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Abstract

Emotions are multifaceted phenomena affecting mind, body, and behavior. Previous studies

sought to link particular emotion categories (e.g., fear) or dimensions (e.g., valence) to spe-

cific brain substrates but generally found distributed and overlapping activation patterns

across various emotions. In contrast, distributed patterns accord with multi-componential

theories whereby emotions emerge from appraisal processes triggered by current events,

combined with motivational, expressive, and physiological mechanisms orchestrating

behavioral responses. According to this framework, components are recruited in parallel

and dynamically synchronized during emotion episodes. Here, we use functional MRI

(fMRI) to investigate brain-wide systems engaged by theoretically defined components and

measure their synchronization during an interactive emotion-eliciting video game. We show

that each emotion component recruits large-scale cortico-subcortical networks, and that

moments of dynamic synchronization between components selectively engage basal gan-

glia, sensory-motor structures, and midline brain areas. These neural results support theo-

retical accounts grounding emotions onto embodied and action-oriented functions triggered

by synchronized component processes.

Introduction

Emotions are pervasive phenomena that promote adaptive responses to behaviorally relevant

events. However, the functional and neuroanatomical organization of emotion is still unre-

solved. What are the essential neural circuits coordinating the complex, multiple, and often

abrupt changes in both mental and bodily states that are characteristically associated with emo-

tion? Do they rely on specialized modules or distributed systems in the brain, and which are

these? Such questions have been hotly debated in past decades [1]. Affective neuroscience

approaches have generally focused on theoretical models postulating the existence of distinct

emotion categories (e.g., fear, joy) or dichotomous dimensions (e.g., valence, arousal)
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associated with dedicated brain circuits (e.g., fear is assumed to be processed in the amygdala,

disgust in the insula) [2, 3]. Yet accumulating evidence suggests that overlapping and distrib-

uted activation patterns emerge across different emotion categories, regardless of valence or

arousal differences (e.g., insula activates to pain and pleasure, amygdala to fear and humor) [4,

5]. These findings advocate for taking a broader system approach to go beyond a simple one-

to-one mapping between emotions and brain regions and thus provide a more comprehensive

account of their functional richness and intricacy.

Alongside discrete and dimensional accounts of emotion, classic psychology theories pro-

posed componential models of emotions within an appraisal framework. According to these

models, emotions are multi-componential processes involving time-varying changes in

appraisal mechanisms that encode contextual information about an event (e.g., goal condu-

civeness, coping potential, etc.), action tendencies (approach, avoidance, etc.), expressive

behaviors (gestures, vocalizations, etc.), as well as changes in autonomic bodily function and

subjective feelings [6–8]. An influential componential theory is the Component Process Model

(CPM; Fig 1), in which the different emotion components are assumed to rely on distinct but

coordinated subsystems [7, 9]. This model characterizes emotions as dynamic interactions

between components, whose combination gives rise to the emergent subjective feeling quality

of a particular emotional episode when a certain level of transient synchronization occurs

between components. As such, componential models of emotions fit well with recent neurobi-

ological models that envision brain functions in relation to large-scale functional networks

with ongoing interactive activity, and might thus offer a fruitful framework to explain the co-

occurring and widespread brain activation patterns typically observed across different emo-

tions [5]. Nevertheless, despite solid foundation and extensive research in psychology [10–12],

componential models remain poorly understood at the brain level and still neglected in

neuroscience.

Investigating such models would require going beyond traditional emotion elicitation para-

digms. Most neuroimaging studies employ paradigms based on a third-person view-point

with static or indirect stimuli (e.g., faces, voices) without any active interaction or personal rel-

evance for the viewer, which are likely to probe emotion perception or recognition more than

actual generative processes underlying self-experienced emotions. Additionally, in line with

assumptions from discrete or dimensional theories, neuroimaging studies typically compare

predefined categories of emotions (e.g. fear versus disgust, or pleasant versus unpleasant),

rather than more general appraisal components that may be jointly engaged across different

emotions but to different degrees (e.g., goal-obstructive events coupled with low coping poten-

tial could elicit fear, while goal-conducive events in high coping potential contexts could elicit

satisfaction) [9, 10].

Hence, the goals of our study were 3-fold. First, we aimed at creating a new task that

allowed manipulating different appraisals within an interactive and self-relevant environment.

Second, we used functional MRI (fMRI) to delineate distinct functional brain networks associ-

ated with the Appraisal, Motivation, Expression and Physiology components as postulated by

the CPM [10] (Fig 1). Focusing on these 4 nonexperiential components offers a comprehensive

characterization of emotional episodes that goes beyond the classical reliance on self-reported

measures of feeling states along predefined categorical labels [12]. Third, based on the notion

that emotional episodes may emerge from coordinated pattern organization across compo-

nents, we derived dynamic synchronization measures between emotion component and

between corresponding brain networks, using both a computational modelling approach and

data-driven fMRI analyses, in order to identify brain regions critical for orchestrating this

synchronization.
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To do so, we designed an arcade game in which we manipulated both Goal Conduciveness

and Coping Potential Appraisals while we recorded brain activity in participants with fMRI, as

well as physiological signals with peripheral sensors and facial expressive behaviors with elec-

tromyography (EMG). We could thus obtain time-resolved measures for each emotion com-

ponent as postulated in the CPM, including Appraisal processes through changes in Goal

Conduciveness and Coping Potential across different game situations, Motivation through

participants’ behavior in these situations, Expression through facial EMG, and Physiology

through peripheral measures. Our results unveil that emotion components each recruit dis-

tributed networks of cortical and subcortical brain areas that have been previously associated

with cognitive and affective processes. Critically, a restricted set of core regions is distinctively

engaged during moments of dynamic synchronization between the 4 components, including

basal ganglia, sensory-motor structures, and medial areas in prefrontal and posterior cingulate

cortex. These results support the long-debated idea that emotional responses may be grounded

in embodied and action-based representations, coupled with higher-order functions associated

with self-reflective processes, presumably underpinned by these core brain regions.

Results

Inducing emotions through appraisal of game variables

Our first goal was to create a task allowing the investigation of emotions in a direct, self-rele-

vant context. As the CPM assumes that appraisals constitute an essential trigger of emotional

episodes, our task explicitly manipulated the occurrence of particular self-relevant game situa-

tions instead of manipulating predefined emotions, as traditionally done in neuroimaging

Fig 1. Schematic depiction of the CPM. Following a relevant event, components of Appraisal, Motivation,

Physiology, and Expression dynamically interact through feedforward (thick arrows) and feedback (thin arrows)

processes, producing globally synchronized states that correspond to an emotional episode. CPM, Component Process

Model.

https://doi.org/10.1371/journal.pbio.3000900.g001
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studies. Hence, we designed an arcade game that manipulated 2 Appraisals whose role has

been solidly established in psychology research: Goal Conduciveness and Coping Potential

(Fig 2). Participants controlled a yellow avatar that navigated in a maze in which coins had to

be collected. Across different levels corresponding to our Appraisal manipulations, they could

encounter one of 3 types of “monsters” that produced different outcomes when touched:

(i) good monsters yielded 10 points to the participant, (ii) neutral monsters yielded no points,

and (iii) bad monsters caused a loss of 100 points. These different monster types thus manipu-

lated the Appraisal of Goal Conduciveness, since the overall goal of the game was to collect as

many points as possible.

Orthogonally, in half the levels, a magic potion cue was added to the avatar and gave the

possibility to activate a “super-power.” Once activated by the participant, the super-power

changed the outcome of touching the monsters: good monsters now yielded 100 points, while

bad monsters took only 10 points from the participant. The outcome of neutral monsters

remained unaltered (providing a baseline condition). The super-power option therefore

manipulated the Appraisal of Coping Potential.

Each trial corresponded to specific levels of Goal Conduciveness and Coping Potential

combinations, during which participants navigated in the maze together with monsters and

collected as many points as possible. After 8 s, a door would open, prompting participants to

go to a teleporter zone that would take them to the next trial. Once the door opened, partici-

pants had a limited amount of time (countdown period) to reach the teleporter, or they would

lose all the points gained in the current trial.

Participants played 3 runs of this game inside the fMRI scanner while we recorded peripheral

autonomic variables and facial EMG to measure the Physiology and Expression components,

respectively. The Motivation component was assessed through behavioral measures recorded

during the game (see below), providing indices for approach and avoidance tendencies.

Appraisal manipulations produce expected effects on subjective ratings

To assess the effectiveness of our Appraisal manipulations and their impact on subjective expe-

rience, we obtained ratings about appraisals and affective feelings during an additional run

Fig 2. Illustration of the interactive video game. (A) Experimental conditions defined by a 2 × 3 design manipulating

Appraisals of (i) Goal Conduciveness (bad, neutral, good monsters) and (ii) Coping Potential (no-power, power). The

colors of bad and good monsters were counterbalanced across participants. (B) Illustration of the maze interface in one

trial. The maze configuration and colors varied across trials within each condition.

https://doi.org/10.1371/journal.pbio.3000900.g002
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outside the scanner, using screenshots of different conditions encountered in the game (see

Methods).

Regarding Coping Potential, participants evaluated neutral monsters as the condition

in which they had the least power over outcomes, regardless of their actual power status (Fig

3A.i). With good and bad monsters, judgments of being able to modify outcomes were more

prevalent in the power compared to no-power conditions, indicating that this Appraisal was

modulated as intended. Our manipulation of Goal Conduciveness was also effective: touching

monsters was perceived as more congruent with participants’ goals for good than bad mon-

sters, while the neutral monster condition was intermediate (Fig 3A.ii).

Emotion feeling ratings were also queried using both discrete and dimensional labels.

Among discrete emotions, participants reported more boredom with neutral, higher satisfac-

tion with good, and higher anxiety or frustration with bad monsters (Fig 3B). Along dimen-

sional aspects, participants rated the good and bad monster conditions as the most and least

positively valenced, respectively (Fig 3C.i). They also felt calmer with neutral and more

aroused with bad monsters, while dominance was rated weak during bad conditions but strong

during good conditions (Fig 3C.ii and 3C.iii). Altogether, these data validate an effective

manipulation of Appraisals with our game design and confirm a reliable elicitation of different

emotional experiences in participants.

