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Simple Summary: Oncolytic viruses can be a potent tool in the fight against cancer. However, in
clinical settings their ability to replicate in and kill tumors is often limited. Combinations with specific
small molecule compounds can address some of these limitations and help oncolytic viruses reach
their full potential. The aim of this review is to provide an overview of the different types of small
molecules with which oncolytic viruses can achieve therapeutic synergy. We focus on the underlying
mechanisms in three functional areas: combinations that increase viral replication, enhance tumor
cell killing and improve antitumor immune responses.

Abstract: The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards
achieving efficacy through the induction and augmentation of an antitumor immune response.
However, innate antiviral responses can limit the activity of many OVs within the tumor and several
immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent
decades, numerous small molecule compounds that either inhibit the immunosuppressive features
of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we
comprehensively review small molecule compounds that can achieve therapeutic synergy with
OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as
monotherapies and how these complement OV treatment.

Keywords: oncolytic virus; small molecule; cancer immune therapy; combination therapy; cancer
therapy; immunotherapy

1. Introduction

In the course of oncogenic transformation and progression, tumor cells acquire dis-
tinct features that have been termed hallmarks of cancer [1,2]. Some of these aberrations
form the base for the tumor-preferential infection and propagation of natural or recombi-
nant oncolytic viruses (OVs) [3]. Evasion of growth suppressive mechanisms, continuous
proliferative signaling, unrestricted replication machinery and the evasion of innate and
adaptive immune control constitute characteristics that can be exploited by OVs. In general,
naturally occurring or genetically engineered virotherapy candidate viruses share the core
features of tumor-preferential infection, replication, and lysis. Beyond that, they display
the diversity of viruses on multiple levels: human pathogen-derived versus animal viruses,
DNA versus RNA genome, enveloped versus non-enveloped, nuclear versus cytosolic
replication cycle, etc. [4]. Herpes simplex virus (HSV) and adenovirus (AdV) are human
pathogenic DNA viruses that have been developed for three decades as oncolytic agents
with a plethora of modified variants being tested in preclinical and clinical settings. This
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resulted in the first regulatory approvals of H101, a genetically engineered adenovirus, in
2005 in China and talimogene laherparepvec (T-VEC), a recombinant attenuated HSV-1
with a transgene encoding for granulocyte-macrophage colony-stimulating factor (GM-
CSF), in 2015 in the USA and Europe [5]. Development of oncolytic HSV and AdV variants
has continued though with a strong focus on next generation “armed” OVs expressing
a multitude of immune modulatory transgenes. Another clinically advanced oncolytic
platform is based on the vaccinia virus (VV), a large DNA virus encoding about 200 genes
with an exclusive cytosolic replication cycle. Its ability to accommodate up to 40 kb of
transgene DNA make VV a prime platform for arming with immune modulatory cargo
genes [6]. A related member of the poxvirus family, myxoma virus, has also extensively
been explored as an oncolytic agent in pre-clinical settings [7]. H1, a small rat parvovirus,
completes the list of the major DNA-based oncolytic agents. This natural onco-preference
is in large part based on a dependency on proliferating cells and signaling pathway aberra-
tions [8]. Reovirus, a natural occurring human virus with double stranded RNA genome,
is usually not associated with disease in adults and its onco-tropism was originally thought
to be linked to RAS transformation in cancer cells, although recent data suggest a more
multifactorial relationship [9]. The Edmonston vaccine strain of measles virus, a negative
strand RNA paramyxovirus, displays a certain natural onco-selectivity in part due to
frequent overexpression of its receptor, CD46, in a range of different cancer types [10].
Newcastle disease virus, an avian paramyxovirus without causing known human disease,
harbors a natural onco-selectivity due to interaction with anti-apoptotic proteins and its
