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ABSTRACT

Background: Brucella infection induces brucellosis, a zoonotic disease. The intracellular 
circulation process and virulence of Brucella mainly depend on its type IV secretion system 
(T4SS) expressing secretory effectors. Secreted protein BspJ is a nucleomodulin of Brucella 
that invades the host cell nucleus. BspJ mediates host energy synthesis and apoptosis through 
interaction with proteins. However, the mechanism of BspJ as it affects the intracellular 
survival of Brucella remains to be clarified.
Objectives: To verify the functions of nucleomodulin BspJ in Brucella's intracellular infection 
cycles.
Methods: Constructed Brucella abortus BspJ gene deletion strain (B. abortus ΔBspJ) and 
complement strain (B. abortus pBspJ) and studied their roles in the proliferation of Brucella 
both in vivo and in vitro.
Results: BspJ gene deletion reduced the survival and intracellular proliferation of Brucella 
at the replicating Brucella-containing vacuoles (rBCV) stage. Compared with the parent 
strain, the colonization ability of the bacteria in mice was significantly reduced, causing less 
inflammatory infiltration and pathological damage. We also found that the knockout of BspJ 
altered the secretion of cytokines (interleukin [IL]-6, IL-1β, IL-10, tumor necrosis factor-α, 
interferon-γ) in host cells and in mice to affect the intracellular survival of Brucella.
Conclusions: BspJ is extremely important for the circulatory proliferation of Brucella in the host, 
and it may be involved in a previously unknown mechanism of Brucella's intracellular survival.
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INTRODUCTION

Brucella infection can cause brucellosis of the host, a disease that manifests as miscarriage, 
infertility, and lameness in animals and fever and arthritis in humans [1]. Humans can be 
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infected by inhaling aerosolized bacteria or by ingesting or contacting contaminated tissues 
or their derivatives. Brucella melitensis, Brucella suis, and Brucella abortus are highly pathogenic to 
humans. In addition, Brucella canis and Brucella neotomae can also cause infections in humans [2-5].

Brucella infection has consistent pathological and physiological characteristics at the animal 
and human cell levels [3,6]. After Brucella invades host cells, it hides in Brucella-containing 
vacuoles (BCV) [7] through endosomal BCV (eBCV), the replicating Brucella-containing 
vacuoles (rBCV), and autophagy BCV (aBCV) to complete the intracellular circulation 
process. Initially, the BCV travels along the endocytic pathway and is acidified after obtaining 
endosomal markers; at this point it is called the eBCV [8]. After the eBCV combines with the 
endocytic compartment, it loses endosomal markers and interacts with the endoplasmic 
reticulum (ER) to obtain ER membrane markers [9], forming an rBCV network that is 
conducive to the survival and replication of Brucella and thereby promoting the proliferation 
of the bacteria. Next, the rBCV undergoes recombination with vacuolar and autophagy 
properties (aBCV), triggering the release of Brucella [8,10].

The VirB type IV secretion system (T4SS) is an important regulatory system of Brucella. 
A number of studies have confirmed that the expression of T4SS is necessary for Brucella 
replication [10-13]. Similar to other intracellular parasites [14,15], Brucella's VirB T4SS can 
transport effector proteins into host cells to regulate specific cellular functions. Studies have 
reported that the Brucella effector proteins not only play an important role in the rBCV stage 
but are also important in the aBCV stage [16]. In recent years, many Brucella secreted proteins 
have been discovered, including VceC [17,18], BtpA/Btp1/TcpB [19-25], BspA, BspB, and BspF 
[26,27]. The secreted protein BspJ (BAB_RS26920) is a newly discovered putative effector 
protein of Brucella [26]. Recently, we have identified BspJ as a nucleomodulin of Brucella 
and found that it invades the host cell nucleus, interacts with the host cell CKB and NME2 
proteins, mediates the host energy synthesis, metabolism, and apoptosis signaling pathways, 
and may have a nuclear cell shuttle mechanism [28]. However, the mechanism of BspJ in the 
intracellular survival and circulating proliferation of Brucella has not yet been elucidated.