Emotion components recruit distinctive brain-wide networks

Our second goal was to delineate brain networks recruited by the different emotion compo-

nents as postulated by the CPM. The Appraisal network was identified using a standard gen-

eral linear model (GLM) analysis of fMRI data based on the experimental conditions

manipulated in our game, whereas networks modulated by Motivation, Physiology, and

Expression components were determined using a data-driven GLM based on the behavioral,

peripheral physiological, and EMG recordings obtained during the task, respectively.

Appraisal networks. To unveil brain networks engaged by Appraisal processes, we com-

puted the main effects of Coping Potential and Goal Conduciveness as well as their

Fig 3. Response frequencies across participants for subjective ratings (post scan), using 5-point Likert scales (see Methods). Response labels used

for the different questions are displayed on the right lower panel. (A) Ratings for Appraisals of (i) Coping Potential and (ii) Goal Conduciveness. (B)

Discrete emotion ratings for (i) Boredom, (ii) Satisfaction, (iii) Frustration, and (iv) Anxiety. (C) Dimensional emotion ratings for (i) Valence, (ii)

Arousal, and (iii) Dominance. Data used in this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pbio.3000900.g003

PLOS BIOLOGY Brain networks of emotions in sync

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000900 November 12, 2020 5 / 31

https://doi.org/10.1371/journal.pbio.3000900.g003
https://doi.org/10.1371/journal.pbio.3000900


interactions using a repeated-measures ANOVA (RM-ANOVA) based on a block design. For

the main effect of Coping Potential, trials with power relative to no-power (pooled across levels

of Goal Conduciveness) evoked higher activation in sensory-motor areas and cerebellum, as

well as extrastriate visual cortex (Fig 4A, Table A in S1 Table). This accords with a role of these

areas in motor action control and planning functions (Fig F in S1 Fig), presumably modulated

by the different navigation strategies used by participants across power conditions. Please note

that keypresses were regressed out from analyses and cannot account for these activations. The

opposite comparison showed higher activation in the anterior cingulate cortex (ACC; area

BA33) and insula for the no-power conditions (Fig 4A, Table A in S1 Table), consistent with a

role of these regions in uncertainty monitoring [13–15] and lower strategic control in this

condition.

Main effects of Goal Conduciveness were identified by comparing “good versus neutral”

and “bad versus neutral” conditions (pooled across levels of Coping Potential). Both compari-

sons showed distributed activations (Fig A in S1 Fig) that overlapped in bilateral fronto-

Fig 4. Component brain networks engaged by Appraisal processes. (A) Effects of Coping Potential showing effects of high and low power. (B) Effects

of Goal Conduciveness showing the differential effects between good and bad monsters. (C) Interaction effects between Coping Potential and Goal

Conduciveness. Effects are presented on axial slices of a mean brain image created by averaging the participants’ normalized structural images, with a

statistical threshold of pFWE < 0.05. Individual beta maps used for this figure are available on Neurovault at https://identifiers.org/neurovault.collection:

8740.

https://doi.org/10.1371/journal.pbio.3000900.g004
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parietal areas, lateral extrastriate visual areas, striatum, and cerebellum, brain regions generally

implicated in visuo-motor coordination, spatial navigation, and attention. Importantly, there

were also marked differences between the 2 conditions. The good monsters produced higher

activation in the amygdala and hippocampal regions bilaterally, ventromedial prefrontal cortex

(vmPFC), and posterior cingulate cortex (PCC), whereas bad monsters activated the bilateral

anterior insula, as well as the ACC, thalamus, posterior parahippocampal gyrus, and medial

occipital cortex (Fig A in S1 Fig). These differences were still apparent in direct comparisons

between good and bad monsters (Fig 4B, Table B in S1 Table), and reminiscent of networks

often reported for positive/rewarding and negative/aversive stimuli [5]. While this activation

pattern is consistent with the way Goal Conduciveness was manipulated here (through gain

and losses) and previously reported effects of emotional valence (Fig G in S1 Fig), it is impor-

tant to note that the Goal Conduciveness Appraisal is not uniquely defined by valence but

involves other cognitive processes mediated by distributed regions, as highlighted by the cur-

rent contrasts. More generally, these neural data further validate the effectiveness of our game

by demonstrating a modulation of brain systems found to be responsive to emotional valence

in other studies.

Finally, we tested for interactions between the 2 Appraisal processes, by computing the

contrasts “bad(no-power > power) > good(no-power > power)” and “good(no-power > power) >

bad(no-power > power).” Such interaction effects were selectively observed in the anterior insula,

ACC, periaqueductal gray, and right amygdala, all areas associated with emotion processing

and reactive behavior to salient stimuli (Fig 4C, Table C in S1 Table). Additional activations

were observed in the dorsal and inferior prefrontal cortex (PFC), posterior insula/rolandic

opercula, posterior parietal cortex, and cerebellum (Fig 4C, Table C in S1 Table), a pattern

consistent with sensory-motor integration and action selection network [16, 17].

Overall, these findings support predictions from the CPM according to which different

combinations of appraisals may produce distinct emotional responses, e.g., with goal-obstruc-

tive situations eliciting more aversive feelings when people have no power to control the situa-

tion, and vice versa for positive feelings in goal-congruent situations [18], consistent with

modulations found in emotional brain networks here.

Motivation network. To identify the brain network associated with Motivation processes,

we derived 4 behavioral indices of approach and avoidance tendencies from each participant’s

gameplay, namely (i) the average number of times participants were caught from the back, rep-

resenting situations of avoidance (ApproachTail), or (ii) instead caught from the front, repre-

senting approach (ApproachHead), plus (iii) the time spent during countdown periods before

reaching the teleporter zone (CountdownTime), and (iv) the number of coins collected in a

given trial (EatenCoins), the 2 latter indices providing indirect measures of approach/avoid-

ance, as well as engagement/reward seeking during the task.

These Motivation indices were carefully validated at the behavioral level (Table 1). First, the

neutral condition was used as a baseline control and showed no differences across Coping

Potential levels for any of these indices (two-sided paired t tests; ApproachTail: t(25) = 1.76,

Table 1. Behavioral measures indexing the Motivation component, averaged across participants (±SD). Data used in this table can be found in S2 Data.

Motivation Indices No-Power Power

Good Neutral Bad Good Neutral Bad

No. ApproachTail 0.40 ± 0.20 0.04 ± 0.03 1.55 ± 0.35 0.48 ± 0.34 0.03 ± 0.03 1.62 ± 0.32

No. ApproachHead 3.96 ± 0.97 0.60 ± 0.11 1 ± 0.34 4.33 ± 1.21 0.62 ± 0.19 1.25 ± 0.53

CountdownTime (s) 3.58 ± 0.81 2.39 ± 0.40 1.84 ± 0.39 4.14 ± 0.82 2.41 ± 0.34 2.06 ± 0.44

No. EatenCoins 11.97 ± 1.98 15.63 ± 0.78 11.82 ± 1.17 9.44 ± 2.70 15.60 ± 0.79 12.17 ± 1.3

https://doi.org/10.1371/journal.pbio.3000900.t001
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p = 0.09, dav = 0.42; ApproachHead: t(25) = −0.43, p = 0.67, dav = 0.11; EatenCoins: t(25) =

0.66, p = 0.54, dav = 0.23; CountdownTime: t(25) = −0.63, p = 0.53, dav = 0.06).

Next, we examined the effect of Appraisal manipulations on Motivation indices by comput-

ing 2 (Coping Potential: power, no-power) × 2 (Goal Conduciveness: good versus neutral, bad

versus neutral) RM-ANOVAs for each of the 4 indices. For the ApproachTail index, we found

main effects of Coping Potential (F(1,25) = 16.15; p< 0.001; Z2
p ¼ 0:392) and Goal Conducive-

ness (F(1,25) = 600.05; p< 0.001; Z2
p ¼ 0:960) but no interaction (F(1,25) = 0.02; p = 0.876;

Z2
p ¼ 0:001). The latter main effect indicates more frequent events “caught from the back”

with bad compared to good monsters, both during power and no-power (Table 1). The

ApproachHead index also revealed main effects of Coping Potential (F(1,25) = 22.04;

p< 0.001; Z2
p ¼ 0:468) and Goal Conduciveness (F(1,25) = 123.38; p< 0.001; Z2

p ¼ 0:832),

and no interaction (F(1,25) = 0.71; p = 0.408; Z2
p ¼ 0:028), but now reflecting more frequent

events “caught from the front” with good compared to bad monsters (Table 1). These behav-

ioral data neatly demonstrate active approach behaviors when encountering good monsters in

the game but avoidance of bad monsters. In addition, generally more frequent “caught” events

with power than no-power may reflect increased risk behavior in power situations.

For CountdownTime, the RM-ANOVA revealed main effects of Coping Potential (F(1,25)
= 26.738; p< 0.001; Z2

p ¼ 0:517) and of Goal Conduciveness (F(1,25) = 115.15; p< 0.001;

Z2
p ¼ 0:822), and an interaction between the two (F(1,25) = 10.066; p = 0.004; Z2

p ¼ 0:287).

This interaction was due to a longer time spent in the maze during the countdown period in

power relative to no-power conditions, further increased with good compared to bad monsters

(Table 1), indicating that participants felt less pressed to reach the teleporter when they were

not threatened by bad monsters.

Finally, for EatenCoins, we found an effect of Coping Potential (F(1,25) = 47.708;

p< 0.001; Z2
p ¼ 0:905) and a significant interaction (F(1,25) = 13.244; p = 0.015; Z2

p ¼ 0:726),

characterized by fewer coins eaten in the power than no-power condition with good monsters

but slightly more coins eaten in the power condition with bad monsters (Table 1). This

reflected a change in the relevance of coins as a point-gaining source depending on the current

condition. In the presence of good monsters, the value of eating coins decreased with power

(as touching the monster was more beneficial than catching coins), whereas it increased in the

presence of bad monsters (as points lost by touching the monster and points gained from the

coins became almost similar). The main effect of Goal Conduciveness (F(1,25) = 0.112;

p = 0.75; Z2
p ¼ 0:022) was not significant.

