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Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking
ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons
with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks
at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor
function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are
impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude
that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe
recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research
studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the
physiological mechanisms that make it work and for whom?The aforementioned will enable the scientific and clinical community
to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI.

1. Introduction

There are more than 250,000 persons living with spinal cord
injury (SCI) in the United States and several million world-
wide. Injuries of the spinal cord occur mostly in young adults
who then require life-long healthcare.The impaired function
of spinal circuitry, the impaired processing of afferent input
by the spinal circuits, and the decline in transmission of
uninjured fibers are clear markers of the central nervous
system’s (CNS) pathophysiological state after SCI [1–5].

The understanding of spinal control of locomotion has
improved significantly since the times of Thomas Graham
Brown and Sir Charles Sherrington [6–8]. Complex models
are currently developed to address the function of the
spinal networks that give genesis to single limb and bilateral

right-left neuronal interactions [9, 10], as well as their reor-
ganization abilities following locomotor training in animal
preparations [11]. Based on the observations on the spinal
neural control of locomotion and recovery of locomotion
in spinalized animals, body weight support (BWS) on a
treadmill with as-needed manual assistance by therapists [12,
13] and BWS on a treadmill with robot-driven leg assistance
[14] are utilized to improve locomotor ability of these patients.
In this review, we will provide an in-depth discussion about
the manner in which spinal neuronal circuits are impaired
after SCI, how they reorganize after locomotor training,
the possible neurophysiologicalmechanisms underlying such
reorganization, and the functional consequences of locomo-
tor-training-mediated neuronal plasticity.
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2 Neural Plasticity

2. Neuromodulation as a Window of
CNS Function

Representative examples of neuronal activity modulation,
recorded through surface electromyography (EMG) upon
peripheral skin/nerve or transcortical stimulation, while
walking in humans are found in three examples: the Hoff-
mann (H) reflex, motor evoked potentials (MEPs), and the
polysynaptic flexor reflex. First, the H-reflex, which presents
the spinal part of the stretch reflex bypassing themuscle spin-
dle and the fusimotor activity that may influence the sensitiv-
ity of the Ia afferents, is a powerful tool to probe the efficacy of
Ia afferents to monosynaptically depolarize alpha motoneu-
rons, the excitability state of spinal interneuronal circuits/
pathways, and spinal integration of sensory afferent feedback
[15]. Second, MEPs, which are the result of spinal motoneu-
ron activation following single-pulse transcranial magnetic
stimulation (TMS), can be used to assess corticospinal tract
excitability while walking in humans [16]. Third, stimulation
of the skin at varying multiples of perceptual threshold of the
foot or a pure sensory nerve (sural) can evoke short-latency,
middle latency, or even long-latency responses in flexors and
extensors that have specific regulatory effects on locomotion
[17].

In healthy humans, while stepping on a motorized tread-
mill, the soleus H-reflex amplitude increases progressively
from midstance to late stance, decreases significantly at
stance-to-swing transition, and remains depressed during the
swing phase of gait (Figure 1(a)) regardless of the BWS level
[18]. A gradually increasing H-reflex amplitude towards the
end of the swing phase in healthy humans has also been
reported (see [19, Figure 31]). A similar modulation pattern is
also exhibited by the soleus MEP while walking. It increases
progressively from early stance to midstance, reaching maxi-
mal amplitude at late stance, and is completely abolished dur-
ing the swing phase with a gradually increasing MEP excita-
bility at swing-to-stance transition (Figure 1(a)) regardless
of the BWS level [16, 20]. Further, the short-latency tibialis
anterior (TA) flexor reflex, evoked following innocuous
stimulation of the skin over the medial arch of the foot,
increases at heel contact, progressively decreases during the
stance phase, and then increases throughout the swing phase
in healthy humans while stepping on a motorized treadmill
(Figures 1(c) and 1(d)), a pattern similar to that observed for
the TA MEP (Figures 1(c) and 1(d)) [16, 21].

2.1. Spinal Reflexes and MEP Modulation. The amplitude
modulation of soleus H-reflex, soleus MEP, and short-
latency TA flexor reflex occurs largely in parallel with that
of homonymous EMG activity [16, 21]. Because the soleus
H-reflex remains depressed during the swing phase upon
voluntary activation of the triceps surae, it is modulated in
a similar manner to that observed while walking in absence
of weight-bearing upon unilateral rhythmic leg movements,
and the soleus MEP facilitation at swing-to-stance transition
coincides with quiescent homonymous EMG [16, 22, 23],
modulation of the soleus H-reflex and soleus MEP while
walking cannot not be regarded simply as a sole reflection of
background excitability changes of the motoneuron pool.

The soleus H-reflex amplitude modulation while walking
can be partially ascribed to (1) presynaptic regulation of
synaptic transmission fromgroup Ia afferents tomotoneurons
and interneurons, (2) presynaptic regulation of GABAergic
inhibition acting on dorsal root afferents, (3) phasic depo-
larization of group I afferents, and (4) tonic decrease in the
excitability of the afferent fibers (animal data: [24–27]; human
data: [28, 29]). Further, Ib facilitation [30, 31] and recipro-
cal Ia inhibition from flexor nerve afferents onto extensor
motoneurons [32] also constitute spinal segmental mecha-
nisms that contribute to the soleusH-reflex amplitudemodu-
lation at the stance and swing phases, respectively. Presynap-
tic inhibition of Ia afferent terminals andRenshaw cells acting
on Ia inhibitory interneurons have also been documented
[33]. The phase-dependent modulation of soleus and TA
MEPsmay be attributed to excitability changes of corticomo-
toneuronal cells [34], corticospinal volleys activating mutual
reciprocal inhibitory interneurons [16, 35, 36], and cortically
mediated ongoing changes in presynaptic inhibition of Ia
afferents [37]. Excitatory and inhibitory interneurons in the
motor cortex may contribute to MEP excitability changes
while walking [38, 39]. The phase-dependent modulation
pattern of the short-latency TA flexor reflexes can be partly
attributed to amplitude modulation of presynaptic inhibition
of cutaneous afferent volleys [25, 40].

For a phase-dependent modulation of soleus H-reflex,
soleus/TA MEPs, and short-latency TA flexor reflexes to
occur, locomotor neuronal networks need to be appropriately
engaged at each phase of a step cycle, and thus these networks
can depict both the physiological function and the underly-
ing neuronal reorganization of spinal locomotor circuits in
spinal-injured humans after repetitive step training.