dependence on a defective antiviral make-up frequently observed in cancer cells [11].
Vesicular stomatitis virus (VSV), a negative strand RNA virus of the rhabdoviridae family,
causes mild disease in livestock with clinical symptoms rarely reported in humans. Its
ubiquitous receptor entry translates to a pan-tropism for a very broad range of tumor
types, but also holds the potential for some neuro-toxicity once it can access the brain.
Consequently, VSV development has long been driven by attenuation strategies [12]. As
with several other RNA viruses, the primary mode of onco-selectivity is based on reduced
antiviral defense mechanisms in certain tumors [13]. In recent years, a large number of VSV
variants armed with immunomodulatory transgenes has been tested in preclinical settings
and in early phase clinical testing [14]. With few exceptions, most OVs are rather sensitive
to innate antiviral control. This increases their safety aspect towards normal cells while
letting them take advantage of impaired innate immune signaling in tumors [13]. These
OVs are therefore also considerably better suited to be combined with small molecules that
counter innate antiviral immunity. During early OV developments, the paradigm was that
the efficacy of OV treatment correlated to virus replication. Viral spread throughout the
tumor, and subsequent OV-mediated cancer cell lysis, were thought to be the main drivers
of OV therapy [15]. According to this thinking, OVs were initially combined with immuno-
suppressive small molecule compounds in order to limit the antiviral immune response
and allow OVs to replicate to higher titers within the treated tumors [16,17]. The different
mechanisms and compounds that modulate the innate antiviral immunity are discussed
in detail below. Such approaches have yielded promising results mostly in preclinical
settings [18]. However, the modes of action by which OVs can be therapeutic are more
complex in immunocompetent patients and the immune activating potential of OVs has
increasingly dominated the discussion [19–21]. OV treatments are now considered potent
partners for immunotherapies [22]. Few treatment modalities inherently hold the potential
to simultaneously induce immunogenic cell death (ICD), stimulate innate and adaptive
immune responses, enhance T cell infiltration and repolarize an immune-suppressive
tumor microenvironment (TME) [23–25]. Immunogenic cell death is associated with the
induction and release of pro-inflammatory cytokines and danger-associated molecular
patterns (DAMPs) [26]. DAMPs are especially expressed when infected cells die in an
immunogenic manner, such as necroptosis. Enhancing these modes of cell death through
the combination with tumor cell death enhancing (TCDE) small molecule compounds has
therefore become a central focus [27,28] and is also discussed in detail below. The presence
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of virus related pathogen associated molecular patterns (PAMPs) and DAMPs subsequently
facilitates the attraction of immune cells which contribute to the immune-stimulatory state
by producing additional inflammatory cytokines [29]. This can eventually shift the im-
munosuppressive TME allowing a successful antitumor immune response to occur [30,31].
Still, even after induction of an antitumor immune response, the continuous reshaping
of the TME at later stages constitutes further challenges [26]. For example, OV treatment
commonly induces the expression of programmed cell death ligand 1 (PD-L1). However,
this can be successfully countered by immune checkpoint inhibiting antibodies [32]. Small
molecule checkpoint inhibitors could contribute to OV treatment in a similar fashion [33].
Other components of the TME, such as tumor growth factor (TGF)-β, epigenetic major
histocompatibility complex (MHC) repression, cytotoxic T-lymphocyte-associated Protein
4 (CTLA-4), T-cell immunoglobulin and mucin-domain containing-3 (TIM-3), etc.), regula-
tory T-cells (Treg), myeloid-derived suppressor cells (MDSC), and M2 tumor associated
macrophages (TAMs) can also contribute to an immunosuppressive therapy-resistant state.
Some of these factors can be targeted by small molecule therapeutics [34], which will also be
discussed in a separate section below. As we show in the following, the different aspects of
multimodal OV treatment can be improved by a vast array of small molecule compounds,
and a future impact on improving the clinical outcome of such combinations is conceivable.

