
the consistency differences between ZINB and NB distribution
(	kappa coefficients = 0.28 for SNARE-seq, 0.005 for scCAT-seq),
and between GMM and Gaussian prior (	kappa coefficients =
0.004 for SNARE-seq, 0.05 for scCAT-seq) are generally small
(Figure S2C, and S3D), and the differences of feature similarity
of two-omics data denoised by scMVAE model with ZINB or
NB distribution, GMM and Gaussian priors are generally small
(Figure S2D and S3E). Additionally, the consistency between two
denoised data is not influenced by the estimated cluster number
K (Figure S4D and S5D).

scMVAE model is scalable to the large-scale real dataset

We further examined AdBrainCortex dataset of 10 309 cells with
two-omics data to investigate whether scMVAE model works
for large datasets [11]. The study inferred nine main cell types
with 22 finer subtypes by using the graphic clustering on the
scRNA-seq data. By default, scMVAE model extracts 22 features

from the input data. For comparison, we applied single-omics
methods: PCA and scVI to separately map each omics data to 22
dimensions, and two-omics methods: CCA, IntNMF and MOFA
to simultaneously map two-omics data to 22 dimensions, and
then used the UMAP to reduce these 22-dimensional features as
well as raw data to two-dimensional features for visualization.
To facilitate the comparison with the clusters defined by the
previous study, we used the same clustering method with the
study to define cell clusters for each scRNA-seq data denoised
by the scVI, MOFA, and scMVAE model, as well as raw data.
Due to the lack of the real cell type from the literature as a
benchmark, we did the same clustering assessment as the cell
line mixture dataset. Overall, most of the major reference clus-
ters have a corresponding one identified by the scMVAE model,
nevertheless, some small and highly similar subtypes defined by
the previous study are combined into one group. That is because
we adopt a novel strategy to select high-information features for
further analysis, and six markers (Pvalb, Vip, Pdgfra, Rgs5, Vtn,
Kdr) corresponding to five subtypes defined by this study were
removed out due to their expression proportion among all cells
less than 1% (ranging from 0.19% to 0.64%).

In summary: (i) the feature embeddings extracted by scMVAE
and MOFA models were better separated between different cell
clusters, compared with other methods (Figure 5A), but of which
scMVAE was better than MOFA, which indicates that joint latent
features extracted by our nonlinear scMVAE model cover more
information than those by the generalized linear MOFA model;
(ii) the clustering score between scVI for scRNA-seq and scMVAE
model for multilayer data is more similar than other methods,
but the feature embeddings extracted by scMVAE model are bet-
ter separated than scVI (Figure 5A and B), which indicates that
the joint-learning scMVAE model accurately captures two-layer
information; (iii) the IntNMF model works worst in integrating
two-layer data (Figure 5A); (iv) the clustering score between
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Figure 5. scMVAE model works well on AdBrainCortex (a large dataset). (A) UMAP visualization of the latent features extracted by one-omics methods (i.e. Seurat

and scVI) for scRNA-seq and scATAC-seq data, separately; and by two-omics methods (i.e. CCA, IntNMF, MOFA and scMVAE model) for multilayer data. (B) Clustering

accuracy was evaluated by clustering score between cluster assignments predicted by computational methods and cell assignment based on whether each cell expresses

a marker gene. (C) UMAP visualization of the denoised data from MOFA and scMVAE model. (D) Clustering and denoised quality were assessed by AGI score based on

the cell clustering predicted by computational methods (i.e. Seurat, scVI, MOFA and scMVAE model) and gene expression level of marker gene and housekeeping genes

denoised by these methods. (E) The proportion of 135 TF–TG pairs inferred by two-omics data denoised from scVI, MOFA and scMVAE, as well as raw data, by Pearson

coefficients larger than 0.3 within at least one cell cluster. (F) Fold-change enrichment of the predicted regulations of known five marker genes, which are validated by

the RegNetwork database.

scMVAE (with GMM prior) with ZINB and NB distribution is
basically same, but the feature embeddings of ZINB distribution
are better than that of NB distribution (Figure S8A–C); (v) the
clustering score of scMVAE (with either ZINB or NB distribution)

with GMM is higher than that with Gaussian prior, also the fea-
ture embeddings of GMM prior are better than that of Gaussian
prior, which indicates that the GMM prior constraints on the
latent code can help scMVAE to learn more disentangled and
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interpretable latent representations on the complex dataset
(Figure S8A–C); and (vi) scMVAE-PoE model seems to perform
better than scMVAE-NN, and scMVAE-NN performs better than
scMVAE-Direct, either GMM or Gaussian prior, ZINB or NB
distribution (Figure S8A–C).

