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Abstract: Spleen tyrosine kinase (Syk) is a critical target protein for treating immunoreceptor
signalling-mediated allergies. In this study, a virtual screening of an in-house Chinese medicine
database followed by biological assays was carried out to identify novel Syk inhibitors. A molecular
docking method was employed to screen for compounds with potential Syk inhibitory activity.
Then, an in vitro kinase inhibition assay was performed to verify the Syk inhibitory activity of the
virtual screening hits. Subsequently, a β-hexosaminidase release assay was conducted to evaluate the
anti-mast cell degranulation activity of the active compounds. Finally, tanshinone I was confirmed
as a Syk inhibitor (IC50 = 1.64 µM) and exhibited anti-mast cell degranulation activity in vitro
(IC50 = 2.76 µM). Docking studies showed that Pro455, Gln462, Leu377, and Lys458 were key amino
acid residues for Syk inhibitory activity. This study demonstrated that tanshinone I is a Syk inhibitor
with mast cell degranulation inhibitory activity. Tanshinone I may be a potential lead compound for
developing effective and safe Syk-inhibiting drugs.
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1. Introduction

Spleen tyrosine kinase (Syk) is a 72 kDa cytosolic non-receptor tyrosine kinase that is involved
in signal transduction by the classic immunoreceptors, including mast cells, B-lymphocytes,
and macrophages, and contributes to diverse cellular responses, including histamine release,
cell proliferation, differentiation, and phagocytosis [1]. Studies have shown that when
stimulated through FcεRI, Syk-deficient mast cells cannot synthesize leukotrienes, secrete cytokines,
or degranulate [2]. Inhibition of Syk-mediated immunoreceptor (B-cell receptors, T-cell receptors
and Fc receptors) signalling leads to inhibition of mast cells, macrophages and B-cell activation and
subsequent release of inflammatory modulators [3]. Recently, Buyanravjikh et al. reported that
cryptotanshinone could inhibit IgE-mediated mast cell degranulation through theinhibition of tyrosine
kinase-dependent degranulation signalling pathways involving Syk and Lyn [4]. Therefore, seeking
safe Syk small molecule inhibitors has attracted considerable interest in a number of therapeutic areas,
including the treatment of allergic asthma, rhinitis, rheumatoid arthritis and chronic lymphocytic
leukaemia [5–7]. However, there is currently no Syk small molecule inhibitor drug on the market,
although some potential compounds have been tested in clinical trials [8,9].

Traditional Chinese medicine (TCM), with an over 2000 year history in the treatment of diseases,
is a valuable source for drug leads and candidates in the process of drug discovery. Many popular
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natural compounds, such as artemisinin, berberine, ginkgolide, and paclitaxel, extracted from TCMs,
play an important role in disease treatments [10–13]. In this work, a combined approach involving
docking-based virtual screening and bioassay-based validation was performed to identify natural
Syk small molecule inhibitors from TCMs. A schematic diagram of bioactive compound discovery
in this study is shown in Figure 1. The top hits in molecular docking were tested for Syk inhibition
using a kinase inhibition assay. Additionally, a degranulation assay was carried out in RBL-2H3 cells
to evaluate the bioactivity of compounds at the cellular level. Finally, tanshinone I (CAS: 568-73-0)
was identified as a Syk inhibitor and had anti-mast cell degranulation activity in vitro. Our findings
help to further reveal more biological activities of tanshinone I as a Syk inhibitor. Additionally, the
binding mode between tanshinone I and Syk provides a reference for structural optimization and
activity enhancement. The approach used in this work is feasible for identifying Syk inhibitors from
TCMs and beneficial to the development of effective and safe Syk-inhibiting drugs.
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Figure 1. The schematic diagram of active compound discovery based on virtual screening and
biological assays.

