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Abstract
The widespread lockdowns imposed in many countries at the beginning of the COVID-
19 pandemic elevated the importance of research on pandemic management when med-
ical solutions such as vaccines are unavailable. We present a framework that combines
a standard epidemiological SEIR (susceptible–exposed–infected–removed) model with
an equally standard machine learning classification model for clinical severity risk,
defined as an individual’s risk of needing intensive care unit (ICU) treatment if infected.
Using COVID-19–related data and estimates for France as of spring 2020, we then sim-
ulate isolation and exit policies. Our simulations show that policies considering clinical
risk predictions could relax isolation restrictions for millions of the lowest risk pop-
ulation months earlier while consistently abiding by ICU capacity restrictions. Exit
policies without risk predictions, meanwhile, would considerably exceed ICU capacity
or require the isolation of a substantial portion of population for over a year in order to
not overwhelm the medical system. Sensitivity analyses further decompose the impact
of various elements of our models on the observed effects. Our work indicates that
predictive modeling based on machine learning and artificial intelligence could bring
significant value to managing pandemics. Such a strategy, however, requires govern-
ments to develop policies and invest in infrastructure to operationalize personalized
isolation and exit policies based on risk predictions at scale. This includes health data
policies to train predictive models and apply them to all residents, as well as policies
for targeted resource allocation to maintain strict isolation for high-risk individuals.

K E Y W O R D S
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1 INTRODUCTION

Many countries have adopted isolation restrictions, or “lock-
downs,” to control the viral spread during the COVID-19 pan-
demic (Koo et al., 2020). Such nonpharmaceutical pandemic
management strategies can complement pharmaceutical ones
(e.g., treatments or vaccines) but also may be the only avail-
able tool if the latter either are not scientifically possible or
take significant time to develop. While epidemic models have
been used to inform such policies (Ferguson et al., 2020;
Flaxman et al., 2020), how to best initiate, relax, and possibly
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reinitiate isolation restrictions is unclear. Some approaches
rely on immunity tests (Petherick, 2020) or on testing and
tracing technologies (Wang et al., 2020), but we study a
different approach. Instead of using “ex post” immunity or
diagnostic tests, utilizing “ex ante” predictive technologies,
such as machine learning, which have been proved success-
ful in other contexts. This approach can be used even in the
absence of medical interventions because it relies solely on
using data gathered in the pandemic’s early stages to identify
factors that affect the severity of symptoms, not on devel-
oping and distributing tests, treatments, or vaccines. This
approach can complement those relying on immunity and
diagnostic tests or be considered independently.
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The type of personalized isolation (“confinement”) and exit
(“deconfinement”) policy that we study is as follows: First,
the clinical risk score (risk of experiencing symptoms severe
enough to require an intensive care unit [ICU] bed) for each
individual is predicted.1 Second, those with predicted scores
above a certain threshold are classified as “severe,” or “high
risk,” and the remainder are classified as “mild” or “low risk.”
Third, those classified into the high-risk group are subject
to stricter isolation and protection (“confined”), while those
in the low-risk group are placed under softer restrictions or
none at all (“released”). In practice, this can be achieved by
targeted allocation of resources (e.g., providing masks and
other personal protective equipment [PPE], dedicating health
support, delivering groceries and other necessities for free)
to the high-risk group, targeted government communication
that differentiates between high- and low-risk individuals,
and other targeted policies. Policy makers adjust the high
versus low threshold over time to achieve the desired objec-
tives while meeting required constraints. While we chose to
minimize the time to complete exit while not exceeding ICU
capacity at any point, other formulations of the underlying
multiobjective problem are feasible.

The studied policies rely on two key assumptions: First,
only a small percentage of the population is in the high-risk
category. For example, estimates for France as of spring 2020
showed that the vast majority of the population, or >99%
(Salje et al., 2020), will not experience severe symptoms
needing an ICU if infected by the SARS-CoV-2 virus. Sec-
ond, risk prediction models based, for example, on data from
early infections can be developed and deployed if the nec-
essary data are available. While the infrastructure required
to achieve this during the COVID-19 pandemic appears lim-
ited despite the existence of risk prediction models (e.g.,
Bertsimas, 2020), appropriate policies may enable pandemic
management based on the data-driven risk predictions in
the future.

The intuition behind the studied policies is as follows:
Using COVID-19 data as an example, were one to (i) deter-
mine who the ∼ 1% of severe cases are and (ii) perfectly and
temporarily isolate and protect them, the remainder of the
population would be able to continue a more or less normal
life. In such an ideal scenario, many low-risk people would
get infected and would infect others but none would have
severe symptoms because those high-risk individuals already
have been correctly identified and perfectly protected. The
medical system would not be overwhelmed, no one would
die (though we note we do not consider long-term health
effects for those infected), and both the society and econ-
omy would avoid a major shock from the indiscriminate lock-
downs implemented in many countries.

In practice, the effectiveness of such a policy would depend
on two critical imperfections. First, risk prediction models
might occasionally make mistakes, for examples, false pos-
itive and false negative errors. Second, isolation would be
imperfect as, for example, high-risk individuals who should
be isolated may occasionally encounter those infected (e.g.,
due to PPE shortages, noncompliance, or family situation)

and low-risk individuals who would be able to continue nor-
mal life may not do so (e.g., due to fear).

We study how these two imperfections impact the
effectiveness of the aforementioned personalized pan-
demic isolation and exit policies. We extended a standard
epidemic model, namely, a version of the susceptible–
exposed–infected–removed (SEIR) model (Kucharski et al.,
2020), to incorporate personalized predictions of severity risk
(see Appendix A in the Supporting Information for alterna-
tive modeling frameworks). Using simulations, we investi-
gated how prediction models for patient severity may inform
policy in two scenarios: amid an ongoing outbreak, as was
the case in France when lockdown began on March 17, 2020,
and when the outbreak has been curbed and progressive loos-
ening of isolation policies (exit or deconfinement) may take
place, as was the case in France beginning May 11, 2020.

Our analysis is based on assuming hypothetical risk pre-
diction models one may be able to develop for a pandemic.
These can rely on factors known to affect the severity of
symptoms if infected, when such factors exist. For example,
existing research indicates differential impact of COVID-19
depending on age, body mass index, hypertension, diabetes,
and other factors2 (Guan et al., 2020), which already have
been used in emerging risk models, such as those reported in
Bertsimas (2020).

To populate our simulation models, we used available
COVID-19 estimates and data from France as of May 2020
(Di Domenico et al., 2020). At the end of the lockdown on
May 11, there were about 2750 ICU beds occupied by peo-
ple with COVID-19, down from a peak of 7148 against the
French health system’s 6000-bed capacity. We used current
estimates with a reproduction number value of 0 = 2.9 prior
to lockdown, and 1.5 million people who had been immune
or infected when it started in France on March 17, 2020
(Salje et al., 2020). We analyzed uncertainty using approx-
imate Bayesian computation (Marjoram et al., 2003).