3. Plasticity of Neuronal Activity after
Locomotor Training

Following induction of SCI, animal studies have shown that
locomotor training improves locomotor capacity beyond
spontaneous recovery, full weight-bearing ability is pro-
longed, and improved locomotion persists up to 6 weeks after
training stops [41, 42]. Similarly, in humans with SCI, loco-
motor training improves limb coordination, limb kinematics,
step symmetry, walking speed, endurance, and balance [43–
49], reduces systolic blood pressure and heart rate [50],
improves respiratory function [51], and reduces inflammatory
status [52]. Improvements in standing, walking, and respira-
tory capacity are likely due to plasticity of spinal interneu-
ronal circuits. Below, we discuss evidence surrounding plas-
ticity of neuronal activity after locomotor training in people
with SCI.

3.1. Monosynaptic-Polysynaptic Motoneuron Responses While
Walking. In people with SCI, the soleus H-reflex modulation
pattern while walking varies considerably between patients,
from being relatively normal in some to being completely
absent in others [2, 53, 54]. The most common abnormal
patterns we have observed in people with SCI, regardless of
the American Spinal Injury Association Impairment Scale
(AIS), are lack of reflex depression during the swing phase
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Figure 1: Modulation of neuronal activity while walking in uninjured humans. (a, b) Soleus H-reflexes and soleus motor evoked potentials
(MEPs) amplitude at each bin of the step cycle while stepping on a motorized treadmill for single subjects (a) and for a group of healthy
subjects (b). (c, d) Short-latency tibialis anterior (TA) flexor reflexes and TA MEPs amplitude at each bin of the step cycle while stepping
on a motorized treadmill for single subjects (c) and for a group of healthy subjects (d). For the grouped data, for each bin of the step cycle,
the soleus H-reflex was normalized to the maximal M-wave evoked 60–80ms after the test H-reflex, and the short-latency TA flexor reflexes
and soleus/TA MEPs were normalized to the maximum homonymous locomotor EMG having subtracted the control EMG (EMG without
stimulation) at identical time windows and bins. Each step was divided into 16 equal bins based on the signal from the right foot switch. Bin 1
corresponds to heel contact. Bins 8, 9, and 16 correspond approximately to stance-to-swing transition, swing initiation, and swing-to-stance
transition, respectively. Vertical dotted lines designate the stance-to-swing transition phase. Data adopted and modified from [2, 16, 21, 22].

and a disruption of sustained reflex excitability during the
stance phase [54]. Similarly, the most common change we
have observed after locomotor training regardless of the
AIS is reestablishment of reflex depression during the swing
phase that promotes reciprocal activation of ankle flexors

and extensors [54]. Also importantly is our observation that
reflex depression at mid-late swing was restored in two cases
of motor complete SCI (AIS A-B) (see [54, Figure 2A]).
We also observed that this neuronal reorganization was not
distributed equally in the more impaired leg compared with
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the less impaired leg, as the soleus H-reflex during the stance
phase wasmoderately decreased across all patients after loco-
motor training in the more impaired (right) leg compared to
the less impaired (left) leg (compare Figures 2 and 3 in [54]).

An additional neuronal characteristic of SCI is the domi-
nance of late long-lasting flexor reflexes over the short-latency
flexor reflexes [1, 55–57]. While the late long-lasting flexor
reflexes in human SCI have a similar interneuronal reorga-
nization to that reported in acute spinal cats treated with L-
DOPA (reviewed in [58]) and are due largely to the absent
mutual inhibitory actions from early onto late flexor reflex
interneuronal networks, their relative behavior signifies the
altered interneuronal reorganization after injury. We recently
reported that locomotor training in people with chronic SCI
results in reappearance of short-latency TA flexor reflexes
(see [28, Figure 3]), reduces the amplitude of long-latency TA
flexor reflexes in the more impaired right leg (see [21, Figure
2]), increases the amplitude of long-latency TA flexor reflexes
in the less impaired left leg (see [21, Figure 2]), and promotes a
phase-dependentmodulation of both short-latency and long-
latency TA flexor reflexes during assisted stepping [21].

3.2. Spinal Inhibition. Impaired function of many different
spinal inhibitory pathways has been implicated as one of the
main causes of pathological movement and muscle tone after
SCI, related to reducedGABAergic and glycinergic inhibitory
neurotransmission/reception [59]. Physiological measures of
neuronal activity, discussed below, strongly support that the
main underlying neurophysiological mechanism of locomo-
tor training is the return of the lost spinal inhibition in people
with chronic SCI.

3.2.1. Homosynaptic Depression. Homosynaptic (or low-
frequency) depression is a form of presynaptic inhibition
(Figure 2(a)) attributed mostly to a decrease in the amount
of released neurotransmitters by the previously activated Ia
afferents [60–62], depletion of releasable vesicles, failure of
action potential conduction at axonal branches [63], decrease
of presynaptic quantal size [64], and adaptation of exocytosis
machinery [65]. Impaired function or completely absent
homosynaptic depression in people with chronic SCI has
been linked to stretch reflex hyperexcitability, clonus, and
cocontractions due to altered or abnormal synaptic efficacy
of afferent impulses [66–68].

Limited evidence exists on the reorganization of homosy-
naptic depression in animals and humans. Homosynaptic
depression was potentiated after passive exercise of com-
plete spinal transected rats [69], after 10 locomotor training
sessions in one SCI person capable of ambulation [70] and
after cycling in one person with spastic tetraplegia [71]. We
recently reported that repetitive locomotor training restores
soleus H-reflex homosynaptic depression, but we found sig-
nificant differences among patient groups [72]. In summary,
we found that soleus H-reflex homosynaptic depression was
restored in two people withmotor complete SCI in both right
and left legs, and it became stronger after training in the
more impaired right leg compared to the less impaired left leg
regardless of the AIS (see [72, Figure 4]). Last, we found that,
in cases where some homosynaptic depression was present

before training, locomotor training further potentiated the
soleus H-reflex homosynaptic depression (see [72, Figure
4]). In Figure 2(b), representative examples of this neuronal
organization are indicated from one person with AIS B who
received 53 locomotor training sessions. These recordings
clearly indicate that the soleus H-reflex amplitude exhibited
a strong stimulation frequency-dependent depression after
locomotor training even in cases when descending control is
greatly impaired or absent [72].

3.2.2. Presynaptic Inhibition. The synaptic efficacy of afferent
volleys before they reach their target neurons can be adjusted
by presynaptic inhibition (Figure 3(a)). Methods have been
developed to probe presynaptic inhibition exerted only at Ia
afferent terminals [71]. This is because only Ia afferents have
monosynaptic projections to motoneurons and separation
from motor fibers based on stimulation intensities and
respective thresholds is possible. Presynaptic inhibition was
originally described in the cat by Frank and Fuortes [73],
is associated with primary afferent depolarization (PAD), is
mediated by axoaxonic synapses [74], and involves modula-
tion of transmitter release at the Ia-motoneuron synapse by
means of GABAA receptors, which consequently increase the
efflux of Cl− ions and produce depolarization of the afferent
terminals [75].