Altogether, these results clearly establish that participants exhibited strategical adjustments

in their behaviors in response to different game situations defined by Appraisal manipulations

and modified their navigation in the maze accordingly. Approach tendencies were more fre-

quent with good monsters and avoidance more frequent with bad monsters, with power gener-

ally increasing the former but decreasing the latter. These findings not only further validate

our game design but also provide precise quantitative indices to characterize Motivation pro-

cesses in our task.

Each of these indices was therefore transformed into parametric modulator regressors,

computed across all experimental conditions, and then entered into regression analyses of

fMRI data to define brain activity maps that reflected these behavioral tendencies. To deter-

mine networks engaged across different dimensions of the Motivation component, we com-

puted a single contrast pooling (i.e., summing) the parameter estimates of the 4 indices

together. This revealed several areas in which activity varied (either increased or decreased)

with changes in motivation indices, including the orbitofrontal cortex (OFC), the ACC, and
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medial frontal areas (including the supplementary motor area), right dorsolateral PFC, bilat-

eral insula, as well as bilateral inferior parietal lobes, cerebellum, and visual cortex (Fig 5A,

Table D in S1 Table). These areas overlap with those frequently implicated in emotion process-

ing and value-based decision making [5]. There were also effects in bilateral auditory areas,

likely because several indices were associated with game events accompanied by sound effects

(e.g., the countdown period comprised the corresponding spoken numbers).

Expression network. To identify brain networks modulated by the Expression compo-

nent, we acquired EMG activity from the zygomaticus and corrugator facial muscles during

gameplay and computed the averaged instantaneous amplitude time courses of muscular activ-

ity across the 2 muscles. These time courses were then convolved with the hemodynamic

response function (HRF) and entered in fMRI regression analyses, similar to our procedure

for Motivation (see earlier). Results showed that spontaneous changes in facial expressions

modulated bilateral primary motor areas (overlapping with typical face somatotopy in motor

cortex), as well as the cerebellum and cuneus (Fig 5B, Table E in S1 Table).

Physiology network. Finally, to delineate a network associated with the Physiology com-

ponent, we acquired cardiac, respiratory, and electrodermal activity (EDA) measures through-

out the game. The instantaneous respiration rate (RR; convolved with HRF) and phasic EDA

(not convolved: see Methods) time courses were again correlated with fMRI data in regression

analyses. Heart rate time courses were not included as they were too noisy to allow reliable

analysis. Both RR and EDA were then combined into a common contrast in a second-level

Fig 5. Emotion component networks. Component brain networks whose activity is modulated by Motivation (A), Expression (B), and Physiology (C).

Red/orange colors reflect positive and blue colors reflect negative correlations with the respective indices. Effects are presented on axial slices of a mean

image created by averaging the participants’ normalized structural images and displayed at a voxel height threshold p< 0.001 with a cluster-level

threshold of pFWE < 0.05. Individual beta maps used for this figure are available on Neurovault at https://identifiers.org/neurovault.collection: 8740.

https://doi.org/10.1371/journal.pbio.3000900.g005
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ANOVA. Results revealed a distributed network of cortical and subcortical areas significantly

modulated by these physiological indices, including amygdala, striatum, and thalamus, as well

as the cingulate and orbitofrontal cortices, right PFC, posterior insula, bilateral temporal corti-

ces, and cerebellum (Fig 5C, Table F in S1 Table).

Emotion component synchronization

The above results highlight that each emotion component engages specific brain networks cor-

responding to neural systems previously associated with relevant affective functions and

behaviors. Critically, according to the CPM [10], emotional responses are determined by

dynamic and recurrent interactions between these components, such that emotional experi-

ences and associated feelings evoked by particular situations reflect the emergent pattern of

brain-wide activity generated by a transient synchronization between components. Based on

this theoretical assumption, we employed 2 independent approaches to estimate moments of

synchronization between emotion components and identify brain activity patterns associated

with such synchronization.

Synchronization identified by brain networks coordination. In a first brain-based

approach, we hinged on component networks delineated by our fMRI analyses above and

derived measures of synchronization between them to pinpoint neural substrates selectively

recruited during transient synchronization of the components. For each of the 4 componential

networks, we calculated a representative time course of activity, for each participant and each

run (Fig 6, Fig B in S1 Fig). These were determined by computing the time point by time point

scalar product between brain maps obtained for a given component based on 2 training runs

and the whole-brain blood oxygenation level dependent (BOLD) time courses of the third test

run [19]. The resulting network time courses were then used to compute pairwise synchroni-

zation time courses based on instantaneous phase coherence, which yielded a rank 4 similarity

matrix per time point (Fig 6, Fig B in S1 Fig). Multivariate synchronization time courses were

obtained by calculating the spectral radius as the maximum eigenvalue of each of these similar-

ity matrices, normalized by the sum of all eigenvalues. Finally, the time points corresponding

to the 5% highest synchronization values across all participants were combined into a z-score

map, representing brain areas whose activity was selectively increased during peaks of syn-

chronization between emotion components (Fig 6, Fig B in S1 Fig).

Results from this brain-based synchronization analysis revealed activations in a sensorimo-

tor and associative network comprising bilateral basal ganglia, posterior insula, somatosensory

parietal areas, motor cortex, dorsomedial prefrontal cortex (dmPFC), and PCC, as well as

visual occipital areas and temporal areas (Fig D in S1 Fig). Hence, this set of brain regions

appeared to be distinctively recruited in moments of synchronization between the 4 networks

mediating separate emotion components.

Synchronization identified through computational modelling. In parallel, to constrain

our results with a “periphery” measure of synchronization, independent of our “central” syn-

chronization index calculated from the brain data above, we employed a previously validated

computational model [20] to define synchronization moments based on empirically defined

(behavioral and peripheral) measures of each component during the gameplay. This computa-

tional model of emotion processing [20] uses liquid state machines to model nonlinear

dynamic and recurrent interactions between the different component signals. Here, the syn-

chronization index was computed as a latent variable over the model’s liquid state transforma-

tions, representing continuous and recursive influences between peripheral measures of each

component in the model [20] (see Methods for a more detailed description). For each partici-

pant, we convolved this synchronization time course with the HRF, added it as a further
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Fig 6. Overview of the analysis pipeline for the brain-based calculation of synchronization between emotion

component networks. Representative time courses of emotion component networks were computed from the time

point by time point scalar product between the emotion component maps learned for the training set and the BOLD

time course of the test set. Synchronization between all 4 representative network time courses was estimated using a

multivariate version of the instantaneous phase coherence as a similarity metric. Brain maps of regions selectively

activated during high synchronization between all components were obtained by computing z-score across all BOLD

volumes that were associated with 5% of the highest synchronization values. a.u., arbitrary units; BOLD, blood

oxygenation level dependent; FDR, false discovery rate; iPCMulti, multivariate instantaneous phase coherence; TR,

repetition time.

https://doi.org/10.1371/journal.pbio.3000900.g006
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regressor in the first-level fMRI analyses of each participant, and entered the corresponding

contrast into a second-level one-sample t test.

Remarkably, despite being derived from different measures, this model-based analysis

revealed a set of cortical and subcortical sensory-motor regions with substantial overlap with

our brain-based analysis, particularly in basal ganglia (caudate and putamen) and right poste-

rior insula, but also primary sensory-motor cortices, PCC, medial PFC (mPFC), and antero-

lateral temporal areas around the superior temporal sulcus (STS) (Fig 7, Fig D in S1 Fig;

Table G in S1 Table). Areas showing the most consistent modulation by dynamic synchroniza-

tion between emotion components were further highlighted by computing the overlap

between brain maps associated with the 2 synchronization measures (Fig 7). These regions

appear to constitute a “core” network that is uniquely engaged when brain activity represent-

ing distinct emotion components becomes highly synchronized with each other, based both

on a data-driven analysis of fMRI time courses and on an independent computational model

using peripheral measures during gameplay.

Discussion

Despite being well established among psychological theories of emotion, appraisal-driven

componential models have scarcely been explored in neuroscience. However, componential

accounts neatly accord with modern views of brain functions in terms of multidimensional

Fig 7. Overlap between brain activation patterns associated with synchronization between emotion components

estimated by the brain-based synchronization and the model-based synchronization indices. Effects are presented

on sagittal, coronal, and axial slices of a mean image created by averaging the participants’ normalized structural

images. Individual beta maps used for this figure are available on Neurovault at https://identifiers.org/neurovault.

collection: 8740.

https://doi.org/10.1371/journal.pbio.3000900.g007
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neural networks with ongoing reciprocal dynamic interactions [21–23]. Additionally, most

neuroimaging studies of emotion employed passive tasks that rely on the perception or recog-

nition of emotions using indirect stimuli (e.g., faces), typically assigned to predefined emotion

categories (e.g., fear), without first-person and self-relevant features inherent to emotional

experience [but see 24, 25, 26].

We addressed these limitations by using an emotion-eliciting video game paradigm, com-

bined with both model-based and data-driven analysis of fMRI that incorporated theory-

driven parameters. Video games provide the opportunity not only to generate an interactive

environment during which participants are actively engaged in a task evoking various emo-

tions but also to systematically control situational parameters and appraisal processes postu-

lated by psychology theories [20, 27, 28]. By promoting active engagement and different

approach-avoidance situations, video games also allow measuring action tendencies and elicit-

ing transient expressive and physiological reactions. As such, video games constitute an effec-

tive and flexible tool in the study of emotions and their componential features, in particular

under the theoretical assumptions of the CPM. Here, our participants played an arcade game

manipulating 2 major Appraisals implicated in emotional responding (Goal Conduciveness

and Coping Potential) while we monitored brain activity together with behavioral tendencies,

physiological signals, and facial EMG. This allowed us to delineate distinct brain networks

(and their activity time courses) associated with Appraisal, Motivation, Physiology, and

Expression processes, the 4 nonexperiential components of emotion defined by the CPM [10].