B. abortus was first found in the placenta of infected animals, and it has played an important 
role in studying the characteristics of Brucella infection and intracellular circulation [16,29]. 
We constructed a BspJ deletion mutant of B. abortus (B. abortus ΔBspJ) and a complement 
strain (B. abortus pBspJ) and verified the changes in their main biological characteristics and 
their functions of intracellular survival Brucella in vivo and in vitro. We identified an important 
role played by the nucleomodulin BspJ, and the results provide new insights into the 
pathogenic mechanism of Brucella.

MATERIALS AND METHODS

Strains, cells, and animals
B. abortus was provided by the China Center for Disease Control and Prevention (Beijing, 
China). B. abortus was cultivated with Brucella medium BBL Brucella Broth (BD, USA) or BBL 
Brucella Agar (BD, USA) at 37°C. All Brucella-related operations were performed in the BSL3 
laboratory. Escherichia coli DH5α was obtained from the Collaborative Innovation Center for 
the Prevention and Control of Infectious Diseases of Western China and was cultured using 
LB (Luria-Bertani) medium. Mouse macrophages RAW264.7 were obtained from Procell 
(Wuhan, China) and were cultured in DMEM medium with 10% Fetal Bovine Serum (FBS) 
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(Gibco, USA) under 5% CO2. Total of 60 female 6-week-old BalB/c SPF mice were provided 
by SiPeiFu (Beijing, China). All animals met the standards of animal welfare and were 
treated humanely.

Construction of B. abortus ΔBspJ, and B. abortus pBspJ
The gene database (https://www.ncbi.nlm.nih.gov) was searched to obtain 
the gene sequence of BspJ (BAB_RS26920) and to design its upstream 
homology arm primers bspj-U-F: GGCAGGAGGTGAAGGATGAATT, bspj-U-R: 
TGACATTCATCCCAGGTGGCTGCATCACCGTGCTTTCAGAG; and downstream homology 
arm primers bspj-D-F: TCTGGGGTTCGAAATGACCGTGCCGAGGGAAAGCGCCG, bspj-
D-R: GAAGACGCTCCGTATTACCGCA. The upstream homology arms of BspJ were 
amplified with bspj-U-F and bspj-U-R via PCR with the following protocol: 95°C for 40 s, 
60°C for 30 s, and 72°C for 50 s, with 25 cycles. The downstream homology arms of BspJ 
were amplified with bspj-D-F and bspj-D-R using the PCR protocol of 95°C for 40 s, 58°C 
for 30 s, and 72°C for 55 s, with 25 cycles. Meanwhile, the Kanamycin gene was amplified 
with bspj-U-R and bspj-D-F as primers under the PCR conditions 95°C for 40 s, 62°C for 30 
s, and 72°C 65 s, with 25 cycles. The BspJ upstream homology arm gene, Kanamycin gene, 
and BspJ downstream homology arm gene were subjected to the first round of fusion 
PCR (95°C 30 s, 65°C 30 s, 72°C 60 s, 10 cycles). bspj-U-F and bspj-D-R were added for the 
second round of PCR (95°C 30 s, 60°C 30 s, 72°C 180 s, 30 cycles). The fragments of the 
second round of PCR were collected and constructed into a pMD19-T vector (TaKaRa, 
Japan) and electrotransformed (1800 V, 400, 25 μF) to B. abortus. After screening and PCR 
identification, a BspJ gene deletion strain (B. abortus ΔBspJ) was constructed. In addition, we 
used bspj-F: ATGAAGAGCCTGCAGTTCTCCAAG and bspj-R: CCTGTAGGCCCTAGGCACGG 
to amplify the BspJ gene (95°C 30 s, 65°C 30 s, 72°C 40 s, 30 cycles) and constructed the 
BspJ gene into the pBBR1MCS-4 vector (Miaolingbio, China). The pBBR1MCS-4-BspJ 
vector was electrotransformed (1800V, 400, 25 μF) to B. abortus ΔBspJ. After screening and 
PCR identification, the BspJ gene complement strain (B. abortus pBspJ) was obtained.