Presynaptic inhibition is modulated in a phase-depend-
ent manner during fictive and real locomotion in animals,
including humans [25, 28, 76, 77], and accounts to a great
extent for the differential soleus and quadriceps H-reflex
amplitude modulation while walking in uninjured humans
[29, 78]. Functionally, increased presynaptic inhibition of the
soleus Ia excitatory feedbackmay be needed to prevent exces-
sive activation of ankle extensor motoneurons at mid-to-late
stance phases (causing a stiff gait), while decreased presynap-
tic inhibition of the quadriceps Ia excitatory feedback at early
stance prepares the knee joint to accept loading. The soleus
H-reflex facilitation following femoral nerve stimulation
at group I threshold is exerted from quadriceps afferents
onto soleusmotoneurons viamonosynaptic connections, and
increases or decreases of this facilitation have been ascribed
to changes in the ongoing presynaptic inhibition [79]. The
excitatory influence of Ia afferents onto synergistic muscles,
as is the case with quadriceps afferents acting onto soleus
motoneurons, is also known as heteronymous Ia facilitation.
In people with traumatic SCI, the increased heteronymous
Ia facilitation supports decreased presynaptic inhibition [80].
The complete disappearance of presynaptic inhibition of Ia
afferent terminals of the flexor carpi radialis H-reflex, elicited
by electrical stimuli applied to the nerve supplying antagonis-
ticmuscles at long conditioning-test intervals, in two patients
with tetraplegia due to a spinal cord lesion at C5-C6 [81],
supports further abnormal premotoneuronal control after
SCI. It has also been shown that the level of presynaptic
inhibition declines over time after SCI [66]. The decrease of
presynaptic inhibition after SCI is likely related to impaired
function of the descending pathways that ensure suppression
of inhibitory interneurons transmitting cutaneous inhibition
of first-order PAD interneurons [82].
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Figure 2: Functional reorganization of homosynaptic depression after locomotor training in SCI. (a) Schematic diagramof the soleusH-reflex
homosynaptic depression exerted at Ia-motoneuron synapse with repetitive activation of Ia afferents. (b). Nonrectified waveform averages
of soleus H-reflexes recorded at different stimulation frequencies from one AIS B patient before and after locomotor training for both legs.
The soleus H-reflex amplitude exhibited a strong stimulation frequency-dependent depression after locomotor training. Data adopted and
modified from [72].

We recently reported that presynaptic inhibition of soleus
Ia afferents, assessed as the amplitude of the conditioned
soleus H-reflex by excitation of antagonistic group I afferents
at long conditioning-test intervals in the seated position
[15], was reorganized in motor incomplete SCI (AIS C-D)
but not in motor complete SCI (AIS A-B) after locomotor
training (Figure 3(b)) [72]. We also found that, during
assisted stepping, the modulation of presynaptic inhibition
occurred at different phases of the step cycle before training
when compared to that observed after training [72], and
this change was comparable to the modulation pattern we
have reported for uninjured human subjects during assisted
stepping [77]. Reorganization of presynaptic inhibition can
partly account for the return of the physiological soleus H-
reflex amplitude modulation while walking after locomotor
training found for the same patients [54].

3.2.3. Reciprocal Ia Inhibition. The neuronal pathway from
the large muscle spindle (Ia) afferents to antagonistic alpha
motoneurons is the most known and well-studied spinal
inhibitory pathway in the mammalian CNS (Figure 4(a)),
described originally by Lloyd [83–85], with vestibulo-,
cortico-, and rubropropriospinal tracts and cutaneous and
flexor reflex afferents to affect transmission in the Ia interneu-
rons and their subsequent synaptic inputs onto motoneurons
[86]. Ia afferent-mediated reciprocal inhibition is effective in

blocking antagonist motoneuron activation at birth in hemi-
sected spinal cord preparations and in humans when rhyth-
micmotor programs have not been developed, used, or stored
[87, 88]. A high specificity of neuronal connections from
quadriceps Ia afferents to posterior biceps-semitendinosus
motor neurons is reported at birth in mice [89].

The functional significance of reciprocal Ia inhibition is
apparent when one considers that this neuronal pathway
operates only between flexor and extensors and not between
abductors and adductors [91]. Thus, the role of reciprocal
Ia inhibition in the alternating activation of flexors and
extensors during locomotionmight be to eliminate excitatory
effects during the passive (swing) phase of the step cycle
and remove the enduring Ia excitation during the shifts
between flexion and extension phases [92]. Recordings from
Ia inhibitory interneurons during fictive locomotion in com-
plete spinally transected cats showed that hyperpolarization
of extensor alpha motoneurons during the swing phase is
directly related to their activity [93–95], largely determined
by intraspinal rhythmic processes [96].

SCI in humans is associated with pathologic changes of
reciprocal Ia inhibition, with alterations reported in strength,
timing, andmodulation at rest, during contraction, andwhile
walking [97–101]. Reciprocal facilitation is related to poor
motor recovery of legs, while stronger reciprocal inhibition is
linked to less spasticity (1 and 2 on the Ashworth score) [102].
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Figure 3: Functional reorganization of presynaptic inhibition of soleus Ia afferents after locomotor training in SCI. (a) Schematic diagram
of the neuronal pathway of presynaptic inhibition of soleus Ia afferents. In this paradigm, presynaptic inhibition of soleus Ia afferents is
induced by a conditioning afferent volley following common peroneal nerve stimulation at long conditioning-test (C-T) intervals. (b) Mean
amplitude of the conditioned soleus H-reflex as a percentage of the unconditioned H-reflex recorded at each C-T interval tested before and
after locomotor training from the right leg, grouped per AIS, in the seated position. ∗𝑝 < 0.05 indicate statistically significant differences of
the conditioned H-reflexes recorded before and after locomotor training. Data adopted and modified from [72].



