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Calming the cytokine storm of COVID-19
through inhibition of JAK2/STAT3
signaling
Bharath Kumar Gajjela, Ming-Ming Zhou⇑

Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the
unprecedented COVID-19 pandemic, which has infected over 178 million people worldwide. Even
with new vaccines, global herd immunity will not be reached soon. New cases and viral variants are
being reported at an alarming rate. Effective antiviral treatment is urgently needed. Patients with
severe COVID-19 suffer from life-threatening respiratory failure due to acute respiratory distress
syndrome in their lungs, a leading cause of COVID-19 mortality. This lung hyper-inflammation is
induced by virus-caused massive tissue damage that is associated with uncontrolled cytokine release,
known as a cytokine storm, through JAK/STAT signaling pathways. Here, we review the FDA-approved
JAK inhibitors that are being clinically evaluated and repurposed for the treatment of patients with
severe COVID-19 by calming SARS-CoV-2 infection.

Keywords: COVID-19; Coronavirus disease 2019; Drug discovery; SARS-CoV-2; Severe acute respiratory syndrome
coronavirus 2
Introduction
Coronavirus disease-19 (COVID-19) is
caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2),
which has infected more than 178 mil-
lion people and caused 3.9 million fatal-
ities worldwide as of mid-June 2021.1

SARS-CoV-2 was first identified in the
respiratory tract of patients with pneu-
monia in Wuhan, China in December
Abbreviations: SARS-CoV-2, severe acute respiratory
kinase; STAT3, Signal transducer and activator of transc
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2019.2 The COVID-19 symptoms that
typically appear 2–14 days after viral
exposure include fever, cough, shortness
of breath and pneumonia.3–5 COVID-19
can reportedly range from a mild to a
severe condition, and the latter can lead
to death.5 Age and health problems
such as chronic pulmonary or cardiac
disease are risk factors that determine
the mortality rate.4–6
syndrome coronavirus 2; COVID-19, coronavirus disea
ription 3.
Newly introduced vaccines against
SARS-CoV-2, most notably those devel-
oped by Oxford-AstraZeneca, Pfizer-
BioNTech, Sinopharm-Beijing, and Mod-
erna, have been administrated under
Emergency Use Authorization in several
countries, and have been shown to be
effective in preventing the rapid spread of
viral infection.7–9 However, worldwide
COVID-19 herd immunity will probably
se 2019; CRS, cytokine release syndrome; JAK, Janus
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not be reached for several years because
low-to-middle income countries, includ-
ing many in Africa, have an extremely
low vaccination rate (currently 0.3%) or
are yet to begin mass vaccination cam-
paigns.7 New cases and viral variants are
still being reported at an alarming rate,
no specific treatment for COVID-19 exists,
and the available clinical options are lim-
ited. Therefore, the development of effec-
tive treatments is an urgent need,
especially for the life-threatening severe
cases.

SARS-CoV-2 is an enveloped virus that
contains single-stranded positive-sense
RNA (+ssRNA), with 5-cap structure and a
3-poly-A tail, and belongs to the Betacoro-
navirinae subfamily of the Coronaviridae
family, which causes illness in birds, mam-
mals and humans.8 The viral genome is
27–32 kb that encodes both structural
and non-structural proteins.9 SARS-CoV-2
comprises four main structural proteins,
the spike (S) glycoprotein, the small envel-
ope (E) glycoprotein, the membrane (M)
glycoprotein, and the nucleocapsid (N)
protein, as well as several accessory pro-
teins. The spike protein, which is key for
viral entry and replication in infected host
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FIGURE 1
A hyperactive immune response, also known as cy
the lungs, has been recognized as the major
modifications from Shi et al. 2020.13
cells,8–9 is composed of two functional
subunits. The S1 subunit binds to host cell
receptors, whereas the S2 subunit mediates
the fusion of the viral and host cellular
membranes. The distal part of the S1 sub-
unit contains the receptor binding domain
(RBD) that directly binds to the peptidase
domain of angiotensin converting enzyme
2 (ACE2) of the host cell.10–11