Our Appraisal manipulations not only successfully influenced behavior and subjective emo-

tional experience (as shown by both subjective ratings and game performance measures) but

also engaged specific brain networks. Coping Potential recruited areas involved in action plan-

ning and uncertainty, whereas Goal Conduciveness modulated areas involved in value/reward

processing and attention. Furthermore, as predicted, interaction effects between these 2

Appraisals evoked distinctive activations in limbic areas typically associated with emotion,

including the amygdala, ACC, and anterior insula. These areas also respond to salience and

relevance detection [29, 30], highlighting that brain activation patterns tend to overlap across

various affective and nonaffective conditions [5], and speaking against strictly modular

accounts of emotions. Although neither relevance nor salience was explicitly manipulated,

both are inherently embedded in appraisals of Goal Conduciveness and Coping Potential.

Indeed, relevance is often considered as a primary step that triggers emotion-eliciting apprais-

als [9]. Our behavioral and neuroimaging results thus converge to support a key role for

appraisal processes and their interactions in the generation and differentiation of emotional

responses.

Brain networks mediating Motivation processes were also found to recruit widespread

regions, with approach and avoidance tendencies during the game implicating the OFC, ACC,

and PCC, as well as right dorsolateral PFC, bilateral insula, and parietal areas. Similar regions

have likewise been related to approach and avoidance in fMRI studies of goal-directed behav-

iors [31, 32], further demonstrating the validity and efficacy of our paradigm.

Finally, we found that measures of spontaneous facial expressions during the game covaried

with a motor network comprising the primary motor cortex, cerebellum, and striatum, consis-

tent with circuits controlling facial muscles [33, 34], whereas peripheral autonomic physiology

was associated with activity in subcortical areas of the thalamus, basal ganglia, amygdala, as

well as the posterior insula and right PFC, again in line with previous studies focusing on affec-

tive modulation of peripheral physiology [35, 36].

Overall, these results indicate that each of the Appraisal, Motivation, Expression, and Physi-

ology components rely on distributed patterns of subcortical and cortical activity, with partial
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overlap across components, in accord with current network-based accounts of affective and

cognitive functions.

More critically, a key assumption of the CPM is that emotions (with their associated feel-

ings) consist of transient episodes emerging from synchronized changes across component

processes. To identify brain regions involved in this dynamic coordination, we derived 2 inde-

pendent measures of synchronization between components, first using empirically derived

time courses of brain network activity, and second using a computational model fed with

behavioral and peripheral measures. Brain-based and model-based approaches converged to

unveil neural representations of component synchronization in a bilateral sensory-motor net-

work centered on basal ganglia, posterior insula, and somatosensory/association areas in parie-

tal cortices, as well as midline areas in the dmPFC and PCC (Fig 7, Fig D in S1 Fig; Table G in

S1 Table).

Such involvement of somatosensing and motor areas during component synchronization is

consistent with a conceptual framework considering emotion as an embodied action prepara-

tion mechanism that sets up the organism to promote adaptive responses to relevant events

[37, 38]. The basal ganglia may constitute a key part within this synchronization network, as

they provide a unique site of convergence between multiple cortical regions traditionally with

specialized affective, cognitive, or sensory-motor processes [39, 40], and allows for a precise

moment-to-moment coordination and patterning of neural activity across distant areas [41].

Indeed, apart from their participation in motor preparation and goal-directed action [42], the

basal ganglia may play a critical role in integrating functional information from different com-

ponent systems in order to generate emotion-specific patterns in action and cognition [43].

Another key part of the synchronization network was the right posterior insula, a region

that also receives convergent multimodal information about bodily states [17, 44] and was pre-

viously highlighted as a crucial site for mapping ongoing changes in somatic functions and

subcortical pathways activated during emotional responses [45, 46]. It is tempting to speculate

that, whereas synchronization effects in basal ganglia reflect mechanisms necessary to orches-

trate appropriate behavioral changes across brain-wide networks in emotion-eliciting contexts,

synchronization in posterior insula might result from monitoring interoceptive processes

through which these changes generate the subjective bodily experience (or feeling component)

of emotions [47, 48]. Of note, unisensory (e.g., visual and auditory) and multisensory (e.g.,

STS) cortical regions were also modulated by synchronization between components, further

reflecting that emotion episodes imply high functional coupling between multiple systems in

the organism, including perceptual pathways engaged by external stimuli [10, 49], and possibly

representing the affective value of their sensory attributes [50].

In addition, component synchronization engaged mPFC and PCC, 2 areas commonly

implicated in introspective processing and access to self-related information in memory [51].

Recent fMRI studies reported that these midline regions selectively activate during conscious

attention to self-experienced emotions (as opposed to the sensory content of experience) [52]

and hold segregated representations of both basic and non-basic emotion categories in voxel-

wise patterns identifiable with machine-learning classification analysis [53, 54]. Moreover,

both the mPFC and PCC respond to emotional categories and valence in supramodal codes

that generalize not only across different perceptual inputs from facial and vocal expressions

[55] but also to self-experienced emotional events [56, 57]. These regions may be well placed

to integrate sensorimotor and visceral interoceptive information organized in basal ganglia

and insula centered circuits, respectively, together with ongoing cognitive and memory pro-

cesses, in order to form higher-order representations of current bodily and mental states of the

self that are inherent to conscious affective experience [58].
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The notion that transient episodes of coordinated components and embodied representa-

tions underlie emotion is not unique to the CPM but is also present in other models to some

extent [38, 59, 60]. For example, in the somatic marker hypothesis proposed by Damasio and

colleagues [46], emotions result from an integration of concomitant changes in the internal

milieu (Physiology), musculoskeletal system (Expression), and actions or decisions (Motiva-

tion). However, according to Frijda [61], a characterization of emotion as felt representations

of body states is insufficient because it lacks an intentional content. Instead, action readiness

(implying a directed relationship with the environment) is a more fundamental ingredient

defining emotions and their specificity [37]. Our findings may help reconcile and go beyond

these proposals by showing that the synchronization of large-scale brain networks mediating

different emotion components selectively recruits neural systems with a key role in integrating

sensory-motor signals and self-relevant information to orchestrate goal-directed behaviors.

This fMRI study directly addressed the multi-componential nature of emotions and tested

their dynamic interplay at the brain network level with a first-person gameplay and computa-

tional modelling based on theory-driven parameters. In doing so, our work provides new

insights into the functional organization of human emotions. However, our study is not with-

out limitations. First, the Goal Conduciveness Appraisal was manipulated through gains or

losses associated with the different monsters, possibly confounded with reward mechanisms.

Effects of Goal Conduciveness were not explained by classic reward-responses alone, because

comparing conditions associated with different rewards across different levels of the same

Appraisal condition did not exhibit comparable brain patterns (Fig E in S1 Fig, Table H in S1

Table). However, other paradigms would be useful to disentangle goal conduciveness/obstruc-

tion from reward/punishment.

Second, we chose 2 major Appraisals with well-established roles in emotion elicitation, but

interactive game paradigms could also investigate the neural basis of other appraisals (e.g.,

novelty, social norms). Furthermore, our study did not elucidate the precise cognitive mecha-

nisms of particular appraisals or their neuroanatomical substrates but rather sought to dissect

distinct brain networks underlying appraisals and other emotion components in order to

assess any transient synchronization among them during emotion-eliciting situations. Impor-

tantly, even though different appraisals would obviously engage different brain networks, a

critical assumption of the CPM is that synchronization between these networks and other

components would arise through similar mechanisms as found here.

Third, our task design and event durations were chosen for fMRI settings, with blocked

conditions and sufficient repetitions of similar trials. The limited temporal resolution of fMRI

did not allow the investigation of faster, within-level dynamics which may be relevant to emo-

tions. Additionally, this slow temporal resolution and our brain-based synchronization

approach are insufficient to uncover fast and recurrent interactions among component net-

works during synchronization, as hypothesized by the CPM. Nonetheless, our computational

model for the peripheral synchronization index did include recurrence as one of its parame-

ters, allowing us refine our model-based analysis of network synchronization in ways explicitly

taking recurrent effects into account (see S1 Text and Table J in S1 Table). In any case, neither

the correlation of a model-based peripheral index nor an instantaneous phase synchronization

approach could fully verify this hypothesis at the neuronal level using fMRI. To address these

limitations, future studies might employ other paradigms with different game events or other

imaging analyses and methodologies with higher temporal resolution. Higher temporal resolu-

tion may also help shed light on causality factors hypothesized by the CPM, which could not

be addressed here. Finally, our study focused on the 4 nonexperiential components of emotion,

with feelings measured purely retrospectively for manipulation-check purposes. This approach

was motivated conceptually by the point of view that an emotion can be characterized
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comprehensively by the combination of its nonexperiential parts [10] and methodologically by

the choice to avoid self-report biases and dual task conditions in our experimental setting.

However, future work will be needed to link precise moments of component synchronization

more directly to concurrent measures along relevant emotion dimensions, without task biases,

as previously examined in purely behavioral research [20].

Nevertheless, by investigating emotions from a dynamic multi-componential perspective

with interactive situations and model-based parameters, our study demonstrates the feasibility

of a new approach to emotion research. We provide important new insights into the neural

underpinnings of emotions in the human brain that support theoretical accounts of emotions

as transient states emerging from embodied and action-oriented processes which govern adap-

tive responses to the environment. By linking transient synchronization between emotion

components to specific brain hubs in basal ganglia, insula, and midline cortical areas that inte-

grate sensorimotor, interoceptive, and self-relevant representations, respectively, our results

provide a new cornerstone to bridge neuroscience with psychological and developmental

frameworks in which affective functions emerge from a multilevel integration of both physi-

cal/bodily and psychological/cognitive processes [62].

Methods

Participants

Twenty-six right-handed participants with no history of neurological or psychological illness

were included in the analyses (14 male; mean age: 23.81 y; SD: 4.71). Their Edinburgh Hand-

edness Inventory score [63] was 74 ± 19.1 (mean ± SD) and Beck Depression Inventory score

[64, 65] 4.96 ± 5.64 (mean ± SD; all scores< 30). Three additional participants were excluded

from analyses, respectively, because of left-handedness, drowsiness during scanning, and

excessive movement that prevented reliable physiological measurements. Participants had nor-

mal or corrected-to-normal vision. All gave written informed consent. The study was run in

accordance with the Declaration of Helsinki and approved by the Research Ethics Committee

of the Geneva University Hospital (CER 09–316 and BASEC 2018–02006).