Not surprisingly, feature embeddings of scATAC-seq data
extracted by Seurat cannot clearly separate cell types annotated
from scRNA-seq data by Seurat. However, the feature embed-
dings extracted by scMVAE are better separated between dif-
ferent cell clusters than other methods, which indicates that
the scMVAE model can improve the quality of scRNA-seq and
scATAC-seq data simultaneously. Additionally, the denoised data
from MOFA have the same information as raw data in terms of
clustering, which is consistent with the conclusion that MOFA is
unable to denoise the data for clustering (Figure 5C).

Next, we evaluated the quality of two denoised data as fol-
lows: (i) the AGI score that was calculated by both clustering
and denoised markers (also housekeeping genes) was used to
evaluate the denoised quality (Figure 5D). The AGI score of scM-
VAE model is significantly higher than other methods including
scVI for scRNA-seq, which indicates that scMVAE model can
simultaneously improve the cell clustering and two-omics data
denoising; (ii) the correlation of the same gene from two-omics
data denoised by scMVAE model is significantly higher than
other methods (Figure S9A); and (iii) scMAVE-NN and scMVAE-
PoE model can recover more than 95% of the known transcrip-
tional regulations between two denoised omics data whereas
other methods only recover about 5% of relationships (Figure 5E,
Figure S9B). These comparison results demonstrate that scM-
VAE model can be trained for large-scale datasets, with higher
quality.

Finally, we further investigate the quality of the predictions
of TF–TG pairs based on the denoised data by scMVAE (Methods).
Totally, we inferred 8840 interactions between 12 TFs and
2440 TGs, 8422 interactions between 12 TFs and 2427 TGs,
and 8429 interactions between 12 TFs and 2426 TGs from the
data denoised by scMVAE-Direct, scMVAE-NN and scMVAE-
PoE, respectively, and among them, regulations of 1626 (66.6%),
1607 (66.2%), and 1618 (66.7%) TGs are validated by RegNetwork
database, respectively (Figures S10 and S11). For example, we
observed that the regulations of five known marker genes:
Rorb, Galnt14, Bcl11b, Tle4 and Reln, are over-represented in
the RegNetwork database (Figure 5F).

Discussion
scMVAE model was proposed to analyze scRNA-seq and scATAC-
seq measured from the same individual cells in a biological
meaning manner, to account for its inherent highly sparse, great
heterogeneity, by combining MVAE and GMM model, which can
be scalable to large datasets. To our best knowledge, this is
the first deep-joint-learning model for processing single-cell
multiomics data.

By comparing the scMVAE with scVI that processes each
omics data separately, we found that scMVAE model has a better
performance in terms of denoising, imputation and the asso-
ciation between two-layer data, which is attributed to the sub-
sequent mutual learning designed by our model after bottom
layer of the scMVAE. Besides, the feature embeddings extracted
by scMVAE model are better separated than scVI model for each
omics data, which indicates that the joint-learning represen-
tation of multiomics data can yield a deeper and more useful
representation.

Overall, we noted that scMVAE-NN and scMVAE-PoE strate-
gies perform better than scMVAE-Direct, especially for the
association between two-omics data. This is consistent with the
conclusion from the previous study [47]. scMVAE-PoE and
scMVAE-NN strategies have comparable performances on these
analysis tasks, but the total network parameters of scMVAE-
PoE are less than scMVAE-NN. With the rapid accumulation
of large-scale single-cell multiomics data [48], scMVAE model
can be easily adjusted to adapt it by adding the corresponding
network for each omics data. Recently, many methods have been
proposed to consider the specific properties for each data while
integrating data from multiple sources [22]. Luckily, our scMVAE-
PoE strategy is scalable and can disentangle omics-specific and
modality-invariant factors for two-omics data [49].

Key Points
• A single-cell multimodal variational autoencoder

(scMVAE) model was proposed to learn the joint latent
features that accurately represent transcriptomic and
chromatin accessibility profiles that are both mea-
sured in the same cell, to account for their inherent
sparse and heterogeneous property;

• Studies on both simulated datasets and real datasets
demonstrate that scMVAE has more preferable capa-
bility (i) dissecting cellular heterogeneity in the joint-
learning space, (ii) denoising and imputing data and
(iii) constructing the association between multilayer
omics data, which can be used for understanding
transcriptional regulatory mechanisms;

• With the rapid accumulation of large-scale single-cell
multiomics data, scMVAE is scalable to easily process
large and multilayer data.
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