2. Combinations Affecting Viral Propagation in Tumor Cells

The selectivity of various oncolytic viruses largely depends on defects in the tumor
cell’s innate ability to fend off viral infections [35]. However, the initial assumption that
an impaired interferon (IFN) response is a common feature shared by many tumors [36]
may not reflect the clinical reality of solid cancers’ heterogeneity [37]. Some tumors, such
as pancreas cancer, may even display an upregulated antiviral state leading to primary
resistance [38]. A constitutive interferon pathway activation was also described as a main
determinant for oncolytic measles virus activity in a human glioblastoma specimen [39].
On the other hand, tumors induced by oncoviruses, such as HPV-associated cervical
or head and neck cancers, tend to frequently display strongly impaired antiviral innate
responses [40]. However, in light of missing systematic assessments of a large range of
tumor types, general conclusions as to what cancer types are more antivirally active and
which are not remain to be drawn. Although most viruses have evolved to express proteins
that counter antiviral measures [41], engineering of many oncolytic viruses were aimed at
abolishing exactly those viral counter measures, generating OVs with a heightened IFN
sensitivity [37]. Cornerstones of the antiviral innate immune response are type I (and to
a lesser extend type III) interferons [42]. Both IFN types converge in their signaling and
induce transcriptional responses through the Janus kinase signal transducers and activators
of transcription (JAK/STAT) pathway [43]. Their signaling is associated with downstream
expression of interferon stimulated genes (ISGs) which act as antiviral effector proteins
countering viral replication. OV replication is impaired when these pathways are still intact
in the treated tumor cells [44]. In the following, we will discuss various compound classes
involved in inhibiting antiviral signaling pathways and which hold the potential to either
enhance replication of OVs or even address OV resistance in cancer cells.

2.1. JAK-STAT Signaling Inhibition

Inhibitors of Janus kinases (JAK), such as JAK inhibitor I (a pan-JAK inhibitor) or
ruxolitinib (a specific JAK1/2 inhibitor) (Figure 1), were able to rescue the replication of
VSV in several human pancreatic ductal adenocarcinoma (PDA) cells that were otherwise
resistant due to constitutive high-level expression of certain interferon stimulated genes
(ISGs) [38,45,46]. This effect was improved even further when Polybrene or DEAE-dextran
were additionally added, improving VSV attachment and entry and allowing more cells to
be infected [47]. A similar effect was seen for refractory human head and neck squamous
cell carcinoma (HNSCC) cell lines which owed their VSV resistance to the constitutive ex-
pression of a different set of ISGs. Here, JAK inhibitor I and ruxolitinib were also successful
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in rescuing virus replication with a 100- to 1000-fold increase in yield. Interestingly, other
innate immune small molecule compounds, such as histone deacetylase inhibitors (HDI;
LBH589), phosphoinositide 3-kinase (PI3K) inhibitors (GDC-0941, LY294002), mammalian
target of rapamycin complex 1 (mTORC1) inhibitors (rapamycin) or STAT3 inhibitor VII
were not effective [48]. Combination therapy with ruxolitinib and VSV-IFNβ also enhanced
viral replication and oncolysis in several non-small cell lung cancer (NSCLC) cell lines [49].
However, several of these compounds were effective in rescuing OV replication in other
tumor cell types, as discussed in the sections below underlining the heterogeneity in mech-
anisms among different tumor cells by which synergy with OVs can occur. In melanoma,
mutations in the JAK1/2 signaling pathway as well as JAK1/2 inhibition increase sensitiv-
ity to VSV-dM51 [50]. The dual inhibitor of JAK1 and IκB kinase (IKK), TPCA-1 was also
shown to improve HSV replication of malignant peripheral nerve sheath tumor (MPNST)
cells [51]. OVs that replicate in the cytoplasm, such as RNA viruses and poxviruses, can
also trigger direct antiviral effector responses that can hamper their replication and subse-
quent oncolytic effects. Viral RNA activates the cytosolic PKR by inducing dimerization
and subsequent auto-phosphorylation reactions. The protein kinase R (PKR) pathway
leads to a stress response by activating other pathways such as the interconnected nuclear
factor κ-light chain enhancer of activated B cells (NF-κB) & c-Jun N-terminal kinase (JNK)
pathways (Figure 2) [52–54]. JNK are kinases involved in a diverse set of cellular functions,
ranging from cell death, survival and proliferation to innate immunity [54]. Specifically,
JNK are essential for the expression regulation of many immune mediator genes, such as
cytokines (e.g., interleukins (ILs) IL-2, IL-4, IL-8, IL-18, IFN-γ, granulocyte-macrophage
colony-stimulating factor (GM-CSF), C-C motif chemokine ligand 5 (CCL5), tumor necrosis
factor α (TNF-α)) [55–59] and adhesion molecules (ICAM-1) [53]. While JNK inhibition has
been reported to act antivirally on encephalomyocarditis virus, rotavirus and HSV [60–62],
a virus promoting effect was seen for vaccinia virus. Here, murine embryonic fibroblasts
devoid of JNK showed a significant increase in titer. In line with these results, an increase
of apoptosis was seen when wildtype murine embryonic fibroblast cells were co-treated
with the JNK-specific inhibitor SP600125 [55,63]. This suggests that JNK inhibition, at least
under very specific conditions, can be beneficial for OV therapy [63].