All participants filled in several questionnaires that included an in-house assessment of

their video game habits, as well as the SPSR questionnaire [66, 67], the BIS/BAS personality

scales [68, 69], and the State-Trait Anxiety Inventories (STAI) [70]. A questionnaire about

their game experience during our video game [71, 72] was also filled after the fMRI session,

showing that participants felt relatively competent in playing the game and were positively

engaged during the task (Table I in S1 Table: competence, flow, and affect facets).

Experimental design and task

Participants completed the video game in which they were represented as a yellow agent who

navigated different mazes (moving every 8 frames, i.e., at 7.5 Hz; see Fig 2) across different lev-

els (or trials), with the goal of collecting as many points as possible and then reaching a final

target location. Points could be obtained by picking coins up along the avatar’s way (5 points

each). At the beginning of each trial, 12 coins were displayed and distributed throughout the

maze. Once those were picked up, additional coins would appear one by one at random times

and random places.

This design allowed us to manipulate different Appraisal conditions across different levels.

To vary Goal Conduciveness, on each level, the player was accompanied by one monster that

also navigated in the maze and exhibited one of 3 possible behaviors (in different trials). These

behaviors were signaled by the monster’s color and shape, informing about its movement abil-

ity and consequences of touching it (i.e., gain or loss of points). In neutral monster conditions,
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the monster moved randomly and touching it had no consequences for the participant. In

good monster conditions, the monster chased the player with 0.85 probability and moved ran-

domly otherwise. Touching this type of monster yielded 10 points. Good and neutral monsters

moved with the same speed as the player. In contrast, bad monsters moved faster (every 7

frames, i.e., at 8.6 Hz) and continuously chased the player. Touching a bad monster made the

player lose 100 pts.

To manipulate Coping Potential, on half the trials, participants were given the possibility to

activate a super-power. The super-power option was signaled by a small “magic potion” icon

blinking on top of the yellow avatar. When activating power (by pressing a dedicated key at

any time during the trial), the avatar changed its color from yellow to orange, and touching

monsters led to different outcomes. Good monsters now yielded 100 points, while bad mon-

sters mitigated the loss to 10 points. Consequences of touching neutral monsters remained

unaltered (baseline condition). Once the super-power was activated, the avatar remained in

this mode until the end of the level.

Together, this resulted in a 2 × 3 design with factors of (i) Coping Potential (no-power,

power) and (ii) Goal Conduciveness (good, neutral, and bad monsters) (Fig 2A). These 2 fac-

tors were manipulated across levels, according to a standard block design (each navigation

period in the maze corresponded to one block). Please note that different combinations of

Appraisals generate different emotion types (e.g., low power with bad monsters should elicit

anxiety, while high power and good ghost should elicit satisfaction), but emotion categories

were not prespecified by design.

To proceed to the next trial/level, participants had to move their avatar to a teleporter at the

top of the maze (Fig 2B). This teleporter was placed behind a closed door that opened automat-

ically after a certain time. To avoid having participants navigating in the maze indefinitely, a

countdown period was introduced that set a time delay (4 s for neutral, 6 s for good and bad

monsters) during which participants had to reach the teleporter once the door was opened. If

they did not reach the teleporter within the allotted time (“too late” trials), all points gathered

during that level were lost. The countdown period was signaled by an audiovisual cue. Each

pre-countdown block lasted 8 s, ensuring the same amount of time for each experimental con-

dition, while the countdown itself varied but was modeled separately. Reaching the teleporter

was followed by a brief interval (1.5 s) before the next level.

Participants played 3 runs inside the MRI scanner, each comprising 72 levels and lasting

approximately 15 min. This amounted to 12 blocks per condition per run and 36 blocks per

condition in total. The order of conditions was pseudo-randomized such that all possible tran-

sitions between different conditions took place approximately the same number of times. To

ensure that participants were able to navigate properly in the maze and to minimize potential

practice effects during fMRI, participants took part in a training session outside the scanner

(see below).

Finally, to move the avatar in the maze, participants only needed to press a key when want-

ing to change direction or after they were stopped by an encounter with a monster, which min-

imized the number of necessary keypresses.

Training session

To ensure that participants were able to navigate properly in the game maze and minimize

learning effects during fMRI, a training session was first given outside the scanner. This train-

ing session took place on the same week as the fMRI session, with an average interval of

4.28 ± 0.84 (± SD) d. During this session, participants completed one run of a training game

that familiarized them with the key layout and game display without including any Appraisal

PLOS BIOLOGY Brain networks of emotions in sync

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000900 November 12, 2020 17 / 31

https://doi.org/10.1371/journal.pbio.3000900


manipulation. Briefly, the points gained during this training phase were restricted to collecting

the coins (10 points each), which appeared one by one at random locations and for only a

short period of time, thereby forcing participants to navigate through the entire maze. To prac-

tice the use of the super-power, the coin value was multiplied by 5 if it was picked up when the

super-power option was presented and activated. Finally, to familiarize participants with the

presence of monsters, a neutral monster was present in every level, and participants were told

that this monster had no effect. The same general display was used as in subsequent game ses-

sions. A second training run was completed in case participants did not feel completely at ease

with the key display and/or navigation after the first run (3 participants).

After this initial familiarization period, participants completed a short version of the main

game (2 levels per condition), followed by a final full run comprising the same number of levels

(12 per condition) as the experimental scanner session. The short version of the main game

was again played at the beginning of the scanner session, to ensure that the participants got

accustomed to playing in the new environment.

During the training session, we also tried to mimic as much as possible the keyboard condi-

tions used inside the scanner by adapting a numeric pad with buttons placed at approximately

the same distance and layout of the keypad used inside the scanner (see “Stimuli presentation”)

and asking participants to hold the numeric pad on their leg and below the table, with buttons

out of their view. This forced them to rely on manual feedback only to navigate properly inside

the maze.

Visual stimuli

Monster and player avatars were designed using Inkscape (https://inkscape.org/). All 3 mon-

sters had exactly the same (neutral) facial expression, differing only in shape and color,

which signaled the monster type. Neutral monsters were always gray, while good and bad

monsters were pseudo-randomly counterbalanced between blue and purple across partici-

pants (see Fig 2A). Six different maze layouts were used, counterbalanced across conditions.

From level to level, mazes could have one of 5 different colors that were also pseudo-ran-

domly attributed.

Countdown periods were signaled visually by displaying a numeric countdown panel below

the score panel, which in turn showed the current total score in the run. In the second and

third runs, the score panel also included the best score from previous runs in order to maintain

motivation across all game runs. To avoid confounds in the fMRI data associated with system-

atic eye movements towards only one side of the visual display, the location (i.e., to the left or

to right of the play maze) of the countdown and score panels was counterbalanced across par-

ticipants. A table showing monster labels and values for the different conditions was displayed

on the opposite side of the maze (see Fig 2B).

As mentioned in “Experimental design and task,” movements of the monsters changed

according to the current Goal Conduciveness condition. The movement was controlled using

the A� algorithm [73], which is a pathfinding algorithm that aims at finding the smallest cost

(here shortest distance) path between prespecified start and target nodes (here corresponding

to positions in the maze). The monster’s path was updated at every frame, with the start node

always being its current position, while the target node changed according to the monster

type. When the monster was neutral, the target node was chosen at random from one of the

maze positions that were at a safety distance away from the current player’s position. When

the monster was bad, the target node was always the current player’s position. When the mon-

ster was good, the target node was the player’s position in 85% of the times and a random posi-

tion otherwise.
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Auditory stimuli

Depending on the monster and power context, different outcomes resulted from touching a

monster, and each outcome was associated with a specific sound. To avoid confounds associ-

ated with the processing of completely different sounds coupled with our experimental condi-

tions, 5 different sounds having similar low-level characteristics were created (during the

neutral monster condition the outcome was the same regardless of the power situation), by

applying different frequency modulations to the same amplitude modulated carrier sound.

Specifically, the signals were of the form:

s ¼ ð1þ deptham � sinð2pfamtÞÞ � ðamp � sinð2pfcarriertÞ þ ð� indexfm�sinð2pffmtÞÞÞ ð1Þ

where the frequency of the carrier sound equaled fcarrier = 440 Hz and its amplitude

amp = 0.5. The amplitude modulation used a frequency fam = 40 Hz and a modulation depth

deptham = 0.6. Hence, the signals only differed in their frequency modulation rate (ffm),

which changed between 1 and 5 Hz in increments of 1 Hz, while a constant modulation

index indexfm ¼
max freq change

ffm
¼ 100 was used. These signals were all 500 ms in duration and

were multiplied with a Hann window to avoid clicking effects in the beginning and end of

the sounds. To further minimize possible confounds, the sounds resulting from encounters

with different monster types were counterbalanced across participants.

Additionally, another distinct sound was associated with opening of the door to the telepor-

ter, taken from a publicly available library (http://soundbible.com/1357-Metal-Latch.html),

while the countdown was signaled by spoken numbers (http://soundbible.com/2008-0-

9-Male-Vocalized.html). Other sounds associated with picking up coins, reaching the telepor-

ter, and activating the super-power mode were custom made using Bfxr software (http://www.

bfxr.net/).

Stimuli presentation

Visual and auditory stimuli were presented using Psychophysics Toolbox version 3.0.13 [74,

75] running on MATLAB 2015b (MathWorks, Natick, MA) and a 64-bit Windows 7 operating

system (Microsoft, Redmond, WA). The game was programmed using the object-oriented

programming capabilities of MATLAB.

All visual stimuli were displayed on a 23” LCD monitor (Cambridge Research Systems Ltd,

Kent, UK; model: BOLDscreen 23; resolution: 1,920 × 1,080 pixels, dimensions: 50.9 cm × 29

cm, refresh rate: 60 Hz, viewing distance: approximately 125 cm), seen by the participant

through a mirror mounted on the MR-head coil.

Auditory stimuli were heard via type HP AT01 earphones composed of an electro-dynamic

earphone driver and 46-cm-long air tubes (Cambridge Research Systems Ltd, Kent, UK), con-

nected to standard-sized insert earphones (Canal Tips, Comply, MN, US). The earphones

were connected to the stimulus computer via a MR Confon amplifier unit (MR Confon

GmbH, Magdeburg, Germany).