Upon entry into a host cell, SARS-CoV-
2 releases its genetic material into the cyto-
plasm. The viral RNA is translated into
polyproteins PP1a and PP1ab, which are
subsequently cleaved into functional pro-
teins by viral proteases. Sub-genomic tem-
plates for mRNA synthesis and the
translation of viral structural proteins are
formed through discontinuous transcrip-
tion. Viral genome replication is mediated
by a complex consisting of an RNA-
dependent RNA polymerase (RdRp), a heli-
case, exonuclease N, and other accessory
proteins. The assembly of viral nucleocap-
sids from the packaged viral genome and
viral structural proteins takes place at the
endoplasmic reticulum – Golgi intermedi-
ate compartment. The infectious virions
are released from the cell through
exocytosis.12
rogression
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Immune response and cytokine storm in
COVID-19 patients
Clinically, host cells in the lungs elicit a
two-phased response to SARS-CoV-2 infec-
tion (Fig. 1).13 In an early incubation and
non-severe stage, alveolar macrophages
detect the virus and produce cytokines
(such as interferons) and chemokines that
activate antiviral gene expression and
recruit innate response cells (such as leuko-
cytes, monocytes, natural killer (NK) cells,
and dendritic cells) and adaptive immune
cells to eliminate the virus and prevent dis-
ease progression.14–16 When this effort
fails, or a protective immune response is
impaired, the virus propagates. The disease
transitions to a severe stage in which
innate inflammation is induced by virus-
caused massive tissue damage that is asso-
ciated with uncontrolled cytokine release,
known as a cytokine storm, from inflam-
matory macrophages and granulocytes.
This results in acute respiratory distress
syndrome (ARDS) in the lungs. COVID-
19 patients in intensive care units (ICU)
have been found to have higher concen-
trations of cytokines in their plasma than
non-ICU patients, linking cytokines to dis-
ease severity.17–18 These proinflammatory
cytokines and chemokines include tumor
necrosis factor a (TNF-a), interleukin 1b
(IL-1b), IL-6, IL-10, IL-17, granulocyte/-
macrophage colony stimulating factor
(GM-CSF), interferon c (IFN-c), monocyte
chemoattractant protein-1 (MCP-1), and
macrophage inflammatory protein 1-a
(MIP-1a).[19–22 They trigger immune cells
to release a large number of free radicals
that can cause pneumonia and ARDS,
cumulating in systemic inflammation
and ultimately multi-system organ fail-
ure.15,23–24 Thus, the cytokine storm plays
a major role in the immunopathology of
SARS-CoV-2 and is likely to be the main
cause of the life-threatening respiratory
disorders seen in patients with severe
COVID-19.4,16,21–22,25

Elevated IL-6 and GM-CSF levels in severe
COVID-19 patients
It has been suggested that SARS-CoV-2-
induced hyperactivation of proinflamma-
tory cytokines is achieved through the
NF-jB and IL-6–JAK–STAT3 signaling path-
ways (Fig. 2).5 Studies of SARS and Middle
East Respiratory Syndrome (MERS) coron-
aviruses that are closely related to SARS-
CoV-2 have firmly established the role of
www.drugdiscoverytoday.com 391
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the NF-jB pathway in human coronavirus
infections.20,26–28 Evidence that viral pro-
teins can activate NF-jB came from studies
showing that the envelop (E) protein of
SARS-CoV acts as an ion channel in the
virus,25–26 and is critical to viral induction
of increased NF-jB activity that leads to
the overproduction of inflammatory
cytokines in the infected host cells.20,29–30

A recently reported mapping of SARS-
CoV-2 and host protein–protein interac-
tions showed that the SARS-CoV-2 E pro-
tein, which shares 96.1% sequence
identity with the SARS-CoV E protein,
binds BET proteins BRD2/4 in human host
cells.31 BRD2/4 are well known to facilitate
NF-kB activity in the transcriptional acti-
vation of proinflammatory cytokines.32

The JAK–STAT signaling pathway plays
a major role in intracellular signaling
induced by IFN in hematopoietic and
immune cells. It transduces extracellular
signals that are transmitted by a large
number of cytokines, lymphokines and
growth factors.33 IL-6 is one of major acti-
vators of JAK–STAT signaling and has been
shown to be increased substantially in
Drug Discovery Today

FIGURE 2
SARS-CoV-2 induction of NF-jB and IL-6–JAK–S
including IL-6 and GM-CSF. Targeted chemical inte
BRD2/4, Bromodomain-containing protein 2/4; GM-C
transducer and activator of transcription 3; TGF-b, T
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COVID-19 patients, strongly implying its
involvement in acute inflammation and
cytokine storm.34 The elevated levels of
IL-6 stimulate various cell types that
express the membrane-bound IL-6 recep-
tor and the glycoprotein (gp130) receptor,
as well as a soluble form of the IL-6 recep-
tor that interacts with gp130, leading to
constitutive activation of JAK–STAT signal-
ing (Fig. 2).33,35 Notably, the ability of
STAT3 to promote IL6 gene expression
results in an autocrine feed-forward loop,
which amplifies cytokine expression.35