2. Results and Discussion

2.1. Docking-Based Virtual Screening Targeting Syk

Docking-based virtual screening was employed in this work to identify potential Syk inhibitors.
The co-crystal structure of Syk (PDB ID: 4PUZ) in complex with a known inhibitor, CG9
(molecular formula: C23H21N7O), named 6-(1H-indazol-6-yl)-N-[4-(morpholin-4-yl)phenyl]imidazo
[1,2-a]pyrazin-8-amine, was obtained from a protein data bank (https://www.rcsb.org/) as a template
for docking screening. An in-house database containing 320 natural compounds was initially filtered by
PAINS (http://www.cbligand.org/PAINS/login.php) and Lipinski’s ‘rule of five’ to remove potential
false positive molecules [14], which resulted in a list of 251 compounds. To validate the docking
programme, co-crystallized CG9 was re-docked into the active site of Syk and the docked conformation
with the highest total score of 6.07 was selected as the most likely binding conformation. As shown
in Figure 2, the root-mean-square deviation (RMSD) of 0.52 Å between the co-crystallized and the
docked conformations of CG9 indicated a high reliability of the docking programme in reproducing
the experimentally observed binding mode. The results showed that the docked conformation was
nearly in the same position as the co-crystallized conformation. Ala451, Asp512, Leu377, Gly454, and
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Leu501 were key amino acids for Syk inhibition in the CG9 binding site, which is consistent with
previous reports in the literature [15]. A total of 251 natural compounds were successively docked into
the active site of Syk, resulting in a hit list of 18 compounds with docking scores above 6.00 (Table 1).
The 18 hits were further evaluated for their in vitro inhibition activity against Syk.
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Figure 2. The binding site of theCG9 ligand in the inhibitor binding site of Syk. The red and green
compounds represent the co-crystal and docked conformations of theCG9 ligand in Surflex-docking,
respectively. The red dotted lines indicate hydrogen bond interactions between CG9 and Syk.

Table 1. The hits from docking-based virtual screening.

ID Total Score Name CAS No. Sources

1 9.61 10-Gingerol 23513-15-7 Zingiber officinale
2 8.02 Calceolarioside B 105471-98-5 Akebia quinata
3 7.71 6-Gingerol 23513-14-6 Zingiber officinale
4 7.59 Corylifolinin 20784-50-3 Glycyrrhiza uralensis
5 7.48 Arbutin 497-76-7 Saussurea lappa
6 7.37 Piceid 27208-80-6 Lilium brownii var. viridulum
7 7.07 Ostruthin 148-83-4 Angelica decursiva
8 7.01 Wogonoside 51059-44-0 Scutellaria baicalensis
9 6.91 Mulberroside A 102841-42-9 Morus alba

10 6.88 Anisodamine hydrobromide 55449-49-5 Anisodustanguticus (Maxim.) Pascher
11 6.84 Curcumin 458-37-7 Curcuma zedoaria
12 6.55 Dehydrodiisoeugenol 2680-81-1 Syzygium aromaticum
13 6.30 Tanshinone I 568-73-0 Salvia miltiorrhiza
14 6.25 L-Arctigenin 7770-78-7 Arctium lappa
15 6.21 Mulberroside C 102841-43-0 Morus alba
16 6.18 6-Shogaol 555-66-8 Zingiber officinale
17 6.15 Propyl gallate 121-79-9 Rheum officinale
18 6.03 Sesamolin 526-07-8 Sesamum indicum

2.2. Tanshinone I Dose-Dependently Inhibited Syk Activity

The 18 virtual hits from the docking screening were assessed for their Syk-inhibitory activity
using an ATP determination kit named ADP-GloTM kinase assay kit (Promega, Madison, WI, USA)
according to themanufacturer’s instructions. Staurosporine, a known Syk inhibitor, was used as a
positive control [16]. A kinase buffer containing 5% DMSO was used as a vehicle control. The inhibition
of test compounds at a concentration of 30 µM was measured, and compounds with inhibition rates
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of >60% were selected for IC50 value determination. Among the 18 compounds, only tanshinone I
significantly inhibited Syk compared to the vehicle control (p < 0.05) (Figure 3). A further dose-effect
analysis found that tanshinone I could dose-dependently inhibittheSyk activity with an IC50 of 1.64 µM
(Figure 4).
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Figure 3. The luminescence values of the Syk solution after incubation with 18 test compounds in
ADP-GloTM kinase assays. The luminescence value was detected in the presence of 1 ng/µL Syk
incubated with 18 compounds (30 µM in the total reaction system) using an ADP-GloTM kinase assay
kit for primary screening. Information about compounds 1 to 18 can be found in Table 1. Compounds
19 and 20 represent thepositive and negative control, respectively. The error bars indicate the standard
error (SE) of three replicates. *** means p < 0.001.
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2.3. Tanshinone I Dose-Dependently Inhibited Mast Cell Degranulation