Participants navigated in the game using their right hand and an MR-compatible 5-Button

Diamond Fiber Optic Response Pad (Current Designs Inc, Philadelphia, PA; model: HHSC-

1x5-D), connected to the stimulus computer via a FIU-932-B electronic interface. Participants

used the green, pink, yellow, and red buttons to navigate up, down, left, and right, respectively,

while the blue button was reserved to activate the super-power.
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Appraisal and feeling ratings

Directly after the scanner session, participants performed an Appraisal check and reported

their subjective feelings relative to each manipulated condition during a separate run outside

the scanner. For each condition of our 2 × 3 design, participants saw screenshots of the game

in which the player and monster avatars were placed randomly within the maze but always at a

specific distance from each other. This distance was calculated in a participant-specific man-

ner, based on the average distance between the 2 characters during actual gameplay. There

were 4 repetitions per condition, yielding a total of 24 screenshots.

For each screenshot, participants were asked to answer (5-point Likert-scale ranging from

“Strongly Disagree” to “Strongly Agree”) the following questions about how they had generally

appraised similar situations during the game:

1. For the Goal Conduciveness judgments: “Imagine you would now touch the monster. Do

you think that the outcome of touching the monster is in line with the goal of the game?”

2. For the Coping Potential judgments: “Imagine you would now touch the monster. Do you

think that the outcome of touching the monster has been modified by the player’s actions?”

To probe subjective emotion feelings, participants also had to rate how they felt in the cor-

responding situation by answering the question “Generally, how did a level of this type made

you feel?” along a range of emotion categories (boredom, satisfaction, frustration, anxiety;

5-point Likert-scale ranging from “Not at all” to “Very much”) and in terms of valence,

arousal, and dominance dimensions (using a 5-level self-assessment manikin scale). For each

participant, the modal value across the 4 repetitions of each condition was then calculated and

used to compute the frequency distribution of different responses across participants (for each

question and each condition separately).

Motivation component

In line with the CPM proposed by Scherer [10] and action readiness theories proposed by

Frijda [6, 76], we defined the Motivation component in terms of action tendencies such as

approach and avoidance, which we could measure due to the interactive nature of our task.

Behavioral measures taken to represent these tendencies were (i) the average number of times

the player was caught from the back (ApproachTail; avatar facing away from the monster

when caught; representing avoidance) or (ii) from the front (ApproachHead; avatar facing

towards the monster when caught; representing approach); (iii) the time spent during count-

down periods (CountdownTime; the longer, the higher the potential to win or lose extra points

with good or bad monsters, respectively); and (iv) the number of coins collected in a level

(EatenCoins; representing a change in the task focus from the monster to the coin in order to

gain points). Because the neutral condition was introduced as a baseline condition and the

above indices did not change across the Coping Potential manipulation for this condition (see

Results), for each of the indices above we subtracted the corresponding neutral condition

value from those of the good and bad conditions and entered them separately in a 2 (Coping

Potential: no-power, power) × 2 (Goal Conduciveness: good versus neutral, bad vs neutral)

repeated measures analysis of variance. To provide a complete overview of the data, we report

the raw (un-subtracted) average values (±SD) for each of the indices in Table 1.

To be used in fMRI analyses, each motivation index was converted into a parametric mod-

ulator regressor using SPM functions modulating all pre-countdown periods (i.e., first 8 s of

each level), after collapsing the onsets of levels across experimental conditions, demeaning,

and convolving the resulting time course with the HRF.
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These indices were equally converted into time courses to be used in the calculation of the

peripheral synchronization index between emotion components (Peripheral Synchronization

Index). Specifically, EatenCoins, ApproachHead, and ApproachTail indices were converted

into binary event time courses, in which the value was set to 1 at event time points and 0 other-

wise. Finally, the CountdownTime time course increased incrementally with the number of

seconds elapsed on the countdown clock during countdown periods, and was 0 otherwise.

These time courses were all up-sampled to 120 Hz.

Physiology component

The physiology component was measured by recording heart rate and RR as well as skin con-

ductance (or EDA). All measures were acquired using an MP150 BIOPAC acquisition system

coupled with the Acqknowledge Software (BIOPAC Systems, Goleta, CA; Acqknowledge ver-

sion 4.2 for PC/Windows). Sensors were connected to MR-compatible MECMRI-1 cables

(BIOPAC Systems), routed through a patch panel to amplifiers located outside the scanning

room. The acquisition sampling rate equaled 5 kHz. Cardiac rhythm and respiration were

recorded using a channel sampling rate of 625 Hz.

Cardiac rhythm was measured using a TSD2000-MRI plethysmograph attached on the dis-

tal phalanx of the ring finger of the left hand and connected to a PPG100C-MRI amplifier

(gain: 100, low-pass filter: 10 Hz, high-pass filter: 0.5 Hz). Cardiac time courses were down-

sampled to 120 Hz and band-pass filtered using lower and upper cutoff frequencies of 1 Hz

and 40 Hz, respectively. These preprocessed time courses were fed into custom-written Matlab

scripts to identify the peaks associated with pulse beats, which were manually verified and

thereafter used to compute the instantaneous (i.e., beat to beat) heart rate.

Respiration was measured with a TSD221-MRI respiratory belt around the base of the rib

cage, connected to a RSP100C-MRI amplifier (gain: 10, low-pass filter: 10 Hz, no high-pass fil-

ter). Respiration time courses were equally down-sampled to 120 Hz and band-pass filtered

using lower and upper cutoff frequencies of 0.05 Hz and 1 Hz, respectively. The RR was then

calculated analogously to the heart rate.

Skin conductance was measured by placing MR-compatible Ag/AgCl ClearTrace2 snap

electrodes (ConMed Corp., NY) on the distal phalanges of index and middle fingers of the

left hand, which were connected via LEAD108C leads to a EDA100C-MRI amplifier (gain: 5,

low-pass filter: 10 Hz, no high-pass filter). Skin conductance time courses were down-sam-

pled to 120 Hz and low-pass filtered with a cutoff of 1 Hz. Time courses were subsequently

corrected for movement artefacts and signal dropouts using custom-written Matlab scripts.

The corrected time courses were then separated into tonic and phasic components using the

continuous decomposition analysis option from the Ledalab toolbox [77] with an optimiza-

tion factor of 4 and the default values for the remaining parameters. Participants were

instructed to keep their left hand still to avoid movement artifacts in the electrodermal and

cardiac recordings.

Synchronization of these physiological measures with the experimental protocol was

achieved through the simultaneous acquisition of digital input markers that were sent from

the experimental PC to the BIOPAC system via an 8-bit parallel port. Unless stated otherwise,

based on the optimization criterion for the coefficients of FIR filters used in the Acqknowledge

software (see Acqknowledge 4 Software Guide), the high-, low-, and bandpass filters used a

Blackman window with order N = 4�Fs/Fc.

For fMRI regression analysis, the RR time courses were resampled to the MR volume onsets

(i.e., to the TR = 600 ms, see “fMRI data acquisition”) and convolved with the HRF. The phasic

skin conductance time courses were simply resampled to the MR volume onsets but were not

PLOS BIOLOGY Brain networks of emotions in sync

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000900 November 12, 2020 21 / 31

https://doi.org/10.1371/journal.pbio.3000900


convolved with the HRF, as this signal is comparable in shape and latency to the BOLD hemo-

dynamic response [78].

Expression component

EMG activity of facial muscles was recorded by placing 2 Micro NeoLead IEC radiolucent elec-

trodes (Philips Medical Systems, Andover, MA) over the left corrugator supercilii and the

zygomaticus major muscles, respectively, according to guidelines recommended by Fridlund

and Cacioppo [79] after appropriate cleaning of the skin. An additional electrode was placed

on the forehead, medially above the inion, to serve as the ground reference. The data were

acquired using a BrainAmp MR system (Brain Products GmbH, Gilching, Germany). The

acquisition sampling rate equaled 5 kHz. Electrodes were connected via a 16-channel ExG

AUX input box to a BrainAmp ExG MR amplifier (low-pass filter: 1 kHz, high-pass filter: 10

Hz, resolution: 10 μV), placed together with the PowerPack at the head end of the scanner

bore and operated using the BrainVision Recorder software. In order to facilitate MR artefact

correction of the EMG signals, MR volume triggers were recorded using the SyncBox system

to synchronize the sampling rate of the amplifier with the scanner clock system. Synchroniza-

tion with the experimental protocol was achieved through simultaneous recording of digital

input markers, sent from the experimental PC to the BrainAmp system via an 8-bit parallel

port.

To confirm the validity of signals from each muscle, EMG tests were performed in the scan-

ner prior to the experimental runs, by asking participants to frown and smile when prompted.

Onset times of each prompt were saved through the simultaneous recording digital input

markers.

EMG data were high-pass filtered at 20 Hz to remove slow signal fluctuations and move-

ment artefacts. They were then passed on to the FMRIB plug-in for EEGLAB (provided by

University of Oxford Centre for Functional MRI of the Brain) [80, 81] using the adaptive noise

cancellation option with a low-pass filter of 400 Hz to correct for MR-related artifacts (average

window size = 21). The instantaneous amplitude of the corrected signals was computed by tak-

ing the absolute value of the Hilbert transform for each of the 2 muscles separately, followed

by averaging these values across the 2 muscles.

For fMRI regression analysis, to obtain one EMG value per MR volume (i.e., per TR = 600

ms, see “fMRI data acquisition”), we calculated the average instantaneous amplitude per vol-

ume and normalized the resulting signal by the average amplitude across an entire experimen-

tal run. Finally, this signal was convolved with the HRF. For computation of the peripheral

synchronization index (see “Model-based synchronization index derived from peripheral mea-

sures”), the unconvolved signals were further up-sampled to 120 Hz.

Model-based synchronization index derived from peripheral measures

According to the CPM, an emotional episode and its associated feeling component emerge

once a certain degree of synchronization between the constitutive emotion components is

attained [10]. Meuleman and colleagues recently developed a computational model (Emergent

Liquid State Affect [ELSA]) that calculates a continuous statistical index reflecting such syn-

chronization over time [20]. Briefly, the model applies a combination of wavelet transforms,

liquid state machines, and penalized regressions to derive the temporal synchronization index

based on the time course of each component and their modelled interactions. To do so, the

model fits different sub-models for the Motivation, Physiology, and Expression activity in par-

allel, whereby each component is included as an input variable in the models of other compo-

nents. As the Appraisal component is manipulated by experimental conditions, it is only
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included as an input variable in the models of other components and never considered as a

response variable itself. In each of the sub-models, wavelet transforms are applied to the input

variables to account for different temporal scales and unfolding of the signals, which are then

entered, along with interactions between different components, into a liquid state machine.