Although the mechanistic details await
further study, these studies suggest that
the activation of host NF-jB and IL-6–
JAK–STAT signaling pathways by SARS-
CoV-2 viral proteins is probably a crucial
determinant of virulence, acting to pro-
mote the overexpression of proinflamma-
tory cytokines, viral replication and
pathogenicity.

IL-6 blockade has emerged as a poten-
tially promising approach to control
SARS-CoV-2-associated cytokine release
syndrome (CRS) (i.e. cytokine storm). Toci-
lizumab is an FDA approved monoclonal
TAT3 signaling leading to over-production of p
rvention against JAKs is indicated by numbered diam
SF, granulocyte/macrophage colony stimulating facto
ransforming growth factor b; VEGF, Vascular endothe
antibody against IL-6 that is used for the
treatment of rheumatoid arthritis (RA)
and CRS accompanying CAR-T therapy
for cancer, a syndrome akin to the hyper-
inflammatory phase of COVID-19.30,36–37

COVID-19 patients with severe and critical
COVID-19 showed decreased counts of
white blood cell and lymphocytes after
receiving a 5-day treatment of tocilizu-
mab.38–39 Accordingly, tocilizumab was
approved in China for patients affected
by severe SARS-CoV-2 pulmonary compli-
cations.40 Sarilumab, another IL-6 receptor
antagonist that has been approved for the
treatment of RA in patients with COVID-
19,41–42 was shown to block IL-6 and to
exert positive effects in COVID-19 patients
with severe disease and high IL-6 levels. At
present, the clinical trial involving Sar-
ilumab for the treatment of severe
COVID-19 is ongoing in the USA.43

GM-CSF is a cytokine that is critical for
healthy pulmonary function and is neces-
sary for the maturation and maintenance
of alveolar macrophages. Higher levels of
GM-CSF were observed in the early phase
of COVID-19 (1–3 days), with a progressive
ro-inflammatory cytokines in cytokine storm
ond. Adapted with modifications from Lim et al.97

r; IL6, Interleukin 6; JAK, Janus kinase; STAT3, Signal
lial growth factor.
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decrease the late stage (day 14) of the dis-
ease. GM-CSF may contribute to ARDS
indirectly by suppressing neutrophil apop-
tosis, as activated neutrophils can cause
microvascular damage that results in lung
injury.20 The inhibition of GM-CSF signal-
ing may be beneficial in reducing
hyperinflammation-related lung damage
in the most severe cases of COVID-19.21

This blockade can be achieved by antago-
nizing the GM-CSF receptor or circulating
GM-CSF. A recombinant human GM-CSF
(Sargramostim) shows promising effects
in improving oxygen levels in the blood
of COVID patients. COVID-19 patients
with hypoxic respiratory failure (satura-
tion below 93%) are enrolled for Sar-
gramostim treatment as a nebulized
inhalation, which is administered along-
side standard of care treatment. For
patients with more severe COVID-19 who
require mechanical ventilatory support,
intravenous administration of Sar-
gramostim will be used in the clinical
study (NCT04326920).44 In addition,
Mavrilimumab, a monoclonal antibody
that binds GM-CSF receptor a, results in
an improvement in oxygenation and
shorter hospitalization.45 The anti-GM-
CSF monoclonal antibodies TJ003234 and
Gimsilumab will be tested in clinical trials
in COVID-19 patients, whereas Len-
zilumab has received FDA approval for
compassionate use.20 Collectively, these
studies support the notion that targeting
IL-6 or GM-CSF and their receptors is an
attractive strategy that warrants investiga-
tion as part of the current search for effec-
tive COVID-19 therapeutics.

JAK inhibitors against human diseases
In addition to antibodies against IL-6 and
GM-CSF, FDA-approved small-molecule
drugs that inhibit IL-6–JAK–STAT signaling
(Fig. 3) represent a valuable clinical option
for the treatment of COVID-19.44 JAK inhi-
bition can affect both inflammation and
cellular viral entry in COVID-19.45 JAK
pathways are critically important for
immune and hematopoietic cells, affecting
processes including growth, survival,
development and differentiation. Each of
the JAK kinases has specificity for a differ-
ent set of cytokine receptors, and thus is
functionally linked to specific cytokines
that bind these receptors.