2.2. Inhibition of NF-kB Signaling

Nuclear factor (NF)-κB and inhibitor of NF-κB kinase (IKK) proteins regulate many
cellular responses to stimuli, such as innate and adaptive immunity, cell death, and in-
flammation [64]. NF-κB and IKK therefore play key roles in regulating the innate immune
response against OVs. Indeed, two types of compounds enhance OV replication through
very distinct mechanisms at different stages of NF-κB-mediated transcription [65]. For
instance, fumaric and maleic acid esters, such as dimethyl fumarate (DMF), block the
nuclear translocation of NF-κB and have been shown to improve replication of several
OVs and subsequent therapeutic outcomes by inhibiting type I IFN [66]. Another point
of intervention is in the nucleus after NF-κB has already bound DNA [67]. At this point
triptolide blocks transcription, leading to an increase of VSV replication in several VSV-
resistant tumor cell types (Figure 2) [68]. Before NF-κB can facilitate transcription of innate
immune genes it has to be released from the IκB kinase β (IKKβ) complex. The activation of
IKKβ, by the phosphorylation of IκBα and its subsequent proteasomal degradation, allows
NF-κB to relocate to the nucleus [64]. Blocking IKKβ can be therapeutically exploited since
NF-κB is overexpressed in many cancer types [69]. Consequently, inhibiting IKKβ shows
much promise for synergizing with OVs (Figure 2). This would be especially advanta-
geous for OVs, such as VSV and NDV, that rely on defective innate immunity for their
onco-selectivity [70]. This was confirmed in studies on malignant peripheral nerve sheath
tumor cells and some pancreatic ductal adenocarcinoma cell lines that showed resistance
to oncolytic HSV and VSV infection, respectively. In combination with the IKKβ inhibitor
TPCA-1, this resistance was overcome and productive infection was achieved [46,51].
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Figure 1. JAK/STAT signaling inhibition for the improvement of OV efficacy. (A) IFN binding with its receptor can activate 
JAK1 and TYK2. This in turn facilitates the phosphorylation of the docking sites of STAT1 and STAT2. Following phos-
phorylation, both STATs associate with IRF6 to form the transcriptional regulation ISG3. ISG3 trans-locates to the nucleus 
where it mediates the transcription of ISG mRNAs. The appropriate DNA strains are made accessible for ISGF3 by differ-
ent histone deacetylases. These mRNAs are in turn transported over microtubules in order to be translated. Targeting 
these pathways by means of different small molecule inhibitors (red annotated squares) allows OV replication to proceed 
for longer, resulting in increased viral spread and potentially efficacy. See the main text for more details. Created with 
biorender.com. (B) Selected chemical structures of compounds depicted in panel A. All structures throughout were drawn 
using MarvinSketch (ChemAxon) from publicly available information. Abbreviations: JAK, Janus kinase; STAT, signal 
transducers and activators of transcription; IRF9, Interferon regulatory factor 9; ISGF3, Interferon-stimulated gene factor 
3; HDAC, histone deacetylase; ISRE, Interferon-sensitive response element; MDA, microtubule destabilizing agent; VPA, 
Valproate. 