Our simulations led to the following main observations and
corresponding implications:

1. Isolation and exit policies when based on risk-model
predictions could be substantially faster and safer. Uti-
lizing realistic parameter values and a high-quality risk
model at the upper end of Bertsimas (2020), simulations
indicated that a complete exit from COVID-19 lockdown
could be undertaken in three waves over 6 months, with
only 10% of the population being under strict isolation
for longer than 3 months—all without overwhelming the
medical system and exceeding ICU capacity. Simulations
indicated that without such a model, a complete exit would
take 17 months3 and 40% of the population would be
subject to strict isolation for over a year or ICU capacity
would be exceeded four times over.
An alternative way to interpret our results is that even with
a good risk model, ∼ 30% of the population still must
be strictly isolated for several months. In other words,
the “herd immunity” approach some policy makers have
endorsed is impossible without (i) a high-quality risk
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prediction model and (ii) the ability to strictly isolate a
substantial portion of the high-risk population.
Implication: Governments should invest in individual
health data infrastructure to make such models imple-
mentable at scale. This entails infrastructure that not only
collects data on the few thousand people who exhibited
symptoms and went to hospitals but also collecting indi-
vidual medical data on the entire population to obtain
health risk predictions for all residents; see Evgeniou et al.
(2020) for further discussion on the resultant data policies,
privacy, and other related issues.
Disclaimer: because such data and policies do not exist
in most countries, our policy was not suitable for manag-
ing COVID-19 in 2020. Rather, we study how personal-
ized policies based on machine learning predictions could
improve pandemic management in the future.

2. Even moderate-quality risk models already could
bring measurable improvements, relaxing isolation for
millions of people months sooner while adhering to exist-
ing constraints on medical resources. Further, and some-
what surprisingly, even with imperfect models, imperfect
but targeted and optimally timed partial isolation policies
can be more efficient than full nondiscriminatory lock-
downs, as such policies allow safer immunity building
while better protecting the high-risk population and keep-
ing the average isolation percentage low.
Implication: For immediate action, focus on a “minimal
viable product” data and models that can be used at scale.
Even amid the COVID-19 pandemic, data on age, body
mass index, and hypertension and diabetes—all of which
can be assessed at a nearby pharmacy for all people within
weeks—already can be used with a risk model such as in
Bertsimas (2020) to inform policies that could be relevant
for practice.

3. Personalized policies based on risk-model predictions
are highly sensitive to the protection level of confined
people. Interestingly, the impact of the protection level
of deconfined people on simulated outcomes depends on
risk-model quality. With a high-quality risk model, the
optimal policy builds herd immunity,4 which can be done
faster when deconfined people are less, not more, pro-
tected.
Implication: Personalize resource allocation to protect
the confined predicted high-risk people: Distribute to them
masks and other PPE, supply them with food and other
necessities for free, prioritize testing those in contact with
them, and so forth. Do not spread resources; practice tar-
geted allocation.

4. Lastly, whether an individual is classified as high- ver-
sus low-risk changes dynamically over time: How one
is classified depends not only on one’s individual char-
acteristics but also on the state of the epidemic. Our pro-
posed personalized policy combines the epidemic progres-
sion with data science principles and optimally adjusts
the high- versus low-risk classification threshold so as
to ensure safe and fast confinement and deconfinement
over time.

Implication: A careful communication strategy, adjusted
over time, is needed to convey such personalized policies
to the public.

We now provide some comments on related work. As
we do, Acemoglu et al. (2021) study the benefits of apply-
ing differential isolation restrictions within a multirisk SIR
(susceptible–infectious–removed) model. Their risk groups,
however, are static—young (20–44), middle (45–64), and
old (65+)—so the resultant policies are rather limited. For
instance, their optimal fully targeted policy keeps the “old”
group (≈20% of the population) in isolation essentially indef-
initely, waiting for a vaccine to arrive. In contrast, our high
versus low risk assessment depends on the classification
threshold in a machine learning model and changes dynam-
ically as the epidemic progresses, allowing for much faster
exits. Recall that with a high-quality risk model, the optimal
exit takes 6 months and only 10% of the population is isolated
for more than 3 months.

Our approaches also differ with regard to the multiobjec-
tive nature of managing a pandemic. Acemoglu et al. (2021)
treat the problem as a weighted objective function and com-
pute an efficient frontier between the economic and health
metrics. We treat the problem as a constrained optimiza-
tion. We optimize one objective (time to remove the isola-
tion restrictions, which represents the socioeconomic goals)
subject to a constraint on the availability of ICU beds (repre-
senting the health goal).

Gershon et al. (2020) and Duque et al. (2020) employ a
similar constrained approach within their settings and objec-
tives, which differ from ours. Similar to Acemoglu et al.
(2021), Gershon et al. (2020) utilize static risk groups but they
are not solely based just on age and include children, low-
risk adults, high-risk adults, and nursing home occupants.
The results are similar to Acemoglu et al. (2021) in the sense
that the high-risk groups must be isolated indefinitely; under
certain conditions, however, the low-risk may not be isolated
at all in their model. Our results are similar in that up to
65% of the population should never be isolated. Duque et al.
(2020) study the timing of nontargeted shelter-in-place isola-
tion orders. We also study timing but our model isolates, that
is, targets a different (smaller) fraction of the riskiest remain-
ing population at each new epoch.

Targeting based on risk factors is, of course, not the only
way: Birge et al. (2020) study spatial targeting and Camelo
et al. (2021) study dual targeting based on risk groups and
their activities. Such studies are complementary to ours.

We finally mention three companions to the present paper.
First, given the large body of literature developed at the begin-
ning of the COVID-19 pandemic, when multiple research
articles were produced daily, we also present the detailed
review in a “literature appendix”, Garin et al. (2021) in addi-
tion to the papers discussed above. Second, because our find-
ings are based on numerical simulations, the code is available
via GitHub at https://reine.cmla.ens-cachan.fr/boulant/seair,
and the algorithmic details for how our model is imple-
mented in the code are provided in Boulant et al. (2020).

https://reine.cmla.ens-cachan.fr/boulant/seair
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F I G U R E 1 Simplified schematic of the
risk-extended SEAIR model, showing rates of
passage from the different compartments: the
released, S(r), the confined, S(c), susceptible
individuals, the released exposed, E(r), the confined
exposed, E(c) the asymptomatic, A, the infectious
with severe symptoms requiring ICU, Is, the
infectious with milder symptoms, Im, the people in
ICU beds, U, as well as those who died from the
disease, D, and those who recovered and are immune,
R. All parameters may be found in Table 1 [Color
figure can be viewed at wileyonlinelibrary.com]

This forms a “code appendix” to our paper, following the
highest standards of reproducible research. Third, to facili-
tate dissemination of our results for the general public, we
created a noncoding demo “simulator” for the differential
policies that we study here: https://ipolcore.ipol.im/demo/
clientApp/demo.html?id=305. This demo is prepopulated
with the parameters for France used in our simulations but
one can change the parameters and simulate the pandemic
isolation and exit policies for other counties given their
respective situations.

2 MODEL

At a high level, our model is a combination of a rather
standard SIR-like compartmentalized epidemiological model
with an equally standard machine learning binary classifica-
tion/risk model.

2.1 Compartmentalized epidemiological
model: Extended SEAIR

We start from the standard SIR model and extend it in two
ways. First, we add three additional kinds of compartments:

∙ Exposed, to account for those who are infected but are nei-
ther infectious nor symptomatic;

∙ Asymptomatic, to account for those who have contracted
the disease and are infectious but asymptomatic; and

∙ ICU, for people who experience severe enough symptoms
and require intensive care (or, more generally, whatever
one may define as severe cases for a pandemic).