Targeting of the cytokine signaling
pathway with JAK inhibitors is an exciting
opportunity for the treatment of immuno-
logic and hematopoietic diseases. At pre-
sent, a number of JAK inhibitors have
been approved as therapeutics or are being
tested in clinical trials (Table 1 and Sup-
plementary Table 1). This section pro-
vides an overview of the clinical
developments relating to the use of
JAK1–3 inhibitors for the treatment of can-
cers and autoimmune dysfunctions.

Baricitinib (also known as Olumiant,
LY3009104 and INCB028050) (Fig. 4) is a
first-generation JAK inhibitor that is active
against JAK1 and JAK2. It is used for the
treatment of RA and other inflammatory
disorders, such as plaque psoriasis and
chronic atypical neutrophilic dermatosis
with lipodystrophy and promoted temper-
atures.46 Tofacitinib is another first-
generation highly potent JAK inhibitor,
developed by Pfizer for the treatment of
autoimmune diseases. It inhibits JAK1
and JAK3, and to a lesser extent, JAK2
and TYK2. In cells, Tofacitinib preferen-
tially inhibits signaling by cytokine recep-
tors associated with JAK3 and/or JAK1
with selectivity over receptors paired with
JAK2.47 Peficitinib is a JAK inhibitor that
is approved in Japan for the treatment of
RA. This drug inhibits JAK1, JAK2, JAK3
and Tyk2 enzyme activity with IC50 values
of 3.9, 5.0, 0.71 and 4.8 nM, respectively.
Peficitinib also inhibits IL-2-induced pro-
liferation of human T cells (IC50 = 18 nM)
and was 14-fold more potent against
JAK3 or JAK1 than against JAK2 in the sup-
pression of erythropoietin-induced prolif-
eration of human leukemia.48–49

Ruxolitinib (Fig. 4) is the first FDA-
approved JAK inhibitor for the treatment
for myelofibrosis, post-polycythemia vera
myelofibrosis, post-essential thrombo-
cythemia myelofibrosis, and acute graft-
versus-host disease (GvHD). It has shown
promising effects in autoimmune diseases
such as RA, psoriasis, alopecia areata, der-
matomyositis and lupus erythematosus.48

Fedratinib (Fig. 3) is an orally adminis-
trated JAK inhibitor developed by Celgene
for the treatment of intermediate-2 or
high-risk primary or secondary myelofi-
brosis, and was second drug to be
approved for the treatment of myelofibro-
sis after Ruxolitinib.50 Fedratinib, a selec-
tive JAK2 inhibitor, disrupts JAK–STAT
signaling, which is overactive in patients
with myelofibrosis due to JAK2V617F,
CALR, or MPL mutations.51
Upadacitinib or ABT494 (Fig. 4) selec-
tively inhibits JAK1, and is approved by
the US FDA for the treatment of
moderate-to-severe active RA in patients
who have an inadequate response to or
intolerance of methotrexate.52 Decer-
notinib is a newer JAK inhibitor that
has � five-fold selectivity toward JAK3
over JAK1, JAK2, and Tyk2 for RA. Never-
theless, the observed adverse effect of neu-
tropenia raises the possibility that this
drug inhibits other JAKs besides JAK3.53

Oclacitinib (PF03394197) was licensed in
the EU and the US for the control of pruri-
tus related to canine atopic dermatitis (AD)
and allergic dermatitis.54 It selectively
inhibits JAK1 in signaling pathways that
induce many pro-inflammatory cytokines
and has minimal effects against JAK2,
which is involved in normal
haematopoiesis.55

Filgotinib (GLPG0634) (Fig. 4) is a rever-
sible JAK1 preferential inhibitor, with 30-
and 80-fold selectivity over JAK2 and
JAK3, respectively, as determined in cellu-
lar and whole blood assays.56 In September
2020, Filgotinib received its first approvals
in the EU and Japan for the treatment of
moderate-to-severe RA in adults.51 Filgo-
tinib is currently under investigation for
the treatment of RA, ulcerative colitis
(UC), psoriatic arthritis (PsA) and Crohn’s
disease.57–58 In addition, numerous new
small molecules are in the clinical and pre-
clinical stages of development for the
treatment of RA and myelofibrosis. For
example, Cerdulatinib (PRT062070), Itaci-
tinib (INCB39110), AT9283, PF06700841,
PF04965842, and PF06651600 are potent
molecules that are at different stages of
evaluation in clinical trials. In particular,
Cerdulatinib is multi-target tyrosine kinase
inhibitor with IC50 of 12, 6, 8, 0.5, 32 nM
for JAK1, JAK2, JAK3, TYK2 and SYK,
respectively, whereas PF06651600, Decer-
notinib, Itacitinib and PF-04965842 selec-
tively inhibit JAK1 over other members of
the JAK family (Fig. 4).59–63