Identification and growth characteristics analysis of B. abortus ΔBspJ, and 
B. abortus pBspJ
We performed western blot analysis on the BspJ protein in B. abortus, B. abortus ΔBspJ and 
B. abortus pBspJ to identify the expression levels of BspJ in the parental strain, the deletion 
strain, and the complement strain. A total bacterial protein extraction kit (CWBIO, China) 
was used to extract the total bacterial protein, and then SDS-PAGE was performed to separate 
the proteins, after which the target proteins were transferred to a PVDF membrane under 
constant voltage. The PVDF membrane was blocked with 5% skim milk at 37°C for 2 h, 
washed with TBST, and incubated at 37°C with rabbit anti-BspJ and BspG protein polyclonal 
antibodies (1:200) (obtained from previous experiments, unpublished) for 2 h. Then, the 
membranes were incubated with goat anti rabbit IgG H&L (1:3,000) (Abcom, USA) antibody 
at 37°C for 1 h, and finally, Pierce ECL Western Blotting Substrate (Thermo, USA) was added 
for color development.

Single colonies of B. abortus, B. abortus ΔBspJ, and B. abortus pBspJ were selected and cultured 
with Brucella Broth medium at 37°C to an OD600 values of 0.2. The cultures were then newly 
inoculated into Brucella Broth (1:100) at 37°C and 180 rpm to continue culturing. The OD600 
values of the bacterial solution were measured every 2 h, and the growth rate of the strains 
were recorded and used to draw a growth curve.
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Analysis of adhesion and invasiveness of B. abortus ΔBspJ, and B. abortus 
pBspJ
Next, we studied the effect of BspJ gene deletion on the adhesion and invasiveness of B. 
abortus. Cultured RAW264.7 cells on the order of 2 × 106 cells/well in six-well plates, and 
infected RAW264.7 cells with B. abortus, B. abortus ΔBspJ, and B. abortus pBspJ according to 
MOI 100. At 15 min, 30 min, 45 min, and 60 min post-infection, gentamicin (50 μg/mL) were 
added to kill extracellular bacteria, and 0.3% Triton X-100 (Solarbio, China) were added 1 h 
later to lyse the cells. The cell lysates were diluted to 10−1, 10−2, 10−3, 10−4, and 10−5 gradients to 
spread on Brucella Agar plates and incubated at 37°C for 3–4 days, after which the numbers of 
colonies on the plates were counted.

In vitro verification of the intracellular viability of B. abortus ΔBspJ, and  
B. abortus pBspJ
We subsequently studied the effect of BspJ gene knockout on the intracellular viability of B. 
abortus. RAW264.7 cells were cultured in six-well plates with an order of magnitude of 2 × 106 
cells/well. The cells were infected with B. abortus, B. abortus ΔBspJ or B. abortus pBspJ at MOI 
100. After 1 h of infection, gentamicin (50 μg/mL) were used to kill extracellular bacteria. At 4 
h, 8 h, 12 h, 24 h, and 48 h after infection, 0.3% Triton X-100 (Solarbio, China) were added to 
lyse the cells to release intracellular bacteria. The lysates were diluted to 10−1, 10−2, 10−3, 10−4, 
and 10−5. The dilutions were spread on Brucella Agar plates, and the numbers of colonies on 
the plates were counted after culturing at 37°C for 3–4 days.