Figure 1. JAK/STAT signaling inhibition for the improvement of OV efficacy. (A) IFN binding with its receptor can
activate JAK1 and TYK2. This in turn facilitates the phosphorylation of the docking sites of STAT1 and STAT2. Following
phosphorylation, both STATs associate with IRF6 to form the transcriptional regulation ISG3. ISG3 trans-locates to the
nucleus where it mediates the transcription of ISG mRNAs. The appropriate DNA strains are made accessible for ISGF3
by different histone deacetylases. These mRNAs are in turn transported over microtubules in order to be translated.
Targeting these pathways by means of different small molecule inhibitors (red annotated squares) allows OV replication to
proceed for longer, resulting in increased viral spread and potentially efficacy. See the main text for more details. Created
with biorender.com. (B) Selected chemical structures of compounds depicted in panel A. All structures throughout were
drawn using MarvinSketch (ChemAxon) from publicly available information. Abbreviations: JAK, Janus kinase; STAT,
signal transducers and activators of transcription; IRF9, Interferon regulatory factor 9; ISGF3, Interferon-stimulated gene
factor 3; HDAC, histone deacetylase; ISRE, Interferon-sensitive response element; MDA, microtubule destabilizing agent;
VPA, Valproate.
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Figure 2. Compound classes that inhibit of NF-kB signaling and synergize with OV treatment. (A) Virus replication results 
in the production of cytosolic DNA and single- and double-stranded RNA. This triggers multiple signaling cascades, in-
cluding the recruitment of RIG-I and Mda5 to the adaptor IPS-1 on the membrane of the mitochondria. This in turn leads 
to kinase activation through TRAF family members. More specifically, this activates the IKK complex, which phosphory-
lates IκB proteins. Phosphorylation of IκB leads to its ubiquitination and proteasomal degradation, freeing NF-κB com-
plexes for transcription induction. TRAF6 signaling also leads to JNK activation. Activated JNK trans-locates to the nucleus 
and activates c-Jun and other target transcription factors. These transcription factors, such as cJun and NF-κB lead to the 
transcription of numerous proteins involved in innate immunity and cells death, including IFN-β. Interfering with the 
different steps of signaling pathways using different classes of compounds (red annotated red squares) have resulted in 
increased viral replication and subsequent efficacy. See the main text for more details. Created with biorender.com. (B) 
Selected chemical structures of compounds depicted in panel A. All structures throughout were drawn using 
MarvinSketch (ChemAxon) from publicly available information. Abbreviations: TRAF, TNF Receptor Associated Factor; 
JNK, c-Jun N-terminal kinase; Atf2, Activating transcription factor 2; IPS-1, interferon-β promoter stimulator 1; TSA, Tri-
chostatin A; DMF, dimethyl fumarate; RigI, retinoic acid-inducible gene I; mda5, melanoma differentiation-associated 
protein 5; PRK, protein kinase R; Ubcl3, ubiquitin-conjugating enzyme 13; ubiquitin-conjugating enzyme E2 variant 1; 
Tak1, transforming growth factor-6-activated kinase 1; IKK, IκB kinase β. 
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Figure 2. Compound classes that inhibit of NF-kB signaling and synergize with OV treatment.
(A) Virus replication results in the production of cytosolic DNA and single- and double-stranded
RNA. This triggers multiple signaling cascades, including the recruitment of RIG-I and Mda5 to the
adaptor IPS-1 on the membrane of the mitochondria. This in turn leads to kinase activation through
TRAF family members. More specifically, this activates the IKK complex, which phosphorylates
IκB proteins. Phosphorylation of IκB leads to its ubiquitination and proteasomal degradation,
freeing NF-κB complexes for transcription induction. TRAF6 signaling also leads to JNK activation.
Activated JNK trans-locates to the nucleus and activates c-Jun and other target transcription factors.
These transcription factors, such as cJun and NF-κB lead to the transcription of numerous proteins
involved in innate immunity and cells death, including IFN-β. Interfering with the different steps of
signaling pathways using different classes of compounds (red annotated red squares) have resulted
in increased viral replication and subsequent efficacy. See the main text for more details. Created with
biorender.com. (B) Selected chemical structures of compounds depicted in panel A. All structures
throughout were drawn using MarvinSketch (ChemAxon) from publicly available information.
Abbreviations: TRAF, TNF Receptor Associated Factor; JNK, c-Jun N-terminal kinase; Atf2, Activating
transcription factor 2; IPS-1, interferon-β promoter stimulator 1; TSA, Trichostatin A; DMF, dimethyl
fumarate; RigI, retinoic acid-inducible gene I; mda5, melanoma differentiation-associated protein 5;
PRK, protein kinase R; Ubcl3, ubiquitin-conjugating enzyme 13; ubiquitin-conjugating enzyme E2
variant 1; Tak1, transforming growth factor-6-activated kinase 1; IKK, IκB kinase β.