Liquid state machines, also called echo state machines or reservoir computing, are large recur-

rent neural networks (RNN) that allow for nonlinear effects and feedback connections, thereby

effectively constituting a dynamic system [82, 83]. Specifically, a liquid state machine decom-

poses an inputted time-series (xt) inside a massive, randomly connected RNN and then uses

the decomposition for further modelling rather than the original inputs. Setting up the RNN

required defining an initial liquid size (number of units in the RNN, L = 1,500), a reduced

eigenliquid size (EL = 100), the input-to-liquid (WIN = 0.01) weights, as well as a leaky integra-

tion factor (α = 0.01), which controls the amount of exponential decay of past states. Liquid-

to-liquid unit weights (Wλmax) were set sparsely and randomly, and then scaled such that the

leading eigenvalue of the weight matrix λ is smaller than a maximal limit (λmax = 0.8), with lon-

ger fading memory for smaller limits of λ (please refer to [82] for a full description of the liquid

state machines and corresponding parameters). In sum, the updating equations for the liquid

at each time t, can be calculated by:

Łt ¼ tanhðWIN½1; xt� þWlmax
Lt� 1Þ ð2Þ

Lt ¼ ð1 � aÞLt� 1 þ aŁt ð3Þ

To run the model, we divided the 3 runs of each participant in training (2 runs) and test

data sets. The parameter values were selected based on a forward leave-one-run-out optimiza-

tion search using pilot data. In addition, given that some parameters are randomly determined,

we ran 20 repetitions per run using different seed initializations each time, and used the aver-

aged results across repetitions in further analyses.

The output of the liquid state machine was reduced to a smaller eigenliquid by principal

component analysis, whose component scores were then used to predict the response time-

series of the specific sub-model using penalized regression. Finally, the outputs of sub-models

were used to compute the temporal synchronization between components. This was achieved

by computing the covariance matrix between the different time courses within 8-s sliding win-

dows (using steps of one sample) and subsequently calculating the spectral radius as the maxi-

mum eigenvalue of the covariance matrix normalized by the sum of all eigenvalues. This

spectral radius time course constituted the temporal synchronization index, whose values ran-

ged from 0 to 1, whereby a value of 1 meant that the components were highly synchronized at

that specific time point. This index was finally entered as a regressor in our fMRI analysis (see

below).

For a more detailed description of liquid state machines and the complete ELSA steps, see

Meuleman 2015 [20].

fMRI data acquisition

A 3T TIM Trio System (Siemens, Erlangen, Germany) was used to acquire both high-resolu-

tion structural images (MPRAGE, TR = 1,900 ms, TE = 2.27 ms, TI = 900 ms, flip angle = 9˚,

FOV = 256 × 256 mm2, image matrix 256 × 256, 192 sagittal slices, voxel size = 1 mm isotropic,

32-channel head coil) and T2�-weighted axial echoplanar images (EPIs) with BOLD contrast

(GE-EPI, TR = 600 ms, TE = 32 ms, flip angle = 52˚, FOV = 210 × 210 mm2, image matrix

84 × 84, 48 axial slices, slice thickness = 2.5mm, with a multiband acceleration factor of 6,voxel

size = 2.5 mm isotropic, 32-channel head coil). B0 field maps (GR, 2D, TR = 528 ms, short
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TE = 5.19 ms, long TE = 7.65 ms, flip angle = 60˚, FOV = 210 × 210 mm2, image matrix

84 × 84, negative blip direction, slice thickness = 2.5 mm, 32-channel head coil) were also

acquired to correct for static magnetic field inhomogeneities in the EPI images.

Each participant took part in a total of 3 experimental runs. On average, 1,490 (±49 SD) vol-

ume images were acquired for each run. Functional and field map images were acquired using

the same field of view, with the matrix’s z direction placed axial and co-planar relative to the

anterior commissure-posterior commissure line. Whole-brain coverage was attained for all

cortical and subcortical brain areas, with partial inclusion of the cerebellum and brainstem.

fMRI data preprocessing

The fMRI data were preprocessed using SPM12 (Wellcome Department of Imaging Neurosci-

ence, London; www.fil.ion.ucl.ac.uk/spm) [84]. Scans from each participant were realigned

using the first as a reference, corrected for B0 field inhomogeneities using phase maps obtained

with the SPM12 FieldMap toolbox and co-registered to participants’ anatomical images. The

images were spatially normalized into MNI space using the parameters obtained from segmen-

tation of the anatomical images, resampled to a spatial resolution of 2 × 2 × 2 mm3 and spa-

tially smoothed with a Gaussian kernel of 8 mm full-width at half-maximum. The time-series

of all voxels were high-pass filtered to 1/128 Hz and pre-whitened using the “FAST” option

from SPM12, which is based on exponential covariance functions and better suited for data

acquired with short repetition times. The first 5 volumes were discarded to allow for T1-equili-

bration effects.

fMRI data analyses

Appraisal networks—Standard GLM approach. At the subject level, the fMRI paradigm

was modeled as a block design. Each run included pre-countdown periods of 8-s blocks for

each experimental condition separately (2 Coping Potential × 3 Goal Conduciveness), with

countdown blocks as an additional regressor of no interest shared across conditions with dura-

tions corresponding to the actual countdown time for each specific level. In addition, the onset

of caught moments (i.e., onsets of when the monsters touched the player), auditory inputs (i.e.,

any type of sound, such as caught moments, countdown sounds, power up, etc.), and key-

presses were modelled as events with separate regressors across all levels/conditions. All

regressors were convolved with the canonical HRF and entered into the design matrix. Nui-

sance covariates included averaged cerebrospinal fluid and white matter time courses realign-

ment parameters and their derivatives to account for residual motion artifacts, as well as

respiration volume per time [85, 86], heart rate convolved with the cardiac response function

[87], and RETROICOR [88] regressors (using third- and fourth-order Fourier expansions for

the cardiac and respiration corrections, respectively), which allowed us to deal with physiologi-

cal artifacts.

For each participant, condition-specific effects were then estimated according to the GLM

by creating contrast images of each condition. To allow for random-effects analyses and infer-

ences at the population level [89], contrast images were entered in a second-level RM-ANOVA

that modelled the 2 factors experimentally manipulated in our game (Goal Conduciveness and

Coping Potential Appraisals) and their interactions, as well as the subject factor to account for

the repeated-measures design.

At the second level, we evaluated the following statistical comparisons to delineate brain

networks differentially engaged by Appraisal processes. Effects of Coping Potential were iden-

tified by comparing power and no-power conditions pooled (i.e., summed) across Goal Con-

duciveness conditions. Effects of Goal Conduciveness were identified by comparing “good

PLOS BIOLOGY Brain networks of emotions in sync

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000900 November 12, 2020 24 / 31

http://www.fil.ion.ucl.ac.uk/spm
https://doi.org/10.1371/journal.pbio.3000900


(-neutral)” and “bad (-neutral)” conditions pooled (i.e., summed) across Coping Potential

conditions (i.e., good(power + no-power) and bad(power + no-power)). We also directly compared

good and bad conditions (i.e., good(power + no-power) versus bad(power + no-power)). In

addition, we tested for interaction effects between these 2 factors with the contrasts

“bad(no-power > power)>good(no-power > power)” and “good(no-power > power)>bad(no-power > power).”

Emotion component networks and their representative time courses. We identified the

emotion component networks and their representative time courses through the following

steps.

First, we restricted the fMRI data to gray matter (GM) voxels that were acquired for all par-

ticipants, which was guaranteed by considering only voxels that were in the intersection

between the GM mask averaged across participants and the second-level mask obtained from

the standard GLM approach detailed above. These fMRI data were corrected for nuisance vari-

ables (see “Appraisal networks—Standard GLM approach”) and for movement artefacts based

on Power and colleagues [90] and were subsequently high-pass filtered (cut-off at 1/128 Hz)

before being entered into further analyses.

Second, we divided the 3 runs of each participant in training (2 runs) and test data sets. The

training step consisted in learning a map that can predict emotion components from imaging

data in a data-driven way. The features associated with each emotion component were the

instantaneous amplitude of the EMG signal averaged across the 2 muscles for the Expression

component (see “Expression component”), whereas the Motivation component was defined

using parametric regressors associated with the ApproachHead, ApproachTail, Countdown-

Time, and EatenCoins indices (see “Motivation component”). For the Physiology component,

our analyses were restricted to skin conductance and RR time courses (see “Physiology compo-

nent”), as the heart rate time course produced too noisy data. Finally, for the Appraisal compo-

nent we used the block regressors of each experimental condition convolved with the HRF.

We predicted the maps associated with each of these component features from fMRI data

using regression analyses (Fig 6, Fig B in S1 Fig). In order to avoid overfitting to the training

set, we used the 800 leading components (Fig C in S1 Fig) resulting from singular value

decomposition (SVD) of the training fMRI data and performed the regression analysis in this

latent space (Fig B in S1 Fig). After back-projection to the original voxel space, the resulting

estimated feature maps were thus combined (i.e., summed) to yield emotion component maps

for the Expression, Physiology, and Motivation components (Fig B in S1 Fig). For the

Appraisal component map, this combination consisted in the linear combination of feature

estimates that corresponded to the interaction between the Coping Potential and Goal Condu-

civeness as it best captures emotion-eliciting moments according to the CPM.

Finally, the emotion component maps obtained using the training data set were applied to the

test run by computing the scalar product between the 2 at each time point [19], which resulted in

a representative time course of network activity per component per run (Fig 6, Fig B in S1 Fig).

These time courses were band-pass filtered between 0.001 and 0.15 Hz to allow deriving the

instantaneous phase of the signals using the Hilbert transform (Fig B in S1 Fig) and subsequently

calculate the synchronization index between the 4 emotion component networks (see below).