Establishment of mouse infection models
All experimental procedures and animal care protocols were performed in accordance with 
institutional animal care regulations. Six-week-old female BalB/c mice were randomly divided 
into three groups, and injected intraperitoneally with B. abortus, B. abortus ΔBspJ, or B. abortus 
pBspJ at a dose of 1 × 106 CFU/mouse. After infection, the mice were weighed every week. The 
mice were sacrificed using CO2; the organs of the mice were collected aseptically, and the 
mouse serum was collected, observed, and recorded over a period of four weeks. The mouse 
organs were added to 0.25% Trixton-100 (Solarbio, China) to produce a homogenate, diluted 
to three gradients of 10−1, 10−2, and 10−3, spread on Brucella Agar plates, and cultured at 37°C for 
3–4 days to count the number of colonies on the plates.

Observation of pathological changes
Using 5% paraformaldehyde (Biosharp, China), the organs of different groups of mice 
collected at different time periods were permeabilized and fixed. After 15 days, organ samples 
were embedded in paraffin blocks, and the tissues were sectioned with a thickness of 4–6 
μm and stained with hematoxylin-eosin (HE) for pathological sectioning. The pathological 
changes of the tissues were observed under a microscope, photographed, and recorded.

Analysis of cytokine changes in vivo and in vitro
Mouse macrophages RAW264.7 were infected with B. abortus, B. abortus ΔBspJ, or B. abortus 
pBspJ, filtered, sterilized, and collected at 4 h, 8 h, 12 h, 24 h, and 48 h as cell supernatants. B. 
abortus, B. abortus ΔBspJ, and B. abortus pBspJ were used to infect BalB/c mice, and serum was 
collected at 7 d, 14 d, 21 d, and 28 d. The enzyme-linked immunosorbent assay method was 
used to determine the cytokine expression levels of interleukin (IL)-6 (Mlbio, China), IL-10 
(Mlbio, China), IL-1β (Mlbio, China), tumor necrosis factor-α (J&L Biological, China), and 
interferon-γ (J&L Biological, China) in cell supernatants or in mouse serum.
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Data analysis
In our experimental study, each set of experimental data represents the average of repeated 
experiments at three levels. SPSS Statistics 23 was used to analyze correlations. One-way analysis 
of variance and Student's t-test were used to test for significant differences between groups. The 
p value represents the degree of significance. The figures were composed using GraphPad Prism.

Ethics statement
The animal study was reviewed and approved by the Animal Experimental Ethical Inspection of 
First Affiliated Hospital, Shihezi University School of Medicine (Approval Number A2020-129-01).

RESULTS

Acquisition of B. abortus ΔBspJ, and B. abortus pBspJ
First, we measured the expression levels of BspJ protein in B. abortus, B. abortus ΔBspJ, and B. 
abortus pBspJ strains; BspG protein was used as a control. The results of western blot analysis 
showed that the BspJ protein was successfully detected in B. abortus and B. abortus pBspJ. BspJ 
was not expressed in B. abortus ΔBspJ (Fig. 1A), while the BspG protein was normally expressed 
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Fig. 1. Identification and growth characteristics analysis of B. abortus ΔBspJ. (A) Western blot analysis of BspJ 
protein in different strains. Equal amounts of B. abortus, B. abortus ΔBspJ, and B. abortus pBspJ were collected. 
After extracting the total bacterial protein, SDS-PAGE was performed to separate proteins. The proteins were 
incubated with antibodies for the western blot. (B) Semi-quantitative analysis of BspJ expression. ImageJ 
software was used to analyze the expression levels of BspJ and express it in the form of a histogram. (C) Growth 
curves of B. abortus, B. abortus ΔBspJ, and B. abortus pBspJ. After the strains were inoculated into the culture 
medium, the absorbance of the culture solution was measured every 2 h to evaluate the growth rate and number 
of strains. The graphs represent the results of three independent trials. All values were presented as means ± SD, 
and significant differences were represented by asterisks. 
*p < 0.05, ****p < 0.0001.



in the three strains. We then performed a semi-quantitative analysis of the western blots and 
found that the expression of BspJ in B. abortus pBspJ was slightly higher than that of B. abortus 
(Fig. 1B), indicating that the backfilling of BspJ increased the expression of BspJ. These results 
indicate that B. abortus ΔBspJ and B. abortus pBspJ strains were successfully constructed.