To evaluate the anti-mast cell degranulation activity of tanshinone I, the release rate of
β-hexosaminidase, an important biomarker in degranulation, was measured in RBL-2H3 cells after
antigen stimulation. Chloroquine, a known mast cell degranulation inhibitor, was used as a positive
control [17]. As shown in Figure 5A, chloroquine (positive control) and 2.22–60.00 micromoles of
tanshinone I significantly inhibited β-hexosaminidase release in IgE/BSA-stimulated RBL-2H3 cells.
The half-inhibitory concentration for the inhibition of Syk by tanshinone I was determined to be
2.76 µM (Figure 5B). All experiments at each concentration of tanshinone I had three replicates and
were repeated three times.
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2.4. Binding Site of Tanshinone I in Syk Model

Most of the known Syk inhibitor molecules have specific structural scaffolds, such as
pyridine-2- carboxamide, pyrazin-8-amine, pyrimidine-8-carboxamide, pyrimidin-4-one, pyridazine-3-
carboxamide, pyrimidine-5-carboxamide, (3E)-3-(1H-pyrrol-2-ylmethylidene)-1H-indol-2-one and
methylquinoline-4,6-diamine [15,18–25]. Tanshinone I, a phenanthrene derivative, has a simpler
scaffold than those of known inhibitors. A ligand-Syk docking model was performed to predict the
molecular mechanism of tanshinone I recognition and binding to Syk. As shown in Figure 6, the keto
group and furan ring of tanshinone I were inserted into the catalytic centre of Syk to form hydrogen
bond interactions with the side chains of Gln462 and Lys458, respectively. Moreover, the aromatic
rings were surrounded by hydrophobic residues (Leu377 and Pro455), suggesting that hydrophobic
interactions occurred between tanshinone I and Syk. The pharmacophore model characterizing
ligand-protein interactions was consist of three aromatic rings and two hydrogen bond receptors,
which were potential key structural features of tanshinone I for Syk inhibition.
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Tanshinone I is an important lipophilic diterpene extracted from Radix Salvia miltiorrhizae
(Danshen), a well-known traditional herbal medicine in China that has a variety of pharmacological
effects, including antioxidant, anti-inflammatory, heart-protective, and anti-osteoporotic effects [26,27].
Studies have found that tanshinones have anti-inflammatory, anti-allergic, and other pharmacological
effects [28,29]. Choiet al. reported that tanshinones possibly exert their anti-allergic activities by
affecting FcεRI-mediated tyrosine phosphorylation of ERK and PLCγ2 [30]. Buyanravjikh et al.
reported that cryptotanshinone, a natural compound extracted from Salvia miltiorrhiza Bunge, had an
inhibitory effect on IgE/antigen-mediated mast cell degranulation through the inhibition of tyrosine
kinase-dependent degranulation signalling pathways [4]. This study demonstrates, for the first time,
that tanshinone I is a direct Syk inhibitor and has anti-mast cell degranulation activity in vitro, which
may provide a perspective for elucidating the molecular mechanism of tanshinone I for its anti-allergic
and other pharmacological effects.

To further evaluate the reliability of our VS workflow, a retrospective assessment was carried
out [31]. As shown in the Supplementary material (Sections S1 and S2), simpler ligand-based
approaches such as fingerprint similarity search and 3D pharmacophore model screening showed
a low potency in identifying Tanshinone I from the natural compound database. Virtual screening
based on Surflex-Dock not only increases the probability of identifying active compounds targeting
Syk, but also predicts the interaction between the bioactive molecule and target protein.