Taken together, our model captures a pandemic where a
proportion of infectious but initially asymptomatic individ-
uals are assumed to develop mild symptoms and recover
naturally, while the rest develop severe symptoms requiring
hospitalization; see Figure 1. Such a separation of exposed
individuals based on severity of symptoms has been a recur-
ring aspect of most modeling approaches (whether determin-
istic or stochastic) by prominent epidemiologists; see, for
instance, Di Domenico et al. (2020), Ferguson et al. (2020),
Sonabend et al. (2021), and Salje et al. (2020). Including
the “A” compartment captures the salient feature of a pan-

demic like COVID-19, where the disease spreads faster as
many contagious individuals are unaware of being infectious.
Technically, this also facilitates using the parameter estimates
from these epidemiological studies.

Management studies that explicitly account for asymp-
tomatic cases are rare. For instance, Kaplan (2020) con-
siders the standard SIR model and Acemoglu et al. (2021)
consider connected replicas of SIR, while both briefly men-
tion SEIR. Birge et al. (2020) and Camelo et al. (2021)
start with SEIR and, respectively, split infected individuals
into clinical/subclinical and confirmed/unconfirmed through
testing, the former being further divided based on symp-
toms. These approaches are similar to ours in spirit but sug-
gest that eventually symptomatic individuals may initially
be asymptomatic, which necessitates adding the “A”-type
compartments.

Second, we split each S-E-A-I-R compartment into four
categories, with the ICU compartment split in two.5 Together
with a compartment for people who died from the disease,
they add up to a total of 23 compartments. The four sub-
categories correspond to the so-called “confusion matrix” of
the machine learning risk prediction model (see Table 2): (i)
true positives, who would experience severe symptoms upon
infection needing an ICU bed, and classified as high-risk and
hence confined; (ii) false negatives, who would experience
severe symptoms upon infection needing an ICU bed, but
classified low-risk and hence released; (iii) false positives,
who would experience only mild symptoms upon infection
not needing an ICU bed, but classified high-risk and hence
confined; and (iv) true negatives, who would experience only
mild symptoms upon infection not needing an ICU bed, and
classified low-risk and hence released. How each individual
falls into one of these four groups is determined endoge-
nously by our model, as we explain in the next section.

Because this notation is critically important going forward,
we reiterate that the policy we study confines those who are
predicted to be high risk and releases those who are predicted
to be low risk. As with any model, our (assumed) prediction
model makes mistakes, thus both the confined and released
groups contain a mix of actually severe- and actually mild-
symptom individuals. The sub- and superscripts j = {s,m},
for (actually) “severe” versus “mild,” and i = {c, r}, for “con-
fined” (i.e., predicted severe) versus “released” (i.e., pre-
dicted mild), designate the subcategories in each compart-
ment. For example, S(r)

s refers to susceptible individuals who

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=305
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=305
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TA B L E 1 Epidemiological parameters used

Symbol Description Value(s) Reference

𝛽 Transmission rate Computed

0 Basic reproduction number 2.9 Salje et al. (2020)

𝜀 Waiting rate to viral shedding 1∕3.7 day−1 Di Domenico et al. (2020)

𝜎 Waiting rate to symptom onset 1∕1.5 day−1 Di Domenico et al. (2020)

𝜂 Waiting rate from symptom onset to ICU 1∕7 day−1 Salje et al. (2020)

𝛾m Recovery rate from mild symptoms 1∕2.3 day−1 Di Domenico et al. (2020)

𝛾s Recovery rate for people in ICU 1∕17 day−1 Salje et al. (2020)

𝛼 Mortality rate for people in ICU 1∕11.7 day−1 Salje et al. (2020)

are released but will get severe symptoms when infected, S(r)

refers to all released, and so on.
We use 𝜌 ∈ [0, 1] as the control parameter of our pol-

icy, denoting the proportion of individuals who should be
released, that is, classified in the low-risk group (correctly or
incorrectly) and therefore subject to low isolation restrictions.
We initially consider a single-release policy, optimizing over
a scalar 𝜌, and then extend the analyses to the optimal con-
trol problem with multiple releases, optimizing over a vector
{𝜌0, 𝜌1, …} released at times {0, t1, …}.

We capture the impact of the differentiated isolation
restrictions on people’s behavior using two behavioral param-
eters: 𝛿r, for the group with low isolation restrictions, that
is, released, and 𝛿c, for the group with high isolation restric-
tions, that is, confined; 0 ≤ 𝛿r < 𝛿c ≤ 1. These parameters
capture a level of “protection” and aggregate several factors,
such as respiratory and hand hygiene and how much a per-
son has lowered the number of exits from home and social
interactions.

Note that how individuals in group i = {r, c} reduce their
chances of contracting the disease depends not only on 𝛿r
and 𝛿c but also on the proportion of people in each group,
𝜌 and 1 − 𝜌. The so-called “contact rates,” cr and cc for the
released and confined groups, important parameters in “stan-
dard” epidemiological models, satisfy 1 − ci = (1 − 𝛿i) ×
((1 − 𝛿r)𝜌 + (1 − 𝛿c)(1 − 𝜌)), i ∈ {r, c}. These parameters
have been used in the literature modeling COVID lockdowns,
for example, Di Domenico et al. (2020) and Djidjou-Demasse
et al. (2020). Our approach is fully aligned with those, as we
endogenize contact rates per the preceding equation.

Figure 1 presents the simplified schematic of our SEAIR
model, which corresponds to the following set of ordi-
nary differential equations (ODEs), where all parameters are
defined in Table 1:

Ṡ(r) = −(1 − 𝛿r)𝛽IeS(r), (ODE)

Ė(r) = (1 − 𝛿r)𝛽IeS(r) − 𝜀E(r), (1)

Ṡ(c) = −(1 − 𝛿c)𝛽IeS(c), (2)

Ė(c) = (1 − 𝛿c)𝛽IeS(c) − 𝜀E(c), (3)

Ȧ = 𝜀E − 𝜎A, (4)

İm = 𝜎Am − 𝛾mIm, (5)

İs = 𝜎As − 𝜂Is, (6)

U̇ = 𝜂Is − (𝛾s + 𝛼)U, (7)

Ṙ = 𝛾mIm + 𝛾sIs, (8)

Ḋ = 𝛼U. (9)

Here, the effective number of contagious people is Ie =

(1 − 𝛿r)(A
(r) + I(r)) + (1 − 𝛿c)(A(c) + I(c)). As is usual for

such models, we consider the so-called basic reproduction
number 0 as measured prior to lockdown. In our model, the
situation prior to lockdown corresponds to taking 𝛿r = 𝛿c =

0. Then, the transmission rate 𝛽 relates to 0 and the other

parameters through 𝛽 =
0

N0
×

1

p(𝜎−1+𝛾−1
m )+(1−p)(𝜎−1+𝜂−1)

. This

relation may be derived by linear stability analysis, as
in Djidjou-Demasse et al. (2020), using the so-called next
generation matrix method (Diekmann et al., 2010).

Remark 1. The set of ODEs and the schematic in Figure 1
present a simplified version of our model, reduced from the
full set of 23 equations for ease of exposition; for exam-
ple, even though the A compartment is depicted as a sin-
gle node in Figure 1 and is presented as a scalar in Equa-
tion (5), it is actually a four-vector {Ai

j}, where i = {c, r}, j =
{s,m}. The full set of ODEs and the algorithmic details
of their solution are presented in the “code appendix”,
Boulant et al. (2020).