Knockout of BspJ reduced the growth rate of B. abortus
We examined the effect of BspJ knockout on the proliferation of B. abortus. The growth rates of 
B. abortus, B. abortus ΔBspJ, and B. abortus pBspJ were used to construct the respective growth 
curves. Compared with the parent strain, B. abortus ΔBspJ and B. abortus pBspJ always had lower 
growth rates, and the rate of B. abortus pBspJ was slightly higher than that of B. abortus ΔBspJ. 
In addition, B. abortus entered the exponential growth phase and plateau phase earlier than 
B. abortus ΔBspJ or B. abortus pBspJ and had a higher environmental capacity (Fig. 1C). These 
results confirmed that the lack of BspJ reduced the proliferation rate and viability of B. abortus 
and that the supplementation of BspJ did not completely restore bacterial viability, implying the 
important role of BspJ in the survival of B. abortus.

Knockout of BspJ reduced the intracellular survival of B. abortus in RAW264.7
Next, we examined the impact of BspJ knockdown on the intracellular survival of B. abortus 
in the host cells. The B. abortus parent strain, B. abortus ΔBspJ, and B. abortus pBspJ were 
used to infect RAW264.7 cells. Within 4–12 h after infection, compared with the parent 
strain and the complement strain, there was no visible difference in the cell number or 
intracellular survival of the BspJ gene-deficient strain, and the number of bacteria increased 
slowly in the host cell, with basically no increase within the first 12 h. However, after 24 h of 
infection, the bacteria proliferated in the host cells more rapidly. Compared with the parent 
strain, the number of intracellular bacteria of B. abortus ΔBspJ was decreased (p < 0.01), 
and the difference was more significant after 48 h (p < 0.001), while B. abortus pBspJ had no 
difference in intracellular survival compared with the parent strain (Fig. 2A). These results 
indicate that after Brucella invades the host cell, the growth of the bacteria is slow within the 
first 12 hours; the replication ability increases after 12 hours, and the deletion of the BspJ 
gene can inhibit the Brucella proliferation and reduce its intracellular viability in the cell to a 
certain extent.
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Knockout of BspJ does not reduce the adhesion or invasion ability of B. abortus
By evaluating intracellular viability, we confirmed that the absence of BspJ would reduce the 
proliferation of bacteria. Subsequently, we assessed whether the knockout of BspJ affected 
the intracellular growth rate by reducing the adhesion and invasion efficiency of the bacteria. 
The results showed that within 1 h of the bacteria infecting the macrophage RAW264.7, the 
numbers of B. abortus, B. abortus ΔBspJ, and B. abortus pBspJ in cells were not significantly 
different, and with increasing time after invasion, the number of bacteria in the cells did not 
increase significantly (Fig. 2B). Compared with the parent strain, the adhesion and invasion 
abilities of B. abortus ΔBspJ in RAW264.7 cells were unaffected, and the number of adherent 
bacteria did not increase with time. This shows that a lack of BspJ does not reduce the ability 
of B. abortus to proliferate by affecting the adhesion or invasion of the bacteria.