2.3. PI3K/AKT/mTOR Pathway Antagonists

Important for cell survival and growth, the phosphoinositide 3-kinase (PI3K)/Ak
strain transforming (AKT)/mTOR pathway is also crucially involved in the induction of
type 1 interferons (Figure 3) [71]. It is commonly activated in numerous types of cancer [72]
via mutations or amplification of genes encoding receptor tyrosine kinases, subunits of
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PI3K, AKT or activating isoforms of rat sarcoma (Ras) [73]. The first agents, targeting
the PI3K pathway with the specific purpose of treating cancer, were analogues of ra-
pamycin, namely everolimus (RAD 001) and temsirolimus [73]. Hence, inhibition of mTOR
is expected to augment the oncolytic activity particularly of those viruses depending on
impaired antiviral responses within a tumor cell. The macrolide compound rapamycin is a
prototypical inhibitor of the serine/threonine protein kinase mTOR. Combining rapamycin
with the highly IFN-sensitive VSV-mutant strain (VSV∆M51) led to significant increase
of the oncolytic effect [74]. In addition other oncolytic RNA viruses, such as NDV and
reovirus, showed improved oncolytic effect in mice when co-treated with rapamycin [75,76].
Oncolytic DNA viruses also benefit from co-treatment with rapamycin. The yield and dis-
semination of an HSV-derived oncolytic virus was markedly increased in semi-permissive
tumor cell lines [77]. An oncolytic vaccinia virus (VACV) only achieved complete remission
in in vivo models when it was combined with rapamycin [78]. A key restriction factor
for myxoma virus in human cells is its dependence on AKT activation [79]. By inhibiting
mTORC1, AKT becomes hyperactivated through the release from the negative feedback
loop between ribosomal protein S6 kinase beta-1 (S6K1) and insulin receptor substrate
1 (IRS-1) [80]. This subsequently enhances myxoma virus replication which also trans-
lates to increased survival in vivo [81–83]. mTOR inhibition can also lead to a decrease in
phosphorylation of the effector proteins, eukaryotic translation initiation factor 4E-binding
protein 1 (4E-BPs) and S6Ks, which are essential for type I interferon (IFN) production
(Figure 3) [84,85]. This inhibition of the type I interferon response also contributes to a
more pronounced replication of myxoma virus in vitro and increased efficacy in vivo [86].
Everolimus was tested in combination with an oncolytic adenovirus. Even though, in vitro,
RAD001 seemed to interfere with the viral replication, potent anti-glioma effects were
seen in vivo. This was presumably due to the induction of autophagic cell death [87,88].
Increased efficacy through modulation of autophagy in similar settings is also described
for other OVs [75,76]. The hyperactivation of AKT during mTORC1 inhibition might have
benefits when combined with myxoma virus [81–83], but in other settings can have a
negative effect on survival. In phosphate and tensin homolog (PTEN)-deficient glioblas-