Clinical investigation of JAK inhibitors in
COVID-19 patients
JAK inhibitors including Baricitinib, Rux-
olitinib, Tofacitinib, Peficitinib, and Fedra-
tinib are under clinical investigation for
the treatment of COVID-19 patients who
are a risk of cytokine storm (Table 2). These
JAK-inhibitors, most notably Baricitinib,
show promising effects in early-stage
www.drugdiscoverytoday.com 393
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FIGURE 3
Chemical structures of JAK2 inhibitors that are either approved by the US FDA or being evaluated in human clinical trials.
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TABLE 1

JAK2 inhibitors that are approved by the US FDA or being evaluated in human clinical trials.

Compounds Sponsor Indication Phase/Status/Start date NCT Identifier

Fedratinib (Inrebic) Sanofi Myelofibrosis (MF) FDA Approved/August 2019
Hepatic impairment 1/Recruiting/June 2019 NCT03983161

Lestaurtinib (CEP701) Cephalon Leukemia, MF 2/Completed/June 2015 NCT00494585
Neuroblastoma 1/Completed/August 2014 NCT00084422
Acute myeloid leukemia (AML) 2/Completed/June 2016 NCT00079482
Psoriasis 2/Completed/August 2012 NCT00236119

Pacritinib (SB1518) AbbVie Primary myelofibrosis (PMF)/post-
polycythemia vera MF, post-essential
thrombocythemia MF

3/Recruiting/May 2017 NCT03165734

AML 2/Terminated/August 2015 NCT02532010
Gandotinib

(LY2784544)
Eli Lilly Myeloproliferative disorders, essential

thrombocythemia, polycythemia vera,
PMF

1/Completed/April 2018 NCT01134120

Ilginatinib (NS-018) NS Pharma, Inc. PMF, post-polycythemia vera MF, post-
essential thrombocythemia MF

1 & 2/Active, not recruiting/August 2011 NCT01423851

AZD1480 AstraZeneca PMF, post-polycythaemia vera, essential
thrombocythaemia MF

1/Completed/April 2017 NCT00910728

BMS-911543 Bristol-Myers
Squibb

Cancer 1 & 2/Terminated/November 2010 NCT01236352

XL019 Exelixis Myeloproliferative disorders, MF,
polycythemia vera, essential
thrombocythemia

1/Terminated/August 2007 NCT00522574
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COVID-19 patients, decreasing the use of
invasive mechanical ventilation and
increasing survival.64 Specifically, Barici-
tinib treatment attenuates cytokine storm
by reducing the expression levels of IL-2,
IL-6, IL-10, IFN-g, and GM-CSF, resulting
in rapid decline in SARS-CoV-2 viral load
and improved lymphocyte counts in
severely ill elderly patients with COVID-
19.65–66 Baricitinib inhibits AP2-associated
protein kinase 1, which is required for
SARS-CoV-2 cellular entry and infectiv-
ity.60 Baricitinib exerts rapid inhibition of
host numb-associated kinases and reduces
viral infectivity in human primary liver
spheroids. Furthermore, Baricitinib also
prevents type-1 IFN-mediated increase of
ACE2 expression, and significantly reduces
Tyr705-phosphorylated STAT3 (pSTAT3)
level in T lymphocytes, NK cells, mono-
cytes, and neutrophils, regularizing the
immune response in COVID-19
patients.67–68 Baricitinib is generally well
tolerated and produces a reduction in
inflammation and improved outcomes.
However, as a potent immunosuppressant,
Baricitinib can lead to an additive risk of
infection in severely ill patients. Barici-
tinib combination with Remdesivir is bet-
ter than Baricitinib alone in accelerating
recovery time and in improving the clini-
cal status of COVID-19 patients on high-
flow oxygen or noninvasive ventilation,69