Absence of BspJ changes the expression of cytokines in mouse RAW264.7 cells
Compared with the parent strain, B. abortus ΔBspJ had a reduced proliferation ability in 
RAW264.7 cells. To clarify the mechanism of this results, we analyzed the cytokines expression 
in the cell supernatants after the strains had infected the cells by examining the expression 
of TNF-α, IFN-γ and inflammatory cytokines IL-1β, IL-6, and IL-10 (Fig. 3). After B. abortus, 
B. abortus ΔBspJ, and B. abortus pBspJ infected RAW264.7 cells, within 8 h the IL-6 expression 
induced by B. abortus ΔBspJ was lower than that of the parent strain of B. abortus (Fig. 3B), while 
the expression levels of other cytokines showed no significant differences. With the increase 
of infection time, B. abortus ΔBspJ induced host cells to secrete IL-1β and IL-10 less than the 
parent strain, and the decrease of IL-10 (post-infection 12 h) occurred earlier than that of IL-1β 
(24 h post-infection) (Fig. 3A and C). It is worth noting that starting from 24 h after infection, 
B. abortus ΔBspJ induced higher levels of TNF-α and IFN-γ in host cells compared with the 
parent strain, and the difference in IFN-γ was more significant (Fig. 3D and E), consistent with 
the time when the proliferation rate of B. abortus ΔBspJ began to decrease (Fig. 2A). These 
results indicate that compared with the parent strain of B. abortus, B. abortus ΔBspJ reduces 
the expression of IL-6 in host cells at the initial stage of infection and reduces the expression 
of IL-1β and IL-10 in host cells 12 h after infection. During the bacterial proliferation stage, 
B. abortus ΔBspJ induced higher expression of TNF-α and IFN-γ in host cells. These results 
confirmed that the knockout of BspJ altered the expression of inflammatory and immune 
factors in host cells.

The absence of BspJ reduced the colonization of B. abortus in mice and 
reduced pathological damage
In order to observe the effect of BspJ deletion on the colonization of B. abortus in vivo, 
we infected BalB/c mice with the parental, deleted, and complement strains. After four 
consecutive weeks of follow-up observation, B. abortus caused more severe splenomegaly 
and damage in mice than B. abortus ΔBspJ (Fig. 4A), and this splenomegaly injury had first 
appeared seven days after infection (Fig. 4B). The spleen enlargement caused by B. abortus 
reached a peak on the 14th day and then began to slowly decrease (Fig. 4B), while the spleen 
swelling responses induced by B. abortus ΔBspJ and B. abortus pBspJ did not change much, 
maintaining a relatively stable level (Fig. 4B). In order to better understand the relationship 
between splenomegaly response and bacterial infection, we performed a statistical analysis 
on the colonization of Brucella in the spleens. After Brucella infected the mice, the bacterial 
content in the spleens reached its peak at 7–14 days and then began to slowly decrease 
(Fig. 4C), consistent with the response time axis of splenomegaly. From beginning to end, 
B. abortus ΔBspJ had a significantly lower spleen bacterial load than B. abortus, and the 
difference became greater as the infection time increased, following the same pattern as the 
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splenomegaly. It is worth noting that B. abortus pBspJ was higher than B. abortus ΔBspJ but 
lower than B. abortus in both splenomegaly reaction and splenic bacterial loads.

Next, we performed pathological observations on the mouse spleen and liver to understand 
the pathological damage caused by Brucella to the mice. The results showed that 14 days after 
infection, B. abortus caused more severe necrosis and inflammatory cell infiltration in the 
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liver of mice than B. abortus ΔBspJ or B. abortus pBspJ. At 28 days after infection, although the 
damage and infiltration caused by the strains were alleviated, the damage and lesions caused 
by B. abortus were still more intense than those from the deletion strain and the complement 
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strain (Fig. 4D). In the spleens of infected mice, at both 14 days and 28 days, B. abortus also 
caused stronger tissue damage and more lesions than B. abortus ΔBspJ or B. abortus pBspJ. Note 
that B. abortus ΔBspJ had the weakest effect on the liver and spleen of mice, and no specific 
lesions or tissue damage were observed (Fig. 4D). In order to better evaluate the pathological 
damage caused by different strains, we carried out statistical analyses of the organ pathological 
scores. Brucella infection caused spleen and liver damage to the mice. B. abortus ΔBspJ caused 
extremely less damage to the liver and spleen of mice than B. abortus or B. abortus pBspJ, and B. 
abortus pBspJ caused less damage than B. abortus (Fig. 4E and F). Based on the above results, 
the absence of BspJ caused low splenomegaly and infiltration, reduced the colonization of B. 
abortus in mice, and caused only minor pathological tissue damage, implying that BspJ plays an 
important role in the proliferation and disease mechanisms of B. abortus.