2.2 Risk prediction/classification model

Our model necessitates identifying individuals at the high-
est risk of severity and correspondingly advising them to
remain in strict isolation, while relaxing isolation restrictions
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TA B L E 2 Confusion matrix of the risk model. fs, fm denote
class-conditional predictive distributions; T is the classification threshold, p
is the proportion of people with mild symptoms in the population, and 𝜌 is
the proportion of the released population—the decision variable in our
model

Actual, s Actual, m Total

Model, s → confine True positives = False positives = 1 − 𝜌

(1 − p) × ∫ 1

T
fs(𝜔) d𝜔 p × ∫ 1

T
fm(𝜔) d𝜔

Model, m → release False negatives = True negatives = 𝜌

(1 − p) × ∫ T

0
fs(𝜔) d𝜔 p × ∫ T

0
fm(𝜔) d𝜔

Total: 1 − p p

for lower risk individuals. Such identification is done in two
steps, following the common data science and machine learn-
ing approach. For step 1, a risk “score” is obtained for each
individual, as in Bertsimas (2020), using a logistic regression,
random forest, gradient boosting, or the like model. A stan-
dard metric to assess the discriminating power of such mod-
els is the area under the curve (AUC) of the receiver oper-
ating characteristic (ROC) curve (Fawcett, 2006). We chose
this metric because it is widely used for biomedical applica-
tions involving screening populations with some score func-
tion (Lasko et al., 2005). The score orders the members of
the population from low to high risk and the AUC is often
referred to as the rate of concordant pairs (i.e., the fraction
of pairs that are correctly compared by the score with respect
to their actual risk status). For step 2, individuals with risk
scores above a certain threshold, T , are classified as high risk
and are confined, while the rest are classified as low risk and
are released. T is determined endogenously so the proportion
of the released population equals 𝜌, the decision variable in
our model.

As mentioned in the introduction, we assume such a risk
model would exist in practice. Training such models requires
access to nontrivial personalized data and is outside the scope
of this paper. Instead, our goal is to evaluate the efficacy
of personalized pandemic management given such a model.
Therefore, we utilize hypothetical risk models with AUCs
that bracket existing COVID-19 models in the literature, for
example, Bertsimas (2020).

To create a hypothetical risk model, let fs and fm denote
the so-called “predictive distributions”—the PDFs of the risk
scores for people with severe and mild symptoms, respec-
tively, as predicted by the model. Together with the thresh-
old, T , and the proportion of the population with mild symp-
toms in the population, p, these fs, fm define the model’s
confusion matrix, per Table 2. See Clémençon and Vayatis
(2007) for other performance measures derived in the con-
text of a control parameter 𝜌 applied to a personalized risk
model.

As is evident from Table 2, given 𝜌, p and “the model,” that
is, fs, fm, and assuming the risk scores are between 0 and 1, the
corresponding classification threshold T∗ should be selected

such that:

(1 − p) × ∫
T∗

0
fs(𝜔) d𝜔 + p × ∫

T∗

0
fm(𝜔) d𝜔 = 𝜌. (10)

Let qFP and qFN denote the model’s false positive and false

negative error rates, respectively; that is, qFP = ∫ 1

T∗
fm(𝜔)d𝜔

and qFN = ∫ T∗

0
fs(𝜔)d𝜔. For notational convenience, we omit

the dependency of qs on T∗ and, through that, on 𝜌. Then (10)
is equivalent to:

(1 − p) × qFN + p × (1 − qFP) = 𝜌, (11)

which highlights the key relationship of (any) classification
model that we exploit. Selecting a small 𝜌 results in a small
T∗, thus a small qFN as well. Relatively few people will
be released but very few of the released would, by mis-
take, develop severe symptoms. Increasing 𝜌 would not only
increase T∗, releasing more people, but it also would increase
qFN , exerting a disproportionate impact on people who would
require an ICU. An increase in qFN will be smaller for a
higher quality (higher AUC) model than for a lower quality

one. This is because AUC = ∫ 1

0
(1 − qFN)dqFP, thus a higher

AUC implies, ceteris paribus, lower qFN at a given T .
Another important observation from Table 2 is that the

released individuals consist of two groups: true negatives and
false negatives. The latter will experience severe symptoms
upon infection, requiring ICU beds. They are not, however,
the only group to require ICU beds; because the confinement
of the nonreleased is imperfect (𝛿c < 1), some of the true pos-
itives will require ACU as well. Setting a smaller 𝜌, decreases
the number of false negatives but increases the number of true
positives, leading to a nontrivial relationship between select-
ing 𝜌, the resultant threshold T∗, and ICU demand. This rela-
tionship depends on the model’s quality (AUC).

The goal is to select 𝜌 so that, given the model’s quality, as
few people as possible are confined but ICU capacity is not
exceeded due to model errors or imperfect confinement.

2.3 Connecting risk and SEIR models

The risk model connects with the SEAIR model as follows:
For Q ∈ {S,E,A, I,U,R} and a policy 𝜌, we rescale the initial
risk-independent epidemiologic conditions Q0 to account for
the distribution of people in the four groups:

Q(r)
m (0) ← p (1 − qFP)Q0, Q(c)

m (0) ← p qFPQ0, (12)

Q(r)
s (0) ← (1 − p) qFNQ0, Q(c)

s (0) ← (1 − p) (1 − qFN)Q0.

(13)

This results in the starting “day 0” conditions for the
23 compartments in the extended SEAIR model, which all
depend on 𝜌.
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TA B L E 3 Simulation parameters used

Symbol Description Value(s) Reference

N0 Total initial number of people in the population 6.7 107 ∼ population of France

S0 Total initial number of susceptible people in the population Computed

E0 Total initial number of exposed people in the population Case-dependent estimated

A0 Total initial number of asymptomatic people in the population Case-dependent estimated

I0 Total initial number of infected people in the population Case-dependent estimated

U0 Total initial number of people in ICU Case-dependent known/estimated

R0 Total initial number of immune people in the population Case-dependent Salje et al. (2020)/estimated

Imax Hospital capacity for COVID-19 ICU beds 7250 assumed

p Proportion with mild symptoms (prior with 90% confidence interval) 0.9932 [0.9891 − 0.9961] Salje et al. (2020)/estimated

As we investigate policies changing over time, we also
update the number of people in each compartment when the
decision maker increases 𝜌 from some value 𝜌old to 𝜌new, with
corresponding false positive and false negative rates qFP

old, qFN
old

and qFP
new, qFN

new, respectively:

Q(r)
m ← Q(r)

m +
qFP

old − qFP
new

qFP
old

Q(c)
m ,

Q(c)
m ← Q(c)

m −
qFP

old − qFP
new

qFP
old

Q(c)
m ,

Q(r)
s ← Q(r)

s +
qFN

new − qFN
old

1 − qFN
old

Q(c)
s ,

Q(c)
s ← Q(c)

s −
qFN

new − qFN
old

1 − qFN
old

Q(c)
s . (UPD)

3 ESTIMATION OF PARAMETERS AND
OPERATIONALIZATION OF
SIMULATIONS

We simulate the progression of the combined epidemic and
risk model discussed in the previous section in two scenar-
ios: setting “day 0” on March 17, 2020, France’s first day of
national lockdown, or on May 11, 2020, the beginning of the
lockdown exit. Doing so requires estimating several param-
eters, listed in Tables 1 and 3. Some of these parameters are
inferred from the literature, while others are estimated from
data, as we discuss next.