3. Materials and Methods

3.1. Molecular Docking

Molecular docking was conducted using the Surflex-Dock module in the SYBYL-X 1.3 software
(Tripos, Inc., St. Louis, MO, USA) [32–35]. All 320 molecules from our in-house natural compound
database were downloaded from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/) in
mol2 format. All hydrogen atoms were added, and the partial atomic charges of the atoms of each
compound were assigned using the Gasteiger-Hückel method. Each structure was energy-minimized
using the Tripos force field with a distance-dependent dielectric constant and the Powell conjugate
gradient algorithm convergence criteria, which partially accounts for the shielding effects of the
aqueous environment on electrostatic interactions [36]. These conformations were used as starting
conformations to perform molecular docking. The crystal structure of Syk (PDB ID: 4PUZ),
determined by X-ray diffraction at a 2.09 Å resolution, was chosen as a docking protein model [37].
All co-crystallized water molecules of the protein model were removed, and polar hydrogen atoms
were added using SYBYL X-1.3. The protein model was assigned a force field using Gasteiger-Marsili
charges and then energy-optimized for 1000 iterations using the default parameters in SYBYL X-1.3.
The amino acid residues within 0.5 Å around the CG9 ligand were defined as a docking pocket using
a ProtoMol-based method [38]. The ProtoMol in Surflex-Dock utilized various molecular fragments,
such as CH4, C=O, and N-H, to represent hydrophobic groups, hydrogen bond donors and hydrogen
bond acceptors, respectively. The remaining parameters for docking were used on the default settings.

To validate the performance of the docking procedure, the co-crystallized CG9 ligand was
extracted and re-docked into the active sites of the model. The root-mean-square deviation (RMSD)
between the re-docking and co-crystallized conformation of CG9 was calculated according to the
following formula [39,40]:

RMSD =

√√√√ 1
N

i=N

∑
i=1

d2
i (1)

where d is the distance between N pairs of equivalent atoms excluding hydrogen. A lower RMSD
indicates a greater overlap between the re-docked and co-crystallized conformation of theCG9 ligand.
The compounds were docked into the active pocket of Syk, resulting in a hit list with a total score
for each molecule. A higher total score indicates a higher binding force between the ligand and

https://pubchem.ncbi.nlm.nih.gov/
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protein model. A cut-off value of six was used to select a reasonable number of virtual hits for further
investigation [41].

3.2. In Vitro Kinase Inhibition Assays

To verify the Syk inhibitory activity of the test compounds, a luminescent kinase assay was
performed to measure the ADP produced in a kinase reaction utilizing an ADP-GloTM kinase assay
kit (Promega, Madison, WI, USA) following the manufacturer’s instructions. In this assay, the ADP
produced by the Syk activity was converted to ATP, which is the substrate of luciferase, consequently
leading to the production of light. Therefore, the luminescent signal directly correlates with the kinase
inhibitory activity of the test compounds. Staurosporine (CAS No. 62996-74-1) was used as a positive
control for the Syk activity assay. A kinase buffer containing 5% DMSO was used as a negative control.
All test compounds were purchased from the National Institutes for Food and Drug Control (Beijing,
China), and the purity of each compound was greater than 98% based on HPLC analysis.

All reactions were performed in white, non-binding 384-well plates with flat bottoms (Corning
#3824, Corning Glass Works, Corning, NY, USA). The kinase reaction was performed in Tris buffer
(40 mM, pH 7.5) containing 20 mM MgCl2, 0.1 mg/mL bovine serum albumin and 50.0 µM DTT.
Four microliters of Syk (ab60886) solution (1 ng/µL in kinase buffer) and 2.0 µL of test compound
solution (150 µM in kinase buffer containing 5% DMSO) were incubated for 15 min at 27 ◦C. Then,
4.0 µL of substrate solution (0.2 µg/µL polypeptide (4:1 Glu, Tyr) (Abcam catalogue no. ab204877,
Cambridge, UK) in a kinase buffer containing 10.0 µM ATP) was added to activate the kinase reaction
for 1 hour at 27 ◦C. The kinase reaction was terminated by adding 5 µL ADP-Glo™ reagent into 5.0 µL
Syk reaction solution. The mixture was incubated for 40 min to deplete the unconsumed ATP. Finally,
10.0 µL of kinase detection reagent was added, and the mixture was incubated for 1 h to convert ADP to
ATP; then, luciferase and luciferin were added to detect ATP. The luminescence was determined using
an Envision 2104 Multilabel Reader (Perkin-Elmer, Eden Prairie, MN, USA). To avoid false negative
results caused by the self-luminescence of compounds, the luminescence values of 300 compounds
were detected. The fluorescence values were quantified in relative fluorescence units (RFU).