and has fewer adverse events.
Ruxolitinib has robust activity in
inhibiting JAK–STAT signaling and signifi-
cantly suppresses the elevation of IL-6 and
TNF-a levels in COVID-19 patients. When
compared to a placebo (100 mg vitamin C,
twice a day), Ruxolitinib treatment (5 mg,
twice a day, a treatment dose for autoim-
mune or inflammatory conditions)
resulted in markedly improved chest com-
puted tomography and faster recovery
from lymphopenia.70 A low dose of Rux-
olitinib plus steroid reduced mortality
and resulted in a 75% recovery rate in
COVID-19 patients enrolled in the MAP
program.41 The observation of a faster
decline in CRP levels and disappearance
of fever in treated patients suggests that
steroids may play a synergistic role with
Ruxolitinib in dampening the immune
over-reactivity. Although Ruxolitinib is
safe in COVID-19 patients with severe sys-
temic hyper-inflammation, it failed to
reduce inflammation significantly in those
COVID-19 patients who died or who expe-
rienced respiratory failure or admission to
the intensive care unit in the Phase III trial.

Tofacitinib, another JAK inhibitor that
suppresses inflammatory signaling that is
important for the pathological progression
of severe lung disease and ARDS, has
shown promising results either alone or
in combination with hydroxychloroquine
in a clinical study of COVID-19 patients.71

Pacritinib is also being investigated in hos-
pitalized patients with severe COVID-19
with or without cancer (NCT04404361).52
Potential of JAK2 inhibitors to block IL-6
receptor signaling and prevent SARS-
CoV-2
One concern in using pan-JAK inhibitors
for COVID-19 is that such inhibitors may
interfere with antibacterial and antiviral
responses that are mediated by type I and
type II interferons.72–73 Type I interferons
have important antiviral activity through
their ability to inhibit viral replication in
infected cells. They protect uninfected
cells from infection and stimulate antiviral
immunity by CD8+ lymphocytes and NK
cells. By contrast, type II interferons are
produced primarily by T cells and NK cells
and help to fight against certain bacteria
and to inhibit viral replication. Notably,
because JAK2 is not involved in cell signal-
ing that regulates type I interferons, and is
reportedly not absolutely required for sig-
naling of type II and type III interferons
in host immunity due to functional redun-
dancy with JAK1,74–76 JAK2 selective inhi-
bitors may be preferred over other JAK
inhibitors for blocking signaling by cytoki-
nes such as IL-6 and GM-CSF, leading to
the suppression of COVID-19-associated
CRS.

The development of JAK inhibitors for
the treatment of COVID-19-associated
CRS is an active area of investigation, with
www.drugdiscoverytoday.com 395
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FIGURE 4
Chemical structures of JAK1–3 inhibitors that are either approved by the US FDA or being evaluated in human clinical trials.
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multiple ongoing clinical trials.77 Recent
studies have shown that the IL-6/GM–CS
F–JAK–STAT axis is closely associated with
the development of severe COVID-19
(Fig. 3).78–79 Antibodies that target IL-6 or
GM-CSF normally target only one cyto-
kine, whereas JAK inhibitors can simulta-
neously target the actions of multiple
cytokines, including IL-2, IL-6/GM-CSF
IL-4, and IFN-c.80–82 The hypothetical ben-
efits of JAK2 inhibition in the manage-
ment of COVID-19-associated CRS are
being evaluated using the FDA-approved
JAK2 inhibitors. These benefits may also
be provided by the improved JAK2 inhibi-
tors that are currently being evaluated in
clinical trials for other disease indications,
which may be repurposed for COVID-19 in
the future.
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Fedratinib (1, TG101348) (Fig. 3) is an
FDA-approved JAK2 inhibitor that exhibits
nanomolar activity in the treatment of
myleofibrosis (MF).83 Fedratinib has also
been reported to prevent the deteriorating
outcomes that occur with Th17-associated
cytokine storm in COVID-19 and other
severe viral infections.84 Some JAK2 inhibi-
tors are currently being studied clinically
for the treatment of various human dis-
eases. For example, CEP701 (2, Lestaur-
tinib) (Fig. 2) is a potent JAK2 inhibitor,
originally developed by Cephalon, that is
being assessed in trials in multiple phases
for acute myeloid leukemia (Phase 2), MF
(Phases 1/2) and psoriasis (Phase 2).85