Neural Plasticity 7

Ia
afferent

𝛼 MN

Motor
Sensory

Reciprocal
Ia

inhibition

Soleus

TA

(a)

2 3 4 2 3 4

2 3 4 2 3 4

Conditioning-test interval (ms) Conditioning-test interval (ms)

Conditioning-test interval (ms)Conditioning-test interval (ms)

Before locomotor training

After locomotor training

Before locomotor training

After locomotor training

Before locomotor training

After locomotor training

C
on

di
tio

ne
d 

so
le

us
 H

-r
efl

ex
 (%

 o
f

th
e t

es
t r

efl
ex

 si
ze

)

C
on

di
tio

ne
d 

so
le

us
 H

-r
efl

ex
 (%

 o
f

th
e t

es
t r

efl
ex

 si
ze

)

C
on

di
tio

ne
d 

so
le

us
 H

-r
efl

ex
 (%

 o
f

th
e t

es
t r

efl
ex

 si
ze

)

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

∗
∗ ∗

∗
∗ ∗ ∗

∗
AIS A (n = 1) AIS B (n = 1)

AIS C (n = 6)
AIS D (n = 7)

∗p < 0.05

∗p < 0.05 ∗p < 0.05

(b)

Figure 4: Functional reorganization of reciprocal Ia inhibition after locomotor training in SCI. (a) Schematic diagramof the neuronal pathway
of reciprocal Ia inhibition mediated by a conditioning afferent volley induced by stimulation of the ipsilateral common peroneal nerve at
short conditioning-test (C-T) intervals. (b) Mean amplitude of the conditioned soleus H-reflex as a percentage of the unconditioned H-reflex
recorded at each C-T interval tested before and after locomotor training from the right leg, grouped per AIS, in the seated position. ∗𝑝 < 0.05
indicate statistically significant differences of the conditioned H-reflexes recorded before and after locomotor training. Data adopted and
modified from [90].
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In a group of people with SCI, we studied to what extent
reciprocal Ia inhibition of soleus motoneurons, assessed as
the soleus H-reflex amplitude conditioned by excitation of
TA group I afferents at short conditioning-test intervals
while seated [15], is restored after locomotor training. We
found that reciprocal facilitation was replaced by reciprocal
inhibition regardless of the AIS level in the seated position
(Figure 4(b)) [90]. However, during assisted stepping the
changes were not uniform across AIS patients, because we
found that reciprocal Ia inhibition recovered at a greater level
in AIS C than in AIS D after locomotor training (see [90,
Figure 2]). Reciprocal inhibition was profoundly decreased
during the stance phase and increased during the swing
phase in AIS C after locomotor training, while, in AIS D,
reciprocal inhibition was mostly decreased (see [90, Figure
2]). The reduced amounts of reciprocal inhibition in AIS D
can explain the lack of full soleus H-reflex depression during
the swing phase we observed in these patients. It is possible
that more training sessions or more intense training (i.e.,
more steps/session) [103] may be required to increase the
amount of reciprocal inhibition in some patients with SCI.

3.2.4. Nonreciprocal Ib Inhibition. Theviews pertaining to the
functional role of Ib afferents (Figure 5(a)) have changed sub-
stantially from a simple autogenic protective reflex response
to the more complicated view that these afferents contin-
uously provide information about the amplitude of muscle
contraction. Ib interneurons that mediate such information
are widely distributed, reaching almost all motoneuron pools
of the ipsilateral limb [104]. Ib interneurons can participate
in alternative pathways allowing for excitation or inhibition
depending on the selected subpopulation of interneurons
[105] and receive extensive convergence from other afferents
and descending tracts [106]. It is well established that Ib
afferents participate in a reflex reversal during fictive locomo-
tion in decerebrate cats, known as locomotor-related group
I excitation, which utilizes a different circuit organization
compared to that observed at rest and is transmitted through
the extensor half centre [107, 108]. These Ib locomotor
excitatory interneurons are located in the intermediate zone
in mid to caudal parts of the lower lumbar spinal cord [30].
In summary, group I (mainly Ib) afferents of ankle extensors
shape the amplitude, duration, and timing of ipsilateral
extensor activity and depending on the timing that excitation
occurs they can increase the activity of extensormotoneurons
at the stance phase, initiate extension, and terminate or delay
flexor bursts in the ipsilateral hind limb [107, 109–112]. A
similar facilitatory locomotor group I pathway also exists in
humans [113], with Ib inhibition decreasingwhile loading and
reversing to excitation while walking [31].

In people with chronic spinal cord lesions, conflicting
evidence exists on this pathway, as nonreciprocal Ib inhibi-
tion is reported to be either physiologic or pathologic at rest
and during assisted stepping [114–116]. Indeed, we recently
reported the presence of short-latency soleusH-reflex depres-
sion following medialis gastrocnemius (MG) nerve stimula-
tion at short conditioning-test intervals (attributed mostly to
Ib inhibition) in two persons with AIS A and AIS B while
seated (Figure 5(b)) [90]. In addition, locomotor training

potentiated the preexisting Ib inhibition at rest in AIS A, AIS
B, and AIS C (Figure 5(b)), but during assisted stepping we
found that the reorganization was different for AIS C and
AIS D [90]. In general, changes in Ib inhibition were noted
mostly during the swing phase in AIS C patients, while in
AIS D patients Ib inhibition was increased at midstance [90].
While these findings are consistent with the reduced short-
latency group I inhibition of synergists at the stance phase of
walking in healthy humans and during fictive locomotion in
spinal animals [113, 117], locomotor training did not induce,
as expected, an extra facilitation of soleus motoneuron
responses by group Ib afferents during the stance phase.
Strengthening Ib polysynaptic excitation with locomotor
training during the stance phase of walkingmay requiremore
training sessions, more steps per session, more body loading,
greater allowance for manageable errors, and/or training at
different levels of environmental constraints [103, 118].

3.3. Alpha Motoneurons. Altered excitability of spinal neu-
rons is considered a key pathophysiological event after an
injury to the spinal cord. The monoamines serotonin and
norepinephrine, which are released from pathways originat-
ing in the brainstem, substantially modulate spinal motoneu-
ron excitability. Activation ofmonoamine receptors enhances
intrinsic low-voltage-activated persistent inward currents
(PICs) that produce plateau potentials and self-sustained
firing in both the somata and dendrites, also regulating
the gain of the motoneuron pool [119–123]. PICs amplify
both synaptic excitation and inhibition, are critical for the
dynamic transformation of synaptic inputs, and provide a
sustained excitatory drive that allows motoneurons to fire
repetitively following a brief synaptic excitation [124–126].
Inhibitory synaptic inputs can exert considerable control over
alpha motoneuron discharge by regulating intrinsic PICs
activation/deactivation [127].

Despite the lost or reduced brainstem-derived serotonin
with chronic SCI, PICs are enhanced due to compensatory
upregulation of constitutively active 5-HT

2

receptors [128].
PICs that drive self-sustained firing in motoneurons have
been related to the development of muscle spasms and
hyperreflexia to nonnoxious stimuli and clonus [129]. Addi-
tionally, the voltage threshold of slow motoneurons changes,
axonal conduction velocity, and rheobase current increases,
afterhyperpolarization duration decreases [130, 131], short
pulse current threshold increases [131], and resting threshold
and resting membrane potential decrease [131, 132]. Further,
spinal cord transection leads to changes in the rhythmic firing
patterns of motoneurons in response to injected currents
[132]. In people with SCI, alpha motoneuron PICs and asso-
ciated self-sustained firing facilitated the firing ofmotor units
during the prolonged muscle spasms that can continue for
many seconds, evenminutes, at very lowdischarge rates [133].