Knockout of BspJ changed the secretion of cytokines in mice
In order to better understand the mechanism of BspJ deletion causing B. abortus to weaken the 
pathogenicity to mice, we detected the secretion levels of the cytokines TNF-α and IFN-γ and 
the inflammatory factors IL-1β, IL-6, and IL-10 in the serum of mice. At 7 to 28 days after B. 
abortus and B. abortus ΔBspJ infection in the mice, there was little difference in the secretion of 
IL-1β in serum (Fig. 5A). From 14 days to 28 days after infection, B. abortus ΔBspJ induced lower 
IL-6 secretion in mouse serum than B. abortus (Fig. 5B). Starting from 21 days after infection, 
B. abortus ΔBspJ also induced a lower level of IL-10 secretion in mouse serum compared with B. 
abortus (Fig. 5C). In addition, B. abortus ΔBspJ induced a higher level of TNF-α secretion in mice 
than B. abortus (Fig. 5D). It is worth noting that from the beginning of infection, B. abortus ΔBspJ 
significantly increased the secretion of IFN-γ in mouse serum, and this difference became 
greater as the infection time increased (Fig. 5E). The above results indicate that B. abortus ΔBspJ 
induces lower levels of IL-6 and IL-10 and higher levels of TNF-α and IFN-γ secretion in mouse 
serum than B. abortus, while IL-10 secretion is not significantly different in the serum.

DISCUSSION

The secreted proteins of Brucella are closely related to its intracellular survival mechanism and 
afford the bacterium with antigenicity and immune protection [16,30,31]. To date, more than 
a dozen Brucella T4SS effector proteins have been identified as playing important roles in the 
production of rBCV and in the intracellular circulation of Brucella [16,32-34]. Brucella secreted 
protein VceC [17,18] targets the host cell Grp78/BiP, activates the unfolded protein response 
(UPR), and triggers an inflammatory response. The T4SS effector protein TcpB [25] can inhibit 
TLR (Toll/IL-1 receptor) signals and induce the UPR. The T4SS effector proteins BspA, BspB, 
and BspF can inhibit host cell secretion and promote the proliferation of Brucella in host cells 
[26,27]. Our previous research found that BspJ functions as a nucleomodulin, mediating host 
energy synthesis and cell apoptosis pathways. In order to better understand the functions 
of BspJ, we constructed the BspJ gene deletion strains and complement strains. Using both 
in vivo and in vitro experiments, we have demonstrated that the knockout of BspJ reduces the 
proliferation efficiency of B. abortus, significantly weakens its viability in the host cell, eliminates 
the pathological tissue damage to the host, and alters the release of host cytokines.

Brucella in the early stage of invading host cells (0–8 h after infection) manifests as the eBCV 
stage. This stage is part of the endosomal stage and does not have the ability to proliferate 
bacteria. At the rBCV stage (12 to 48 hours after infection), Brucella will rapidly proliferate in 
host cells in large quantities [16,33,34]. In our research results, neither the B. abortus parent 
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strain nor the B. abortus ΔBspJ and B. abortus pBspJ strains were observed at the initial stage 
of infection (0–12 h after infection). The proliferation of Brucella was remarkable. In the rBCV 
stage, rapid replication of Brucella in the cell was observed, and the proliferation of B. abortus 
ΔBspJ was significantly weaker than that of the B. abortus parent strain.