3.1 Risk-model parameters

The class-conditional predictive distributions are modeled as
Beta distributions: fs ∼ Beta(as, bs) and fm ∼ Beta(am, bm). In
simulated scenarios, the no model refers to am = bm = as =

bs = 1. Otherwise, we fix bs = am = 2 and vary6 as = bm.
The low AUC model refers to as = bm = 3 (AUC ∼ 75%)

and the high AUC model refers to as = bm = 5 (AUC ∼

96%). These parameters are selected so as to bracket the
“low” (AUC ∼ 82%) and “high” (AUC ∼ 93%) models from
Bertsimas (2020). For sensitivity analyses, we explore the
range from as = bm = 2.5 (AUC ∼ 65%) to as = bm = 6.5
(AUC ∼ 99%), further bracketing the range of models that
could possibly be available in practice for a disease like
COVID-19.

3.2 Epidemic model parameters

We estimate the joint distribution of the model parame-
ters by comparing the predictions from our model (at the
given parameter values) to the actual data for ICU occupancy
obtained from the official portal of the French government:
https://dashboard.covid19.data.gouv.fr.

Two general approaches exist for doing so. With the “stan-
dard” statistical approach, one splits the data into training
and testing sets (sequentially, given the time series nature of
the data), learns the model parameters on the training data,
and evaluates the predictive accuracy on the testing data. The
error structure of the learned model, however, is likely highly
nontrivial as the errors are not independent over time. For
example, if one SIR-like curve is higher than another early
in a time horizon, it must get lower at a later time as fewer
susceptible individuals will remain. As a result, this approach
could be used to learn the best point estimates but not their
joint distribution.

A Bayesian approach can overcome this challenge but it
has a noteworthy complication: The likelihood function for
the resultant prediction errors is also unknown. To deal with
this issue, we utilized an approximate Bayesian computa-
tion (ABC) method (Marjoram et al., 2003), which has been
specifically designed for such situations. The ABC method
was implemented with the root mean standard error as a dis-
tance function (Britton, 2010), with a maximum error set at
1000 ICU beds, which corresponds to the so-called “accep-
tance rate” of the ABC analyses of about 10%.

Parameters for the initial conditions S0, E0, A0, I0, U0,
and R0 depend on the investigated scenario’s “day 0.” The
initial number of susceptible individuals, S0, is computed as

https://dashboard.covid19.data.gouv.fr
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S0 = N0 − (E0 + A0 + I0 + R0) − U0. N0 and U0 are known,
and an estimate that E0 + A0 + I0 + R0 ∼ 1.5.106 as of March
17 is available from Salje et al. (2020). How this total splits,
however, requires estimation.

To reduce the parameter space, we estimated the total num-
ber of exposed, asymptomatic, and infected people, that is,
E0 + A0 + I0, and inferred the number in each state by using
the fractions of the mean time spent in each category in
the majority population (i.e., people with mild symptoms).
More precisely, this corresponds to setting x := (1 + 𝜀(𝜎−1 +

𝛾−1
m ))−1 and then:

E0 ← x(E0 + A0 + I0), A0 ←
𝜀

𝜎
x(E0 + A0 + I0),

I0 ←
𝜀

𝛾m
x(E0 + A0 + I0). (14)

Estimating E0 + A0 + I0 is done jointly with the fraction of
individuals with mild symptoms if infected, p, and the reduc-
tion of contact rates during lockdown, c. Note that c is not a
free parameter in our model (hence it is not listed in Table 3)
because, given 𝛿is and 𝜌, we endogenize ci for the targeted
policies. Because the data to which we fit involve a nontar-
geted policy, we use a single c, corresponding to the single
𝛿r = 𝛿c = 𝛿 with c = 1 − (1 − 𝛿)2.

We used the uniform priors with ranges between 0.5 and
1.4 million for (E0 + A0 + I0) on March 17 and between 65%
and 75% for the contact rate during lockdown, c, bracketing
the estimates from Salje et al. (2020).

We then used the data made available by Salje et al. (2020)
to evaluate p. This parameter is not given in their work
directly but it can be computed as the product of two prob-
abilities: that of being hospitalized upon infection and that
of being admitted to the ICU upon hospitalization. Assum-
ing these are independent, the 95% confidence intervals given
in Salje et al. (2020) for these two variables translate into a
confidence interval to which p belongs with a probability of
at least 90%, as given in Table 3. This fits a prior Beta distri-
bution with parameters (2265, 15.6).

The number of samples from the prior distributions was set
at n = 10,000 (resp. 100,000 for robustness when comput-
ing means). This led to around 1000 (resp. 10,000) posterior
samples as the acceptance rate was at ∼10%. The mean pos-
terior values were found to be p ∼ 0.993 and E0 + A0 + I0 ∼

1200000 (for March 17). The mean posterior value for c was
found to be c ∼ 69.2%, which is consistent with Salje et al.
(2020). Reiterating prior discussion, the latter value is unused
in our numerical experiments (because we investigate scenar-
ios with differentiated isolation policies) but it is necessary
to estimate the joint posterior of p and E0 + A0 + I0 from the
data about the nondifferentiated policy.

Remark 2. Although the obtained mean value of p ∼ 0.993
may seem surprisingly high, leaving only ∼0.7% probabil-
ity of dying from a COVID-19 infection, we emphasize that
our work does not take into account deaths in nursing homes

because those individuals are always confined. Also, in Salje
et al. (2020), data show that about 15% of deaths occur dur-
ing the first day of hospitalization—in other words, those
patients are never admitted to the ICU and are not included
in an estimate for p. That said, we acknowledge that this
parameter is critical, hence we also performed sensitivity
analyses with p = 0.98 in Appendix B in the Supporting
Information.

Remark 3. By modeling uncertainty in p, we implicitly intro-
duced uncertainty in the risk model as the error rates qFN , qFP

solve Equation (11) where p is a parameter. We acknowl-
edge that other sources of uncertainty in risk models also
could exist.

3.3 Simulations with 95% confidence
intervals

In all figures showing the evolution of the number of people
in the ICU (see Figure 2), the initial condition E0 + A0 + I0
and the proportion of people p not requiring ICU admission
were sampled according to their posterior distribution. The
mean curve of Figure 2 was obtained by taking the average
of all the sampled curves, and the 95% confidence intervals
were derived by removing the 2.5% and 2.5% upper and lower
values for the computed number of ICU beds at each time.

3.4 Simulations with grid searches

As some numerical experiments (see Figures 3–5 and
Table 4) require grid searches, we did not sample according to
the posterior distribution for each scenario. Instead, we com-
puted mean values in order to ease the computational burden.
To account for uncertainty, we reduced the number of avail-
able ICU beds by the average width of the 95% confidence
interval from the corresponding simulations. We then opera-
tionalized the simulations as follows:

∙ For “day 0” of March 17, 2020: The initial number of uti-
lized ICU beds is known, U0 ∼ 700, and the estimate for
the total number E0 + A0 + I0 + R0 ∼ 1.5.106 is available
from Salje et al. (2020). Therefore, we took the average
over the posterior and obtained E0 + A0 + I0 ∼ 12,00,000,
resulting in R0 ∼ 3,00,000 people. Similarly, taking the
mean along posterior samples resulted in the estimate of
p ∼ 0.993. The ODE system was then integrated up until
200 days beyond March 17, 2020.