Evidence from animal studies suggests that intrinsic
properties of motoneurons recover after locomotor training.
Motoneurons of trained rats have lower hyperpolarized rest-
ing membrane potentials, decreased spike trigger threshold
levels (membrane potential at which an action potential is
triggered), increased amplitudes of after hyperpolarization
(reflecting a decrease in membrane excitability) [134–136],
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Figure 5: Functional reorganization of nonreciprocal Ib inhibition after locomotor training in SCI. (a) Schematic diagram of the neuronal
pathway of nonreciprocal Ib inhibition mediated by a conditioning afferent volley induced by stimulation of the ipsilateral medialis
gastrocnemius nerve at short conditioning-test (C-T) intervals.The facilitatory locomotor Ib pathway is not indicated. (b) Mean amplitude of
the conditioned soleus H-reflex as a percentage of the unconditionedH-reflex recorded at each C-T interval tested before and after locomotor
training from the right leg, grouped per AIS, in the seated position. ∗𝑝 < 0.05 indicate statistically significant differences of the conditioned
H-reflexes recorded before and after locomotor training. Data adopted and modified from [90].
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stabilized dendritic tree structure of motoneurons [137],
altered synaptic inputs from the spinal white matter [138],
and a soma size and Na+, K+, and ATPase activity similar to
uninjured animals [139]. The duration of training is critical
in changing the intrinsic properties of motor neurons, as 3
weeks of training does not restore their electrical properties
[140].

Direct changes in the electrical and biophysical properties
of motor neurons in SCI patients following locomotor train-
ing are difficult to document given the methodological limi-
tations in human studies. However, the amplitude ofmonosy-
napticmotoneuron responses at different stimulation intensi-
ties along with excitation thresholds can help us draw conclu-
sions on these characteristics.The amplitude and stimulation
threshold intensities of the soleusmonosynapticmotoneuron
responses are not adjusted in untrained SCI patients in the
supine and standing positions compared to those observed in
uninjured subjects [18]. We found that these parameters were
remarkably modified in a body position-dependent manner
that depended largely on the leg motor impairment after
locomotor training [141]. The maximal H-reflex (Hmax) size
was decreased after training while seated and while standing
in AIS A and AIS B subjects [141]. The soleus H-reflex size,
from the onset of the recruitment curve until its maximum
amplitude, was decreased in the right leg in AIS D and in the
left leg in AIS C while seated and was increased while stand-
ing in both legs in AIS C but not in AIS A, AIS B, and AIS
D [141]. Further, the stimulus corresponding to H-threshold,
50% Hmax, and Hmax was increased in AIS D, in whom the
reflex excitability was decreased in the right leg while seated
after training [141, Table 1]. This means that, after locomotor
training,more stimulation intensity is required to activate the
most excitable Ia afferent fibers that subsequently depolarize
the lower threshold (most excitable) soleusmotoneurons.The
stimulus corresponding to H-reflex threshold expresses the
number of active motoneurons or the spinal excitability level,
which reflects the balance of excitatory and inhibitory inputs
acting on the motoneuron pool [142]. The decreased spinal
reflex excitability with the concomitant increased soleus H-
reflex threshold indicates that motoneuron excitability was
altered along with the excitability level of Ia afferents.

The increased soleus H-reflex excitability we observed in
AISC subjects while standing after training, compared to that
observed before training [141], may enhance ankle stability
and thus contribute to an improved leg function while stand-
ing. It is known that in uninjured humans, while standing,
Ib inhibition exerted from MG to soleus motoneurons is
decreased, presynaptic inhibition of soleus Ia afferents is
increased, and reciprocal inhibition is decreased when com-
pared to that observed while seated [31, 143, 144]. Thus, both
presynaptic inhibition and Ib facilitation after locomotor
training may reinforce H-reflex excitability while standing,
promoting weight-bearing in people with motor incomplete
SCI.The neuronal activity changes we have recently reported
after repetitive locomotor training in people with chronic
motor complete and incomplete SCI [21, 54, 72, 90, 141] are
summarized in Table 1 based on body position, motor task,
and AIS. These changes can be summarized as follows:
(1) monosynaptic motoneuron responses are adjusted in

a body positionmanner, (2) soleusH-reflex phase-dependent
modulation is restored, (3) soleus H-reflex homosynaptic
depression is restored regardless of AIS, (4) presynaptic
inhibition of the soleus Ia afferents evoked by a conditioning
stimulus recovers only in AIS C and AIS D, (5) reciprocal Ia
inhibition from flexor group I afferents on soleus motoneu-
rons is absent before training and returns regardless of AIS
after training, (6) Ib inhibition from MG group I afferents
on soleus motoneurons is present before training and is
increased after training in AIS A, AIS B, and AIS D, and
(7) short-latency flexor reflexes reappear and both short-
and long-latency flexor reflexes are modulated in a phase-
dependent manner [21, 54, 72, 90, 141].

4. Recovery of Motor Activity after
Locomotor Training in SCI

Motor output can be viewed, without excluding the descend-
ing pathways, as the net result of function of motor neurons
and interneurons at multisegmental spinal levels. Based on
our latest completed locomotor trial in people with SCI and
other studies, the changes in motor function can be summa-
rized as (1) increase in peak EMGamplitudes of anklemuscles
and decrease in peak EMG amplitudes of medial hamstrings
and hip adductor gracilis muscles in the more impaired right
leg (medial hamstrings and hip adductor gracilis muscles are
known to contribute primarily to the spastic gait pattern and
to the pathological leg spasticity pattern at rest) [72, Figure
5B], (2) restoration of biphasic EMG activity (when a muscle
contracts in more than one phase within a single step cycle)
(see [72, Figure 5A]), (3) onset changes of EMG activity
while stepping, (4) reduced cocontraction levels between
ankle and knee antagonistic muscles (see [72, Figure 5C]), (5)
improvements in the alternating activity of the same muscle
between the left and right legs, and (6) reduced EMG clonic
activity of ankle extensors at rest and on the treadmill [54,
72, 145, 146]. However, locomotor training does not restore
motor activity similarly in complete and incomplete SCIs.
An example of an episode of muscle activity during assisted
stepping after locomotor training is shown in Figure 6.
The EMG bursts clearly indicate that the ankle antagonistic
muscles were activated in a reciprocal pattern after locomotor
training in the incomplete SCI subject (AIS D, R014), while
a complete absent phase-dependent activity is evident in the
complete SCI subject (AIS B, R06) after 53 locomotor training
sessions (Figure 6). The lack of distinguished antagonistic
EMG bursts with clear onset and offsets in the person with
motor complete SCI after locomotor training clearly supports
pronounced differences between recovery in animals and
humans [147], and thus we need to be cautious when animal
data are translated to humans.