Pacritinib (3, SB1518) (Fig. 3) is a JAK2/
FLT3 inhibitor that has a very potent JAK2
inhibitory activitywithoutmyelosuppressive
effects.86 In Phase 2 clinical trials, it has been
shown to improve the condition of MF
patients and todecrease spleen size andpossi-
bly GvHD.86 Gandotinib (4, LY27845544)
(Fig. 3), another potent JAK2 inhibitor, is also
inPhase2clinical trials, in this case formyelo-
proliferative neoplasms including poly-
cythemia vera, essential thrombocythemia,
MF and hematologic disorders.38

Ilginatinib (5, NS018) (Fig. 3), a JAK2
inhibitor, is in Phase 1/2 clinical trials for
MF.39 The JAK2 inhibitors AZD1480 (6),41

BMS911543 (7),57 and XL019 (8)87

(Fig. 3) are in advanced clinical studies
for inflammatory disorders such as MF,
RA, psoriatic arthritis, and ulcerative coli-
tis. Heterocyclic compounds TG101209
(9),88 CEP33779 (10),86 11 (4-amino-2-(4-
(N-(tert-butyl)sulfamoyl) phenyl)-N-(2-
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TABLE 2

Ongoing clinical studies of JAK inhibitors for COVID-19.

Compounds Organization Combination Phase/Status/Start date NCT identifier

Ruxolitinib Novartis – 3/Completed/November 2020 NCT04362137
Vanderson Geraldo Rocha – 2 & 3/Terminated/April 2021 NCT04477993
Incyte – 3/Terminated/March 2021 NCT04377620
Incyte – Temporarily not available/May 2021 NCT04355793
University of Colorado – 2 & 3/Withdrawn/March 2021 NCT04348071
Azienda Usl Toscana Nord Ovest – Not yet recruiting/April 2020 NCT04361903
Marcelo Iastrebner – Phase 2/Not yet recruiting/June 2020 NCT04414098
Fundación de investigación HM Simvastatin 2/Recruiting/April 2020 NCT04348695
Washington University School of
Medicine

– 2/Withdrawn/2020 NCT04354714

University of Jena – 2/Recruiting/January 2021 NCT04338958
Grupo Cooperativo de Hemopatías
Malignas

– 1 & 2/Recruiting/February 2021 NCT04334044

Prisma Health-Upstate – 2/Completed/March 2021 NCT04374149
Philipps University Marburg Medical
Center

– 2/Active not recruited/December 2020 NCT04359290

Assistance Publique Hopitaux De
Marseille

Anakinra and Tocilizumab 3/Not yet recruited/ June 2020 NCT04424056

Lomonosov Moscow State University Colchicine and Secukinumab 2/Recruiting/May 2020 NCT04403243
Novartis Pharmaceuticals – No longer available/January 2021 NCT04337359
Centre Hospitalier Intercommunal de
Toulon La Seyne sur Mer

Anakinra 2/Terminated/December 2020 NCT04366232

University Health Network, Toronto – Not yet recruited/April 2020 NCT04331665
Baricitinib NIAID Remdesivir 3/Completed/December 2020 NCT04280705

Cambridge University Hospitals NHS
Foundation Trust

Ravulizumab 4/Recruiting/May 2020 NCT04390464

Fabrizio Cantini – 2 & 3/Completed NCT04358614
Hospital of Prato – 2 & 3/Not yet recruiting NCT04320277
University of Colorado – 2 & 3/Withdrawn/ March 2021 NCT04340232
University of Southern California Hydroxychloroquine 2/Recruiting/June 2020 NCT04373044
Eli Lilly and Company – 3/Active, not recruiting/May 2021 NCT04421027
M Abdur Rahim Medical College &
Hospital

Remdesivir and Tocilizumab 3/Recruiting/January 2021 NCT04693026

Azienda Ospedaliero – 2/Not yet recruiting/May 2020 NCT04393051
IRCCS Policlinico S. Matteo – 2/Not yet recruiting/May 2020 NCT04399798
ASST Fatebenefratelli Sacco Remdesivir and Dexamethasone 3/Not yet recruiting/April 2021 NCT04832880
Hospital Universitario de Fuenlabrada Imatinib 2/Recruiting/February 2021 NCT04346147
ComplejoHospitalario Universitario de
Albacete

– Recruiting/April 2020 NCT04362943

Lisa Barrett – 2/Recruiting/June 2020 NCT04321993
Tofacitinib Yale University – 2/Recruiting/February 2021 NCT04415151