3.3. Cell Culture

RBL-2H3 cells, a rat cell line that is useful for the in vitro screening for anti-allergic agents [42,43],
were obtained from the American Type Culture Collection (ATCC; Manassas, VA, USA) and grown
in minimal essential medium (Gibco, Life Technologies, Carlsbad, CA, USA) supplemented with
10% (v/v) heat-inactivated foetal bovine serum, 100 U/ml penicillin, and 100 µg/mL streptomycin
(Gibco BRL, Grand Island, NY, USA). The cells were cultured in an incubator at 37 ◦C under humidified
5% CO2.

3.4. β-Hexosaminidase Release Assay

The assay was performed as previously described [44] with some modifications. The measurement
of released β-hexosaminidase from RBL-2H3 cells was used as an indicator of mast cell
degranulation. P-nitrophenyl-N-acetyl-β-O-glucosamine (PNAG) could be hydrolysed to p-nitrophenol
by β-hexosaminidase at 37 ◦C, pH 4.5. P-nitrophenol could be quantified by spectrophotometrically
measuring the ionized product after adding a stop buffer (pH 10). RBL-2H3 cells were seeded into
96-well plates at a density of 2 × 104 cells/well and incubated for 12 h at 37 ◦C. After washing the
cells with PBS, the medium was changed to phenol red-free Dulbecco’s-modified Eagle’s medium
(Grand Island, NY, USA). The cells were then sensitized with anti-DNP monoclonal IgE (Sigma D-8406,
St. Louis, MO, USA) at 100 ng/mL and incubated for 24 h. One hour before the antigen challenge,
the test group cells were cultured by adding 20.0 µL of different concentrations of tanshinone I in 0.25%
DMSO. The negative control group, positive control group, and induction group cells were cultured by
adding an equal volume of HBSS and 0.25% DMSO, chloroquine solution and phenol red-free DMEM,
respectively. The cells were then stimulated with 100 ng/mL DNP-HSA (Sigma-Aldrich, St. Louis,
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MO, USA) for 30 min at 37 ◦C and placed in an ice bath at 0 ◦C for 10 min. Fifty microliters of the
supernatant or total lysate were mixed with substrate solution (1 mM PNAG in 0.1 M citric acid buffer,
pH 4.5) and incubated for 90 min at 37 ◦C. The reaction was stopped by adding 200 µL of stop buffer
(0.1 M NaHCO3/Na2CO3, pH 10). The absorbance of each well was measured at 405 nm (OD) with a
FlexStation 3 microplate reader (Molecular Devices, Sunnyvale, CA, USA). Background fluorescence
of the substrate solution alone was subtracted from all readings. The percentage of β-hexosaminidase
release was calculated by using the following equation:

β-hexosaminidase release (%) =
ODsupernatant − ODblank

ODlysate − ODblank
× 100 (2)

3.5. Statistics

Data are reported as the mean ± standard error of the mean (SEM). Significant differences between
the groups were analysed using one-way analysis of variance (ANOVA). The experimental data were
analysed by the GraphPad Prism software (version 5, GraphPad Software Inc., San Diego, CA, USA).
For all tests, p < 0.05 was considered statistically significant.

4. Conclusions

In this study, we carried out a virtual screening of an in-house Chinese medicine database
to identify a novel scaffold for Syk inhibitors. Structure-based virtual screening and biological
experiments were conducted to further verify the biological activity of the compounds and investigate
the binding site between ligands and target proteins. The results presented here led us to conclude
that tanshinone I is an active inhibitor against Syk. It is suggested to perform some subsequent point
mutations to prove the contribution of amino acid residues to Syk inhibitory activity. Moreover,
in-depth biochemical experiments including Syk signalling assay and a kinase selectivity profiling test
could be performed to evaluate the mechanism of tanshinone I exhibiting anti-mast cell degranulation
activity. Additionally, binding studies could be conducted to evaluate the kinetic characteristics
between tanshinone I and Sykin the future. In short, tanshinone I with its unique scaffold can be used
as a starting point for lead optimization to develop effective and safe Syk-inhibiting drugs.
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