The profound changes in motor activity after locomotor
training in motor incomplete SCI coincided with changes
in gait parameters. The BWS required while stepping was
decreased by an average of 55%, the gait speed was increased
by 58%, and the leg guidance force by the robotic exoskeleton
was decreased by 43% [72]. Furthermore, in the motor
incomplete subjects, locomotor training improved their
lower extremitymotor scores, assessedmanually by a physical
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Table 1: Summary of neuronal activity changes in SCI after locomotor training#.

(a)

Neuronal activity AIS A/B AIS C AIS D
Seated Stepping Seated Stepping Seated Stepping

Soleus H-reflex
phase-dependent
modulation

NA ↓ stance phase∗
↓ swing phase∗ NA ↓ swing phase∗ NA ↓ swing phase∗

Homosynaptic
depression Restored∗ NA Restored∗ NA Restored∗ NA

Presynaptic inhibition
of Ia afferents No change Not tested Restored∗ ↓ stance phase∗

↑ swing phase∗ Restored∗
↓ late stance∗
↑

swing-to-stance
transition ∗

Reciprocal Ia
inhibition Restored∗ Not tested Restored∗ ↓ stance phase∗

↑ swing phase∗ Restored∗ ↓ stance phase∗
↓ swing phase∗

Nonreciprocal Ib
inhibition Restored∗ Not tested No change

No change in
stance∗
↓ early swing∗
↑ late swing∗

Restored∗ ↓ stance phase∗

Long-latency flexor
reflexes

↓ R-Leg∗
↑ L-Leg∗ Improved∗ ↓ R-Leg∗

↑ L-Leg∗ Improved∗ ↓ R-Leg∗
↑ L-Leg∗ Improved∗

Short-latency flexor
reflexes

Reappeared in
R-Leg∗

Phase-
dependent
modulation
emerged in
R-Leg∗

Reappeared in
R-Leg∗

Phase-
dependent
modulation
emerged in
R-Leg∗

Reappeared
in both legs∗

Phase-
dependent
modulation
emerged∗

(b)

Neuronal activity AIS A/B AIS C AIS D
Seated Standing Seated Standing Seated Standing

Soleus motoneuron
excitability (Hmax)

No change in
R/L-Legs

No change in
R/L-Legs

No change in
R-Leg∗
↓ L-Leg∗

↑ R/L-Legs∗
↓ R-Leg∗

No change in
L-Leg∗

No change in
R/L-Legs

H-threshold No change in
R/L-Legs

No change in
R/L-Legs

No change in
R/L-Legs

No change in
R/L-Legs

↑ R-Leg∗
No change in

L-Leg∗

↓ L-Leg∗
No change in

R-Leg∗
#Neuronal activity changes after locomotor training in people with SCI are from authors’ recent published work [21, 54, 72, 90, 141]. R: right; L: left; and NA:
not applicable; symbols ↑/↓ indicate increased or decreased neuronal activity. ∗ refers to neuronal activity changes.

therapist, with the more impaired right leg improving by 10%
and the left leg improving by 6.4% [21], a motor improvement
also reported for cervical and thoracic AIS D patients [148].

5. Pathways and Circuits Underlying
Neuronal and Motor Plasticity after
Locomotor Training

The CNS adapts and reorganizes continuously based on
motor experience and use. This natural reorganization is the
result of physiological, anatomical, and functional neuronal
changes along the neuroaxis (cortex, cerebellum, spinal cord,
andnerve axons) [149]. After an injury to the spinal cord, neu-
ronal reorganization occurs that eventually results in neural
circuits/pathways with altered properties and functions. The
findings on the neuronal activity changes in animals and in

humans detailed in the above paragraphs support that loco-
motor trainingcan promote functional neuronalreorganiza-
tion [150]. A major drive to the neuronal reorganization after
locomotor training is reinforcement of activity-dependent
sensory feedback from receptors (including but not limited to
plantar mechanoreceptors and hip proprioceptors) that can
adjust the operation of the CPG [11, 151, 152].

Sources for neuronal activity changes in people with SCI
after locomotor training could include modifications in the
intrinsic properties and function of the somata and dendrites
of neurons, excitability profile of motoneuron pools, excita-
bility thresholds of muscle afferents, modulation of EPSPs
from afferents, and modifications on the descending control
of spinal reflex networks involving synaptic and nonsynaptic
mechanisms.These changesmost likely occur simultaneously
at differing strengths during the course of locomotor training,
while adjustments made to the BWS, treadmill speed, and
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Figure 6: Motor activity after locomotor training in incomplete and complete SCI. Nonrectified electromyographic (EMG) activity from 10
consecutive steps of medialis gastrocnemius (MG), tibialis anterior (TA), and peroneus longus (PL) muscles from the left legs in one motor
incomplete SCI subject (AIS D) and in one motor complete SCI subject (AIS B) during assisted stepping after locomotor training. Note in
subject R014 that MG and PL occur in a reciprocal pattern with the TA, but distinctive EMG bursts are absent in subject R06.

leg guidance force during the course of training [54] affected
the reorganization of spinal neuronal pathways integrating
information about body loading and muscle stretch.

The restored soleus H-reflex depression during the swing
phase in motor complete SCI we observed after locomotor
training points towards three directions: (1) the soleus H-
reflex depression during the swing phase cannot be attributed
solely to reciprocal Ia inhibition between ankle antagonistic
muscles because the physiological supraspinal control of Ia
inhibitory interneurons (animal: [98, 153, 154]; human: [98,
155]) is greatly impaired in AIS A and AIS B, (2) reciprocal
Ia inhibition can become functional after locomotor training
even when descending control is impaired, and (3) functional
behavior of reciprocal Ia inhibition is not depicted well in
the EMG bursts during assisted stepping (see EMG bursts
of AIS B subject in Figure 6). While all of these directions
entail limitations with respect to the relevant contribution
of reciprocal inhibition to the reflex depression during the
swing phase of gait, it is possible that this change represents
the capacity of intrinsic properties of the spinal cord to alter
rhythmic motor activity after training [156].