The emotion component maps obtained for each participant at the training step were also

used to compute group-level emotion component maps. For brain patterns associated with

Expression, Physiology, and Motivation, the respective emotion component maps were aver-

aged across runs and entered into second-level one-sample t test (for the EMG data) or ANO-

VAs (for physiology and motivation data) using SPM. In each of these analyses, we computed

positive and negative one-tailed tests pooling over all indices of the same component (i.e.,

summing across skin conductance and respiration regressors for Physiology, and across

ApproachHead, ApproachTail, CountdownTime, and EatenCoins regressors for Motivation).

PLOS BIOLOGY Brain networks of emotions in sync

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000900 November 12, 2020 25 / 31

https://doi.org/10.1371/journal.pbio.3000900


Please note that the goal here was to identify networks associated with general aspects of each

component during the gameplay, not networks modulated by one particular feature of a com-

ponent (e.g., skin conductance versus respiration), hence the component networks were con-

sidered across component features.

Synchronization between component networks from brain-based measures. Synchro-

nization between the different components at the brain level was computed by using the

instantaneous phase synchrony as a similarity metric between each pair of network time

courses [91]. This metric allowed us to identify transient moments of dynamic component net-

work synchronization. Yet, unlike the periphery synchronization index, it does not model

putative interactive recurrence between those networks, which is an assumption hypothesized

by the CPM. To obtain a multivariate index of synchronization across the 4 networks, we cal-

culated the eigenvalues of the pairwise similarity matrix at each time point and computed the

spectral radius as the largest absolute eigenvalue divided by the trace of the eigenvalue matrix.

This yielded a normalized network synchronization time course per run (Fig 6, lower right

panel; Fig B in S1 Fig). We then thresholded these time courses by taking the time points

whose values were above the 95th percentile and used these time points to compute a z-score

map across participants and runs, similarly to what is done in point detection or co-activation

patterns analyses [92]. To restrict our maps to significant voxels, we converted these z-scores

into p-values and thresholded the maps using an FDR [93] of q< 0.01 (Fig 6, lower left panel).

Synchronization between component networks from peripheral model-based mea-

sures. To map brain activity patterns co-varying with the peripheral synchronization index,

as derived from computational modelling (see above), we convolved this temporal index with

the HRF and included it as an additional regressor in the first-level GLM model of each partici-

pant (see “Appraisal networks—Standard GLM approach”). The beta maps corresponding to

this regressor (taken from each participant and summed across runs) were then entered into a

second-level one-sample t test.

Statistical inference and thresholds. Due to the large extent of activation clusters when

using a height threshold of p< 0.001 and a cluster level of pFWE< 0.05 in the standard GLM

approach, to allow for more reliable functional localization, our results for Appraisal manipu-

lations are reported with a voxel-level threshold of pFWE< 0.05. Unless stated otherwise, other

activations are reported with a voxel height threshold of p< 0.001 and clusters at p< 0.05 cor-

rected for multiple comparisons (family-wise error rate) based on Gaussian random field the-

ory within a GM mask obtained from the brain segmentation images (averaged across

participants). This GM mask was restricted to voxels acquired for every participant (i.e., group

mask used in second-level SPM analyses) and eroded (using spm_erode.m) in order to mini-

mize the inclusion of voxels from other tissues.

Supporting information

S1 Text. Supplementary methods.

(DOCX)

S1 Table. Supplementary tables.

(DOCX)

S1 Fig. Supplementary figures.

(DOCX)

S1 Data. Includes data for Fig 3.

(7Z)

PLOS BIOLOGY Brain networks of emotions in sync

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000900 November 12, 2020 26 / 31

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000900.s001
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000900.s002
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000900.s003
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000900.s004
https://doi.org/10.1371/journal.pbio.3000900


S2 Data. Includes data for Table 1.

(7Z)

S3 Data. Includes data for S1C Fig.

(7Z)

Acknowledgments

We thank Gelareh Mohammadi, Michał Muszynski, and Klaus Scherer for helpful discussions

and suggestions, as well as Maya Burckhardt for assistance during data acquisition. This study

was conducted on the imaging platform at the Brain and Behavior Lab (BBL) and benefited

from support of the BBL technical staff. Part of the computations was performed at University

of Geneva on the Baobab cluster.

Author Contributions

Conceptualization: Joana Leitão, Ben Meuleman, Patrik Vuilleumier.

Data curation: Joana Leitão.

Formal analysis: Joana Leitão.

Funding acquisition: Joana Leitão, Dimitri Van De Ville, Patrik Vuilleumier.

Investigation: Joana Leitão.

Methodology: Joana Leitão, Ben Meuleman, Dimitri Van De Ville, Patrik Vuilleumier.

Resources: Patrik Vuilleumier.

Software: Joana Leitão, Ben Meuleman.

Supervision: Patrik Vuilleumier.

Visualization: Joana Leitão, Ben Meuleman, Dimitri Van De Ville, Patrik Vuilleumier.

Writing – original draft: Joana Leitão, Patrik Vuilleumier.

Writing – review & editing: Joana Leitão, Ben Meuleman, Dimitri Van De Ville, Patrik

Vuilleumier.

References
1. Sander D. Models of emotion: The affective neuroscience approach. In: Armony J, Vuilleumier P, edi-

tors. The Cambridge handbook of human affective neuroscience Cambridge University Press; 2013.

p. 5–53.

2. Calder AJ, Lawrence AD, Young AW. Neuropsychology of fear and loathing. Nat Rev Neurosci. 2001;

2(5):352–63. https://doi.org/10.1038/35072584 PMID: 11331919

3. Vytal K, Hamann S. Neuroimaging support for discrete neural correlates of basic emotions: a voxel-

based meta-analysis. J Cogn Neurosci. 2010; 22(12):2864–85. https://doi.org/10.1162/jocn.2009.

21366 PMID: 19929758

4. Hamann S. Mapping discrete and dimensional emotions onto the brain: controversies and consensus.

Trends Cogn Sci. 2012; 16(9):458–66. https://doi.org/10.1016/j.tics.2012.07.006 PMID: 22890089

5. Meaux E, Vuilleumier P. Emotion perception and elicitation. Brain mapping: an encyclopedic reference

Oxford (UK): Elsevier. 2015.

6. Frijda NH. Emotion, cognitive structure, and action tendency. Cogn Emot. 1987; 1:115–43.

7. Scherer KR. Appraisal considered as a process of multi-level sequential checking. In: Scherer KR,

Schorr A, Johnstone T, editors. Appraisal processes in emotion: Theory, Methods, Research: Oxford

University Press; 2001. p. 92–120.

8. Moors A. Flavors of appraisal theories of emotion. Emotion Review. 2014; 6(4):303–7.

PLOS BIOLOGY Brain networks of emotions in sync

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000900 November 12, 2020 27 / 31

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000900.s005
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.3000900.s006
https://doi.org/10.1038/35072584
http://www.ncbi.nlm.nih.gov/pubmed/11331919
https://doi.org/10.1162/jocn.2009.21366
https://doi.org/10.1162/jocn.2009.21366
http://www.ncbi.nlm.nih.gov/pubmed/19929758
https://doi.org/10.1016/j.tics.2012.07.006
http://www.ncbi.nlm.nih.gov/pubmed/22890089
https://doi.org/10.1371/journal.pbio.3000900


9. Sander D, Grandjean D, Scherer KR. An Appraisal-driven Componential Approach to the Emotional

Brain. Emot Rev. 2018; 10(3):219–31.

10. Scherer KR. Emotions are emergent processes: they require a dynamic computational architecture.

Philos Trans R Soc Lond B Biol Sci. 2009; 364(1535):3459–74. https://doi.org/10.1098/rstb.2009.0141

PMID: 19884141

11. Fontaine J, Scherer K. & Soriano C. (eds.). Components of Emotional meaning: A Sourcebook: Oxford:

Oxford University Press; 2013.

12. Meuleman B, Moors A, Fontaine J, Renaud O, Scherer K. Interaction and threshold effects of appraisal

on componential patterns of emotion: A study using cross-cultural semantic data. Emotion. 2019; 19

(3):425–42. https://doi.org/10.1037/emo0000449 PMID: 29878802

13. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. Conflict monitoring and cognitive con-

trol. Psychol Rev. 2001; 108(3):624–52. https://doi.org/10.1037/0033-295x.108.3.624 PMID:

11488380

14. Grinband J, Hirsch J, Ferrera VP. A neural representation of categorization uncertainty in the human

brain. Neuron. 2006; 49(5):757–63. https://doi.org/10.1016/j.neuron.2006.01.032 PMID: 16504950

15. Morriss J, Gell M, van Reekum CM. The uncertain brain: A co-ordinate based meta-analysis of the neu-

ral signatures supporting uncertainty during different contexts. Neurosci Biobehav Rev. 2019; 96:241–

9. https://doi.org/10.1016/j.neubiorev.2018.12.013 PMID: 30550858

16. Rae CL, Hughes LE, Weaver C, Anderson MC, Rowe JB. Selection and stopping in voluntary action: a

meta-analysis and combined fMRI study. NeuroImage. 2014; 86:381–91. https://doi.org/10.1016/j.

neuroimage.2013.10.012 PMID: 24128740

17. Uddin LQ, Nomi JS, Hebert-Seropian B, Ghaziri J, Boucher O. Structure and Function of the Human

Insula. Journal of clinical neurophysiology: Official publication of the American Electroencephalographic

Society. 2017; 34(4):300–6. https://doi.org/10.1097/WNP.0000000000000377 PMID: 28644199

18. Scherer KR. Studying the Emotion-Antecedent Appraisal Process—an Expert-System Approach. Cog-

nition & Emotion. 1993; 7(3–4):325–55.

19. Kragel PA, Knodt AR, Hariri AR, LaBar KS. Decoding Spontaneous Emotional States in the Human

Brain. PLoS Biol. 2016; 14(9):e2000106. https://doi.org/10.1371/journal.pbio.2000106 PMID:

27627738

20. Meuleman B. Computational modeling of appraisal theory of emotion. [cited 2020 Nov 5]. https://

archive-ouverte.unige.ch/unige:83638 Université de Genève; 2015.
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