∙ For “day 0” of May 11, 2020: Sampling according to the
posterior for p and E0 + A0 + I0 and integrating the ODE
system from March 17 to May 11, we obtained a sample of
initial conditions for May 11, of which we took the aver-
ages to obtain estimates for all parameters. The ODE sys-
tem was then integrated up until 200 days past May 11,
2020.
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F I G U R E 2 Number of individuals requiring an ICU bed w.r.t. time t (days). Left column starts on March 17 (the day of the initial lockdown in France)
and right column starts on May 11 (the day when lockdown ended). Dotted line on the left column shows the actual data from March 17 to May 11. (a, b) use
a risk model with high AUC ∼ 95.99% and (c, d) use a risk model with low AUC ∼ 75.71%. The black dots in (a, c) correspond to the ICU beds used during
the actual lockdown in France between March 17 and May 11. [Color figure can be viewed at wileyonlinelibrary.com]

4 RESULTS

We present the results of our simulations in four steps. First,
we consider a partial exit problem with a single release. Sec-
ond, we explore the sensitivity of the single release problem.
Third, we consider the complete exit problem over multiple
release epochs. Finally, we discuss its sensitivity, including
the impact of “lockdown fatigue” (Goldstein et al., 2021).

4.1 Partial policies with a single release

Figure 2 displays the number of individuals requiring an
ICU bed w.r.t. time t. The March 17 scenario is in the left
column and the May 11 scenario is in the right. Two risk
models are considered: a “high” AUC ∼ 95.99% (top row)
and a low AUC ∼ 75.71% (bottom row), bracketing the per-
formance of initial risk models developed for COVID-19
(Bertsimas, 2020).

In each plot, 𝜌 represents the maximal percentage of the
population that can be released (i.e., subject to lighter restric-
tions), which is assumed to correspond to 𝛿r = 0.1 in such a
way that the 95% confidence interval of the number of indi-
viduals requiring an ICU bed when using the risk prediction
model (green and orange curves) remains below the num-
ber of available ICU beds, 7250. In these first simulations,
the rest of the population is confined with more restrictions,
𝛿c = 0.9. Finally, the red curves show the number of individ-
uals requiring an ICU bed w.r.t. time if the same 𝜌 of pop-
ulation is released, but selected at random without any risk
prediction model.

4.1.1 Initial lockdown

Figure 2a shows that on March 17, 2020, a high-AUC model
(green curve) allows for 𝜌 = 62%. That is, only 38% of the
population should be ever confined. In France, which has a
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F I G U R E 3 Difference in maximal percentage of released people without exceeding ICU capacity (7250), compared to the case of not using a risk
prediction model, plotted as a function of the AUC of a risk prediction model and the protection level 𝛿c for confined people. p ∼ 0.993 for all figures.
Appendix B in the Supporting Information presents similar figures with p decreased to 0.98, and ICU capacity increased to 15,000 [Color figure can be
viewed at wileyonlinelibrary.com]

F I G U R E 4 Examples of gradual relaxation of isolation restrictions. High AUC model (green) and no model (red) with 𝜌 = [0.65, 0.7, 0.9, 1],
t = [60, 90, 180, 600], and no model (blue) with 𝜌 = [0.5, 0.55, 0.6, 1], t = [30, 120, 510, 600]. Vectors t = [t1, t2, …] give the release schedules 𝜌 = [𝜌1, 𝜌2, …]
as follows: 𝜌1. 100% of the population is released on day 0, then (𝜌2 − 𝜌1). 100% are released on day t1, and so forth [Color figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 5 Examples of gradual relaxation of isolation restrictions with high AUC model and fatigue. Green curves: 𝜌 = [0.65, 0.8, 0.85, 1],
t = [90, 120, 180, 600] for the low fatigue (𝛿c(t) = [0.9, 0.85, 0.8, 0.8]) and 𝜌 = [0.65, 0.7, 0.85, 1], t = [90, 120, 210, 600] on the high fatigue
(𝛿c(t) = [0.9, 0.8, 0.7, 0.7]). Black curves: 𝜌 = [0.65, 0.7, 0.9, 1], t = [60, 90, 180, 600] as in Figure 4 [Color figure can be viewed at wileyonlinelibrary.com]

TA B L E 4 Minimal time (in months) required for all people to exit
isolation, starting from March 17 or May 11, depending on 𝛿c, model
quality, and the number of epochs of gradual deconfinement. 𝛿r = 0.1

High AUC
model

Low AUC
model

No
model

Four epochs, March 17

𝛿c = 0.9 6 >12 >12

𝛿c = 0.8 8 >12 >12

𝛿c = 0.7 10 >12 >12

Three epochs, March 17

𝛿c = 0.9 7 >12 >12

𝛿c = 0.8 11 >12 >12

𝛿c = 0.7 >12 >12 >12

Four epochs, May 11

𝛿c = 0.9 6 11 >12

𝛿c = 0.8 7 11 >12

𝛿c = 0.7 9 11 >12

Three epochs, May 11

𝛿c = 0.9 6 >12 >12

𝛿c = 0.8 8 >12 >12

𝛿c = 0.7 12 >12 >12

population of 67 million, this corresponds to 25 million peo-
ple. Critically, the remaining 42 million (62%) should never
have been confined at all. Figure 2c shows the same for the
low-AUC model (orange curve), which enables 𝜌 =53%, or
some ∼ 6 million more people in isolation. Perhaps more
importantly, without a model, for March 17, 𝜌 = 45%—a
17% and 8% difference, respectively, or 5 to 11 million peo-
ple. In other words, the initial lockdown could have been
managed much better if the government had the ability to first
train and then utilize a severity risk model at scale.

Figures 2a,c also show the actual ICU bed utilization in
France by black dots, leading one to wonder why our model
requires fewer ICU beds with a partial lockdown than in the
actually implemented complete lockdown. This is because
the complete lockdown was imperfect: All individuals were
able to go shopping, exercise outside, and so forth, regard-
less of risk status. From the ABC analyses described in
Section 3.2, the estimated reduction in contact rate during
the lockdown was ∼70%. With a differentiated policy in
our model (using the high-AUC model as an example), the
1 − 𝜌 = 38% of the population confined with 𝛿c = 0.9 expe-
riences the contact rate reduction of 1 − 0.1 × (0.9 × 0.62 +
0.1 × 0.38) = 94%, while the 62% released with 𝛿r = 0.1
experience the reduction of ∼46%. That is, the majority of
those who require an ICU bed are better confined and ICU
utilization increases more slowly, as depicted.

4.1.2 Lockdown exit

Figures 2b,d also present the ICU occupancy over time, but
for lockdown exit strategies as of May 11. Importantly, unlike
what France did on May 11, it is not optimal to release
the entire population. Even with a high-AUC model, some
30% should still remain in isolation (40% with the low-
AUC model), otherwise ICU capacity would be exceeded in
the second wave. Of course, our analyses assume that the
released population is subject to 𝛿r = 0.1 restrictions, while
the policy actually implemented in France was aiming for
a higher reduction in contact rates. That said, the French
government in November 2020 implemented a second lock-
down precisely to avoid overwhelming ICU admissions due
to the second COVID wave, exactly as we predicted would
happen if less than 30%–40% of the population remained in
isolation.

These results, however, are for a single release, and a nat-
ural question is what one should do with those 30%–40%,
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which we address in Section 4.3 after discussing the sensitiv-
ity analyses.