Differences between right-left leg soleus H-reflex mod-
ulation changes suggest that the connections made by com-
missural spinal cord interneurons to motoneurons [156, 157]
might have been affected differently by locomotor training
in some patients compared to others. Commissural interneu-
rons interact with 5-HT and GABA systems, form excitatory
and inhibitory connections onto contralateral motoneurons
at latencies consistent with monosynaptic and polysynaptic
pathways, are under descending influence, and support loco-
motor rhythm generation in response to brainstem stimu-
lation [157–163]. Further, midline lesions and photoablation
affecting the axons of these neurons eliminate rhythmic ven-
tral root bursting, alter the symmetry of ventral root bursts,
and can eliminate rhythmic bursting [163], supporting

the contribution of commissural interneurons to rhythmoge-
nesis.

In healthy humans, ipsilateral posterior tibial nerve stim-
ulation or knee extension joint rotation produces inhibition
in both the contralateral soleus motoneurons and the reflex
responses in the contralateral biceps femoris muscle, both
being modulated according to the phase of walking [164–
167]. Crossed postsynaptic inhibition in contralateral soleus
motoneurons from ipsilateral groups I and II afferents at
short latencies (3–7ms), similar to those reported for the
feline spinal cord, has recently been described for humans
[168]. Further, activation of contralateral hip proprioceptors
results in ipsilateral soleus H-reflex depression [169]. Taken
altogether, differences between right-left legH-reflex changes
during the stance phase may thus represent plastic changes
of commissural interneurons, but it is evident that there is a
need for in-depth exploration of the physiological changes of
commissural interneurons in peoplewith SCI after locomotor
training.

Changes in presynaptic and postsynaptic inhibition after
locomotor training may be related to changes in the strength
of the depolarization of muscle afferents [24, 170, 171] or may
be the result of transformations in the intrinsic properties
of spinal neurons and afferents after locomotor training. For
example, in anesthetized chronic spinal cats there is an overall
increase in Ia excitatory postsynaptic potentials (EPSPs) in
ankle extensormotoneurons [172]. Plantarmechanoreceptors
interact with presynaptic inhibitory interneurons, in humans
at rest and in spinalized cats during fictive locomotion [54,
173]. Additionally, plantar mechanoreceptors evoke a phase-
dependent modulation of primary afferent depolarization
[24, 25], alter their effects on spinal motoneurons in spinal-
ized cats after step training [173], and normalize the function
of monosynaptic spinal reflexes while stepping in untrained
spinal cord-injured patients [174]. Changes in the intrinsic
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properties of spinal neurons after locomotor training are sup-
ported by the increased density of the glycinergic axonal ter-
minals and decreased size of both glycinergic andGABAergic
axon terminals in complete spinal trained transected rats
compared to nontrained transected rats [175]. Because plas-
ticity of the glycinergic system, which mediates inhibitory
neurotransmission, occurs independently of supraspinal
influence [176] and reciprocal Ia inhibition was potentiated
after training in complete SCI at rest but recovery while
stepping varied between patients, direct descending inputs
on Ia inhibitory interneurons may not be a key source for
neuroplasticity. However, this may be required for long-term
support of inhibitory synaptic transmission and regulation of
the depth of reciprocal Ia inhibition during locomotion.

The aforementioned are possible physiological changes in
complete SCI, but the neuronal reorganization is more com-
plex in incomplete SCI because neuronal structures above the
lesion site might adapt the function and behavior of spinal
neuronal circuitries known to control locomotor activity
through remnant descending pathways. In incomplete SCIs,
the plasticity of uninjured fibers plays an important role in
functional recovery. In cats and monkeys, as little as 25%
of remaining white matter tracts can allow for recovery of
voluntary locomotor ability [177, 178], and a similar obser-
vation was found in humans following partial spinal cord
transection to provide cancer pain relief [179]. Animal studies
provide substantial direct evidence that, following a hemisec-
tion injury to the corticospinal tract, transected fibers sprout
into cervical gray matter to communicate with propriospinal
interneurons, whose propriospinal neurons then relay the
motor command to distal lumbosacral motoneurons [180–
185]. In rats, this corticopropriospinal connection can be
enhanced pharmacologically [186] andwith locomotor tread-
mill training [187]. Considerable indirect evidence suggests
that this pathway is preserved in humans [188–192] and may
be probed utilizing TMS and peripheral nerve stimulation
[192, 193]. Future research on this pathway in humans with
SCI and the effects of locomotor training is warranted.

6. Functional Consequences of
Neuronal and Motor Plasticity

A question that arises is as follows: to what extent is plasticity
of neuronal activity related to improvement of motor func-
tion in SCI patients? Although improvements in gait parame-
ters were noted over the course of training, overground walk-
ing ability assessed by the 6-min walk test, and the number of
sit-to-stand repetitions completed within 30 s, and the time
needed to rise from a chair, walk for 3m, and return to the
chair were not improved after locomotor training in AIS C
andAISD [54]. Lack of changes in thesewalking ability varia-
bles could be related to (1) number of training sessions per
participant, (2) small number of participants, (3) existence of
nonresponders within the group, and (4) the fact that the 6-
min walk test may not be sensitive enough to detect improve-
ments in quality of walking of patients with SCI [194]. It may
be also the case that the benefits seen with robotic-assisted
treadmill training did not carry over into the task-specific
overground testing of the 6min walk test. However, previous

literature involving locomotor training with as-needed man-
ual assistance or with robotic-driven leg assistance in motor
incomplete SCI demonstrated improvements in the walking
index for SCI version II (WISCI-II) scale, overground walk-
ing speed, Berg balance scores, and 6min walk test [146, 195–
198]. Further, locomotor training improves lower extremity
motor scores in both motor complete and motor incomplete
SCIs [199, 200]. Taken altogether and including gaps in the
literature, it is apparent that the time course of neuronal
plasticity with corresponding motor recovery needs to be
established.

7. Concluding Remarks

Locomotor training of persons with clinically complete,
motor complete, or motor incomplete SCI induces reorga-
nization of spinal neuronal networks that coincides with
improvements in motor activity and decreased pathophysi-
ological phenomena of the spasticity syndrome. However, to
maximize recovery ofmotor function in patients with SCI, we
need to utilize both established (i.e., locomotor training, spi-
nal cord stimulation) and contemporary (i.e., brain con-
trolled intraspinal microstimulation) technologies/interven-
tions simultaneously and change the focus of our research
questions from “feasibility” and “efficacy” to “what are the
physiologicalmechanisms thatmake it work?” and “forwhich
category of patients?” Additionally, while we need to better
understand the physiological changes underlying locomotor
training, especially of the uninjured fibers, research efforts
should concentrate on providing strong scientific evidence
when more than one intervention is utilized concomitantly.
Over the course of treatment, physiological signals can be
used to (1) probe recovery, (2) develop algorithms that may
be used to define the approach of locomotor training for each
patient, and (3) predict functional recovery.These approaches
will enable the scientific and clinical community to develop
more effective rehabilitation protocols.
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[132] E. Beaumont, J. D. Houlé, C. A. Peterson, and P. F. Gardiner,
“Passive exercise and fetal spinal cord transplant both help to
restore motoneuronal properties after spinal cord transection
in rats,”Muscle and Nerve, vol. 29, no. 2, pp. 234–242, 2004.