Pfizer – 2/Withdrawn/February 2021 NCT04412252
Hospital Israelita Albert Einstein – 2/Active, not recruiting/February 2021 NCT04469114
I.M. Sechenov First Moscow State Medical
University

– 2/Completed/February 2021 NCT04750317

Università Politecnica delle Marche Hydroxychloroquine 2/Not yet recruiting/May 2020 NCT04390061
Università Politecnica delle Marche – 2/Not yet recruiting/April 2020 NCT04332042

Pacritinib CTI BioPharma – 3/Not yet recruiting/April 2021 NCT04404361

Notes: ‘–‘, no combination.
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morpholinoethyl) thieno3,2–97 pyridine-7-
carboxamide),89 12 ((R)-7-(2-amino-pyrimi
din-5-yl)-1-((1-cyclo-propyl-2,2,2-trifluoro
ethyl) amino)-5H-pyrido4,3–97indole-4-
carboxamide),90 13 ((S)-N-(1-(5-fluoro-
pyrimidin-2-yl) ethyl)-4-((1-methyl-1H-im
idazol-4-yl)methyl)-7H-pyrrolo2–97pyrimid
in-2-amine),91 and 14 (4-(2,6-difluoro-4-
(3-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)qui
noxalin-5-yl)benzyl)morpholine)92 (Fig. 3)
exhibit significant inhibition of JAK2 in
pre-clinical studies. Recently, it has been
found that pyrimidine derivatives 15–18
have 5–7-fold selectivity for JAK2 over
JAK1 and JAK3.93 In addition, several 2-
aminopyridine scaffold compounds have
also been reported as promising new
JAK2 inhibitors; for example, Crizotinib
(19) and its analogs 20–22 exhibit
nanomolar inhibitory activity and high
selectivity for JAK2, and display remark-
able anticancer proliferation activity.94–95

Given that JAK2 inhibitors probably do
not interfere with the type I interferon
response in immunity, but inhibit cytoki-
nes including IL-6 and GM-CSF in
COVID-19-associated CRS, JAK2 inhibi-
tion is likely to offer an attractive thera-
peutic option for blocking cytokine storm
in COVID-19.
www.drugdiscoverytoday.com 397
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Conclusions
Recent clinical observations have led to
the rapid recognition of the major role
played by cytokine storm in the deteriora-
tion of SARS-CoV-2 patients from pneu-
monia through ARDS, to systemic
inflammation and ultimately multi-
system organ failure. Pharmacological
inhibition of the JAK–STAT signaling path-
way is an attractive therapeutic option for
the management of COVID-19, which
involves many cytokines including IL-6
and GM-CSF. Drugs such as Tocilizumab
and Sarilumab have been shown to target
IL-6, and consequently improve the respi-
ratory and laboratory parameters of
patients with severe and critical COVID-
19. Small molecule JAK inhibitors have
added advantages as therapeutics as they
can target the actions of multiple cytoki-
nes, including IL-6 and GM-CSF, simulta-
neously. JAK inhibitors such as Baricitinib
have been shown to minimize the cyto-
kine storm effectively via inhibition of
the JAK–STAT signaling pathway and
may reduce both viral replication and
aberrant host inflammatory response.
Given that JAK2 inhibitors have been
shown not to interfere with cell signaling
by type I interferons, which is essential
for the anti-viral immunity of the host
cells,96 Fedratinib, an FDA-approved JAK2
inhibitor, could be used to prevent
COVID-19-associated cytokine storm with
minimal effects on the host immune sys-
tem. Several potent JAK2 inhibitors that
are currently being evaluated in human
clinical trials, as well as drugs that have
already been FDA approved, have been
shown to be moderately effective in con-
trolling host antiviral and anti-bacterial
immunity responses. Lestaurtinib
(CEF701), Pacritinib, AZD1480, BMS-
911543, Ilginatinib (NS108), TG101209
and Gandotinib are among the JAK2-
selective inhibitors that have been studied
in clinical and preclinical trials for MF, RA
and other inflammatory disorders. These
JAK2 inhibitors can also be tested for the
treatment of COVID-19, either as
monotherapies or in combination with
IL-6 or IL-6R antagonists. Therefore, these
JAK2 inhibitors represent an attractive
therapeutic option that we hope will be
developed into much-needed therapeutics
to treat and prevent the devastating effects
of COVID-19.
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