4.2 Sensitivity analyses of the single release
policy

Figure 3 displays the results for the March 17 and May
11 scenarios showing the difference between the maximal
percentage of people who may be released without exceed-
ing ICU capacity with a risk model, relative to the same
percentage, but without a risk model. Sensitivity is tested
with respect to the discrimination performance of the risk
prediction models (AUC) and the degree of isolation of
the confined population (𝛿c). We also alter the degree of
isolation for the released population (𝛿r) across different
plots.

As expected, the higher the discrimination of the predic-
tion model, the bigger the difference. However, the degree
of isolation has a different impact depending on who is con-
sidered: For the confined population, the stricter the isolation
(the higher 𝛿c is), the larger the impact of the risk predic-
tion model. But for the released population (𝛿r = 0.1 or 0.2
in Figure 3), the results are more intricate. It is often better
to isolate individuals more strictly, except when the risk pre-
diction model is of very high quality and the confined people
are in very strict isolation. In those situations, the optimal 𝜌

is large enough to achieve “herd immunity” (1 −
1

0
≈ 65%),

which can be achieved faster if the released population is less
protected. The main implication of these analyses is that it is
important to both assume in models and encourage in practice
stricter isolation practices for the high-risk population—for
example, by focusing distribution of PPE and other resources,
strictly isolating nursing homes, and so forth. This not only
better protects the high-risk group but also allows for a faster
and more efficient exit from the pandemic for the rest.

4.3 Complete exit with multiple release
epochs, a.k.a. gradual deconfinement

Next, we explore gradual exit strategies, where we opti-
mize both over time and proportion of release with a given
fixed number of policy updates N while not exceeding
a given ICU constraint M > 0. In other words, we set a
time-optimal control problem, where the variables are the
times t1 ≤ … ≤ tN−1 ≤ tN and proportions of people released
𝜌1 ≤ … ≤ 𝜌N with 𝜌N = 1, and we aim at minimizing tN ,
that is, the moment at which all individuals are released
and lockdown is over. The resulting time-optimal control
problem is:

min
0=t1≤…≤tN−1≤tN
𝜌1≤…≤𝜌N−1≤𝜌N=1

tN

subject to (ODE) and (UPD),

U(t) ≤ M ∀t ∈ [0, tN + 200],

(OCP)

where U(t) is given by (8) and (ODE) and (UPD) are
the systems of equations governing the evolution of the
ODE system between the releases and the updating, per
Section 2.

To consider practical and realistic scenarios, we solved the
resultant optimization dynamic program, allowing releases
every 30 days at multiples of 5% of the population, while
ensuring the maximum number of utilized ICU beds did
not exceed M = 5250. We found that implementing the full-
blown confidence interval analyses, as in Figure 2, was com-
putationally intractable in the dynamic program setting. How-
ever, by observing that the maximum confidence range in
Figure 2 was ∼2000 beds, we reduced ICU capacity from
the “base-case” of 7250 to M = 5250 to account for uncer-
tainty in ICU demand. For a more realistic initialization, we
first solved for the single-release 𝜌max, as per Section 4.1 and
Figure 2, then fixed 𝜌1 = 𝜌max. Similarly, for a realistic termi-
nation, we ran the ODE model for 200 days after tN to ensure
the ICU constraint is not broken after the entire population
is released.

Table 4 shows the minimal number of months, that is, the
optimal solution to problem OCP, to release the entire pop-
ulation for different scenarios (no model, low-AUC model,
high-AUC model), while keeping all other parameters con-
stant for three different values of 𝛿c. We considered only
gradual releases in three or four epochs; the ICU system was
overwhelmed when using only two epochs for most simula-
tions. The main insight is that using a no-risk model would
require more than a year in all scenarios, while an exit with
risk-based models would lead to relaxing restrictions for the
entire population in as quickly as 6 months.

Figure 4 shows similar optimal policies for May 11 cor-
responding to the four epochs from Table 4, and assuming
𝛿c = 0.9 as in Figure 2. The insights complement those for
single release policies: With risk-prediction models, a smaller
percentage of the population may need to be confined. Con-
sequently, one also could reach the moment when isolation
measures could be lifted sooner.

For example, using the high-AUC model and without
exceeding ICU capacity at any point, 65% of the lowest
risk population could be released on May 11 (“day 0”), fol-
lowed by another 5% on July 10 (“day 60”), another 20% on
August 9 (“day 90”), and the final 10% on November 7 (“day
180”). Resultant ICU demand is shown as a green line in
Figure 4a.

Implementing the same exit schedule without a risk model
would lead to ICU demand of nearly 20,000 beds (red line).
In contrast, a capacity-abiding exit strategy without a model
(blue line) would require 17 months to reach full deconfine-
ment. Only 50% of the population could be in low isolation
on “day 0” (May 11), another 5% on “day 30” (June 10),
additional 5% on “day 120” (September 8), and the last 40%
only on “day 510” (October 3, 2021), or 11 months later
than the similar risk-model–based strategy. Such an extended
isolation also would apply to many more people: 10% with
the model versus 40% without. For France, this means an
additional ∼ 20 million people in isolation for the additional
11 months.
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For both scenarios, Figure 4b shows the percentage of
the population that becomes immune over time. Because the
model-based policy releases a larger portion of the low-risk
population and does so faster, herd immunity is approached,
allowing for the ultimate protection against the disease. In
contrast, herd immunity is not achieved by a policy with-
out the risk model: The disease is suppressed but could
explode again.

4.4 Sensitivity of multiple release policy to
lockdown fatigue

The optimal exit policies reported above consist of several
exit epochs at which a portion of population is released
from isolation, while the rest remain confined. Goldstein
et al. (2021) argue that such prolonged restrictions rep-
resent a psychosociological burden on isolated individu-
als and could result in “isolation fatigue,” thus diminish-
ing the degree of compliance. Our model can capture this
by letting 𝛿c depend on time, that is, by defining 𝛿c(t) =
[𝛿c(t1), 𝛿c(t2), 𝛿c(t3), 𝛿c(t4)].

We explore two fatigue scenarios: ’“Low,” where the
confined individuals increase their contact rates twofold by
the final release epoch, and “’high,” where the increase
is threefold. For simplicity, we assume 𝛿c(t) changes lin-
early over time. That is, the two scenarios correspond
to 𝛿c(t) = [0.9, 0.85, 0.8, 0.8] and 𝛿c(t) = [0.9, 0.8, 0.7, 0.7],
respectively.

Figure 5 illustrates two ways in which fatigue impacts
our results. First, the black lines show the simulated ICU
demand from applying the optimal policy without fatigue
(per previous subsection) in a situation where fatigue is
present. Clearly, ignoring fatigue could result in substan-
tially exceeding ICU capacity. A policy that ignores fatigue
is overly aggressive in relaxing the isolation restrictions as
it anticipates the remaining population to be strictly con-
fined. When that is not the case due to fatigue, the policy
should be less aggressive early on, which will slow down the
build-up of population immunity, also delaying subsequent
release epochs.

Second, the green line shows ICU demand under the opti-
mal policy that takes into account fatigue (and, critically,
anticipated fatigue). Contrasting the waves in the two policies
illustrates the differences between the optimal policies. For
the benchmark, recall that a policy without fatigue releases
65% of population immediately, then releases another 5%
on day 60, another 20% on day 90, and the remaining 10%
on day 180, that is, completes the exit in 6 months. The
optimal policy in the low-fatigue scenario also releases 65%
immediately and completes the exit in 6 months but keeps
an additional 10% of people—twice as many—in isolation
after day 90, and 15% for days 120–180. The optimal pol-
icy in the high-fatigue scenario exacerbates the differences
further, keeping an additional 20% of people—three times as
many—in isolation beyond day 90, with release completed
on day 210 as opposed to 180, and with 15% in isolation for
days 120–210.