After Brucella infects macrophages, the host cells secrete some pro-inflammatory cellular 
immune factors (TNF-α, IL-6, IL-12) and chemokines [35,36] that in turn stimulate Th1 
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cell responses. IFN-γ, which is extremely important for the elimination of Brucella [37], is 
produced by the host cells. After LPS stimulates the host cell to activate the NF-κB signaling 
pathway, it will cause high expression of innate immune cytokines such as IL-6, IL-8, 
IL-1β, and TNF-α, and the activation of the STAT3 signaling pathway will up-regulate the 
production of IL-10 [38-40]. IL-10 has anti-inflammatory effects. Its secretion can reduce the 
expression of pro-inflammatory cytokines (such as TNF-α and IFN-γ), inhibit the Th1 cell 
response, regulate macrophage metabolism, and reduce the production of reactive oxygen 
species (ROS) and activate the inflammasomes [41,42]. In our research B. abortus ΔBspJ 
was used to infect mouse macrophages RAW264.7. Compared with the parental strain, IL-6 
expression was reduced at the eBCV stage, and at the rBCV stage, IL-1β and IL-10 levels were 
reduced. The expression levels of TNF-α and IFN-γ were increased. This shows that during 
the proliferation stage of Brucella, the deletion of BspJ down-regulates the expression of IL-10 
and enhances the inflammatory response. As a result, the expression levels of inflammatory 
killer cytokines TNF-α and IFN-γ increase, causing host cells to destroy the intracellular 
bacteria, resulting in a decrease in the proliferation rate of B. abortus ΔBspJ and a decrease in 
bacterial intracellular survival. In addition, the inflammatory cytokines IL-6 and IL-1β may 
not play significant roles in the survival of B. abortus ΔBspJ in cells. These suggestions need to 
be further verified.

For the in vivo experiments in mice, B. abortus ΔBspJ invasion reduced the inflammatory 
infiltration of mouse organs from the early stage; the colonization ability of the bacteria in 
the mouse spleen was significantly reduced, and the damage to the mouse organs was also 
significantly lessened. TcpS is an effector protein of Salmonella. Its deletion induces a decrease 
in the colonization of the host and early spleen and a strong inflammatory storm, indicating 
its important role in the early immune escape of Salmonella [39]. Our results show that the 
function of BspJ after entering the nucleus may not be related to the immune escape of the 
bacteria that enhances its cell memory viability. It is worth noting that in our results, the 
deletion of BspJ decreased the expression levels of IL-6 and IL-10 in the serum of mice at the 
later stages of infection, while the expression levels of TNF-α and IFN-γ were increased. This 
is consistent with our results in macrophages, indicating that the absence of BspJ may reduce 
the expression level of IL-10 to enhance the host cell inflammatory response and to cause the 
cell to secrete more cytokines (TNF-α and IFN-γ) to eliminate pathogenic bacteria. However, 
B. abortus ΔBspJ showed low host memory viability at the early stage. Due to its ability to 
enter the host cell nucleus, this may be another undiscovered mechanism for the intracellular 
survival of Brucella. The research on the effector protein BspJ still has a long way to go. We may 
conclude that BspJ is an important effector protein of B. abortus, and its deletion causes a series 
of changes that ultimately affect the colonization ability of B. abortus. The important functions 
of BspJ need to be further explored. How BspJ functions as a nuclear effector protein, how it 
affects the proliferation ability of pathogenic bacteria, and whether its deletion mutants can 
be used as candidate vaccine strains will be the directions of our future research.

CONCLUSION

In conclusion, by constructing B. abortus ΔBspJ and B. abortus pBspJ and verifying their 
biological characteristics, we found that BspJ plays an important role in the proliferation of 
the Brucella rBCV stage. In view of BspJ being a nucleomodulin, it may possibly participate 
in Brucella to activate the body's adaptive immune process to affect the expression of specific 
cytokines and ultimately maintain the intracellular circulation of the bacteria.
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