[133] M. A. Gorassini, M. E. Knash, P. J. Harvey, D. J. Bennett, and J. F.
Yang, “Role of motoneurons in the generation ofmuscle spasms
after spinal cord injury,” Brain, vol. 127, no. 10, pp. 2247–2258,
2004.

[134] E. Beaumont and P. Gardiner, “Effects of daily spontaneous
running on the electro-physiological properties of hindlimb
motoneurones in rats,” The Journal of Physiology, vol. 540, no.
1, pp. 129–138, 2002.

[135] E. Beaumont and P. F. Gardiner, “Endurance training alters
the biophysical properties of hindlimb motoneurons in rats,”
Muscle and Nerve, vol. 27, no. 2, pp. 228–236, 2003.

[136] E. Beaumont, S. Kaloustian, G. Rousseau, and B. Cormery,
“Training improves the electrophysiological properties of lum-
bar neurons and locomotion after thoracic spinal cord injury in
rats,” Neuroscience Research, vol. 62, no. 3, pp. 147–154, 2008.

[137] V.-R. Gazula, M. Roberts, C. Luzzio, A. F. Jawad, and R. G.
Kalb, “Effects of limb exercise after spinal cord injury on motor
neuron dendrite stucture,” Journal of Comparative Neurology,
vol. 476, no. 2, pp. 130–145, 2004.

[138] J. C. Petruska, R. M. Ichiyama, E. D. Crown et al., “Changes
in motoneuron properties and synaptic inputs related to step
training after spinal cord transection in rats,” The Journal of
Neuroscience, vol. 27, no. 16, pp. 4460–4471, 2007.

[139] J. Ilha, L. A. Centenaro, N. Broetto Cunha et al., “The beneficial
effects of treadmill step training on activity-dependent synaptic
and cellular plasticitymarkers after complete spinal cord injury,”
Neurochemical Research, vol. 36, no. 6, pp. 1046–1055, 2011.

[140] J. R. Flynn, L. R. Dunn, M. P. Galea, R. Callister, R. J. Callister,
and M. M. Rank, “Exercise training after spinal cord injury
selectively alters synaptic properties in neurons in adult mouse
spinal cord,” Journal of Neurotrauma, vol. 30, no. 10, pp. 891–896,
2013.

[141] A. C. Smith, W. Z. Rymer, and M. Knikou, “Locomotor
training modifies soleus monosynaptic motoneuron responses
in human spinal cord injury,” Experimental Brain Research, vol.
233, no. 1, pp. 89–103, 2015.

[142] C. Capaday and R. B. Stein, “Difference in the amplitude of
the human soleus H reflex during walking and running,” The
Journal of Physiology, vol. 392, pp. 513–522, 1987.

[143] R. Kratz, S. Meunier, and E. Pierrot-Deseilligny, “Changes in
presynaptic inhibition of Ia fibres inmanwhile standing,” Brain,
vol. 111, no. 2, pp. 417–437, 1988.

[144] J. Nielson and Y. Kagamihara, “The regulation of disynaptic
reciprocal Ia inhibition during co-contraction of antagonistic
muscles in man,” The Journal of Physiology, vol. 456, pp. 373–
391, 1992.

[145] M. A. Gorassini, J. A. Norton, J. Nevett-Duchcherer, F. D.
Roy, and J. F. Yang, “Changes in locomotor muscle activity
after treadmill training in subjects with incomplete spinal cord
injury,” Journal of Neurophysiology, vol. 101, no. 2, pp. 969–979,
2009.

[146] J. C. Shin, J. Y. Kim,H. K. Park, andN. Y. Kim, “Effect of robotic-
assisted gait training in patients with incomplete spinal cord
injury,”Annals of RehabilitationMedicine, vol. 38, no. 6, pp. 719–
725, 2014.

[147] H. Barbeau and S. Rossignol, “Recovery of locomotion after
chronic spinalization in the adult cat,” Brain Research, vol. 412,
no. 1, pp. 84–95, 1987.

[148] B. Dobkin, H. Barbeau, D. Deforge et al., “The evolution
of walking-related outcomes over the first 12 weeks of reha-
bilitation for incomplete traumatic spinal cord injury: the
multicenter randomized Spinal Cord Injury Locomotor Trial,”
Neurorehabilitation and Neural Repair, vol. 21, no. 1, pp. 25–35,
2007.

[149] S. A. Dunlop, “Activity-dependent plasticity: implications for
recovery after spinal cord injury,” Trends in Neurosciences, vol.
31, no. 8, pp. 410–418, 2008.

[150] O. Raineteau and M. E. Schwab, “Plasticity of motor systems
after incomplete spinal cord injury,” Nature Reviews Neuro-
science, vol. 2, no. 4, pp. 263–273, 2001.

[151] S. Rossignol, G. Barrière, A. Frigon et al., “Plasticity of loco-
motor sensorimotor interactions after peripheral and/or spinal
lesions,”BrainResearchReviews, vol. 57, no. 1, pp. 228–240, 2008.

[152] S. N. Markin, A. N. Klishko, N. A. Shevtsova, M. A. Lemay, B. I.
Prilutsky, and I. A. Rybak, “Afferent control of locomotor CPG:
insights from a simple neuromechanical model,” Annals of the
New York Academy of Sciences, vol. 1198, pp. 21–34, 2010.

[153] E. Jankowska, Y. Padel, and R. Tanaka, “Disynaptic inhibition
of spinal motoneurones from the motor cortex in the monkey,”
The Journal of Physiology, vol. 258, no. 2, pp. 467–487, 1976.

[154] A. Lundberg, “Multisensory control of spinal reflex pathways,”
in Reflex Control of Posture and Movement, R. Granit and O.
Pomeiano, Eds., pp. 11–28, Elsevier, Amsterdam, The Nether-
lands, 1979.

[155] E. Fournier, R. Karz, and E. Pierrot-Deseilligny, “Descending
control of reflex pathways in the production of voluntary
isolated movements in man,” Brain Research, vol. 288, no. 1-2,
pp. 375–377, 1983.

[156] A. Birinyi, K. Viszokay, I. Wéber, O. Kiehn, and M. Antal,
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