The driver of the differences is the same in both scenar-
ios. The optimal policy aims at building enough population
immunity so that when the highest risk individuals, many
of whom would require ICU treatment upon infection, are
released, the infection spreads slowly, allowing the last wave
to stretch over an extended period of time, for example, see
Figure 4a. Noncompliance due to fatigue restricts the abil-
ity to do so, shifting the release further in time, reducing the
fraction of release individuals at each epoch, and enlarging
the gaps between subsequent epochs.

Generally, the effect of noncompliance with isolation
restrictions (due to fatigue or other reasons) is similar
to that of lowering the quality of the risk model. Both
restrict the ability to target individuals differently given their
respective risk factors, thus emphasizing the two main mes-
sages of our paper: Successful targeted interventions require
(i) identifying high-risk individuals and (ii) treating them
differently.

5 CONCLUSIONS

Data-driven prediction models, which made large impacts
in many areas over the past decades, can help personalized
policies for managing epidemic outbreaks. We detailed how
prediction models for symptom severity upon infection could
be used in epidemic simulations to study the effect of non-
pharmaceutical policies, particularly isolation restrictions,
during an outbreak. Our core goal is to explore the tension
between the prediction model quality and epidemic contain-
ment performance. We used COVID-19 data from France as
of spring 2020 as an example and provided sensitivity analy-
ses to understand how different parameters could impact pan-
demic isolation and exit policies.

Simulations indicated that considering differential relax-
ation of isolation restrictions depending on predicted severity
risk can decrease the immediate percentage of the population
in France under stricter isolation by ∼5% − 20% relative to
not using such risk predictions. Doing so also would speed
up a complete exit by several months, directly impacting the
lives of millions of people.

We made our simulation engine available to a broad, non-
technical audience via an interactive demo that is avail-
able at https://ipolcore.ipol.im/demo/clientApp/demo.html?
id=305 and is illustrated in Figure 6. The demo is prepop-
ulated with the model parameters for France that we used in
this paper, but one can input parameters for other countries
or regions and experiment with the envisioned policies. We
presented our paper to the pandemic management task forces
of multiple G7 countries and successfully used this tool to
facilitate the dissemination of our results and raise awareness
of the promise of personalized data-driven policies for pan-
demic management.

Sensitivity analyses showed that the qualitative insights
from our simulations are robust to changes in risk pre-
diction accuracy, percentage of severe-if-infected cases in
the population, availability of resources (e.g., ICUs), and
social distancing. Benefits increased when risk prediction

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=305
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=305


14 EVGENIOU ET AL.Production and Operations Management

F I G U R E 6 Screenshots of the demo simulator: https://ipolcore.ipol.im/demo/clientApp/demo.html?id=305 [Color figure can be viewed at
wileyonlinelibrary.com]

accuracy increased, percentage of severe-if-infected cases
in the population decreased, availability of resources (e.g.,
ICUs) increased, and the isolation of high-risk individual
increased.

5.1 Limitations and opportunities for
future research

Our study is not without limitations, many of which provide
opportunities for future research.

First and foremost, all results in this paper use hypothet-
ical risk prediction models based on discrimination ranges
in line with early indications from the literature, for exam-
ple, Bertsimas (2020). To operationalize personalized iso-
lation and exit policies based on risk predictions, govern-
ments need to develop policies and invest in infrastructure
to enable building and using such models at scale. Criti-
cally, this involves both training models on early cases’ data
pooled from the epicenter of the pandemic and using mod-
els to score entire populations. Currently, the latter presents a
bigger problem because even countries with well-organized,
single-payer healthcare systems mostly capture data about
“sick” individuals (i.e., those who use the healthcare systems)
and often lack accurate and recent data for the healthy pop-
ulation. As we discuss in the companion article, Evgeniou
et al. (2020), addressing this challenge, involves policy mat-
ters such as standardization, privacy, and localization, as well
as technical matters such as transfer and federated learning.
All of the above offer opportunities for future research.

Second, epidemic models and their resultant conclusions
rely on a number of parameters (e.g., virus incubation and
recovery times, basic reproduction number 0,) that are
uncertain and evolve dynamically, particularly as new virus

variants emerge (Alban et al., 2020). The resultant policies
are therefore contingent: Observing an ICU demand that is
closer to an upper boundary of the confidence interval may
require the next wave to be delayed or involve a smaller
release percentage than our current simulations, built from
day 0, suggest. Building models that specifically account for
a potential shift in these parameters is an interesting future
research direction.

Third, practical policy decisions for a given pandemic
require careful context-specific robustness analysis of, for
example, the benefit of combining isolation restrictions with
other policies such as test-based ones, for example, Wang
et al. (2020) and Petherick (2020), or vaccination-based ones,
for example, Sonabend et al. (2021). Designing such com-
bined policies is another fruitful research direction.

Finally, risk-predictions–based policies using epidemic
simulations should be developed taking into account behav-
ioral aspects that may help or hurt model predictions and
policy actions: ethical issues, fear, widespread noncompli-
ance to isolation measures, and the like. Behavioral oper-
ation studies could inform model building and guide lock-
down policy implementation in isolation or in conjunc-
tion with other mechanisms. For example, governments in
many countries have encouraged vaccination by implement-
ing a de facto differential isolation policy for nonvaccinated
individuals.

In conclusion, our simulations show that combining pre-
diction models using data science and machine learning prin-
ciples with epidemiological models may improve outbreak
management policies. Governments, therefore, should make
appropriate investments in the data infrastructure necessary
to implement such models at scale and consider their predic-
tions when developing pandemic isolation (confinement) and
exit (deconfinement) policies.

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=305
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E N D N O T E S
1 The individual prediction is not critical for our analyses; an alternative pre-

diction target could, for example, be the risk that someone in a household
develops severe symptoms. See Appendix A in the Supporting Information.

2 Given that the dependency of the COVID-19 clinical outcomes on age
attracted enormous media attention, we note that policies based only on age
may be unnecessarily simplistic. For example,∼ 10% (source: statista.com)
of the French population is older than 75, yet only ∼ 1% of the entire pop-
ulation will require an ICU bed if infected. It is thus not practical to imple-
ment differential isolation and exit policies based just on age. Instead one
may need to only consider models that capture more nuanced and accurate
patterns using multiple features, not just age.

3 Such long and massive lockdowns in the absence of a reasonable risk model
are consistent with the literature. For example, Acemoglu et al. (2021)
propose isolating all seniors for 18 months, and even that hinges on the
assumption that a vaccine will be developed by then. Our analyses do not
rely on the availability of vaccines.

4 Disclaimer: We do not advocate for herd immunity but building herd immu-
nity may be optimal when high-risk individuals are well-protected and the
risk model is of a sufficient quality to identify such individuals with a high-
enough accuracy. Otherwise, a herd immunity strategy that does not over-
whelm the medical system is impossible.

5 By definition, only severe cases go to the ICU but they can come from two
categories: those classified by the model as high risk (true positives) and
those classified as low risk (false negatives).

6 The symmetric ROC models we considered are not the only possible
approach. While working on this paper, we explored multiple nonsym-
metric settings and observed no qualitative impact on the simulation
results.
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