toma patients, for instance, hyperactivation of AKT, following rapamycin treatment, was
associated with more rapid onset of tumor progression [89]. The mTORC2 complex, which
is insensitive to rapamycin and its analogues, activates AKT and has a distinct role in
tumor maintenance and progression [90]. For OVs with a dependency on a weakened
antiviral state within the tumor, mTORC2 antagonists that also inhibit mTORC1 would be a
superior option. ATP-competitive mTOR kinase inhibitors (TKIs) achieve this by targeting
the kinase domain of mTOR, thereby also blocking the activation feedback of PI3K/Akt
signaling (Figure 3) [91]. Indeed, mTORC1/2 inhibitors, such as PP242, INK1341, INK128
or Torin1, were also able to increase HSV replication and oncolysis by altering eIF4E/4E-
BPs expression [77]. Specific inhibitors, such as rapamycin and TKIs, are prone to trigger
the development of secondary resistance after prolonged treatment [92]. Consequently,
inhibitors were developed that target the same signaling pathway but at multiple sites.
Dual PI3K/mTOR inhibitors, such as voxtalisib [93], target the p110α, β, and γ isoforms of
PI3K as well as the ATP-binding sites of both mTORC1 and mTORC2, completely suppress-
ing PI3K/Akt signaling [91]. Combinations with OVs have yet to be reported. BKM120,
another pan-class PI3K inhibitor, targeting all four catalytic isoforms, in combination with
oncolytic HSV-1, was effective in the treatment of Du145 prostate cancer sphere forming
cells (PCSCs) [94]. Finally, the benefits of combining PI3K/Akt signaling blockade and
OVs can also work in the opposite direction, demonstrated by the combination of an
oncolytic HSV and PI3K/Akt inhibitors (LY294002, triciribine, GDC-0941, BEZ235). Here,
treatment with the OV sensitized the tumor cells to the inhibitors through enhanced Akt
activation [95,96]. Indirectly, PI3K inhibitors, more specifically PI3Kδ-selective inhibitors,
could improve systemic OV delivery to tumors through attachment inhibition of systemic
macrophages [97].
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A. All structures throughout were drawn using MarvinSketch (ChemAxon) from publicly available
information. Abbreviations: RTK, receptor tyrosine kinase; PDK1, phosphoinositide-dependent
kinase 1; IRS1, insulin receptor substrate 1; PTEN, phosphatase and tensin homologue; mTOR,
mammalian target of rapamycin. PKR, protein kinase R; Myx, GTP-binding protein MX; AOS,
oligoadenylate synthetase; S6K, S6 kinase; 4E-BP1, Eukaryotic translation initiation factor 4E-binding
protein 1; Rheb, Ras homolog enriched in brain; IRS1, insulin receptor substrate 1.

2.4. Proteasome Inhibitors

Another approach to indirectly inhibit NF-κB is by blocking proteasomal degradation.
The rationale is that proteasome inhibition blocks NF-kBs release from the IKKβ complex
(Figure 2). Indeed, the proteasome inhibitor bortezomib improved the viral replication of
oncolytic HSV and also enhanced necroptotic tumor cell death through increased endo-
plasmatic reticulum (ER) stress and unfolded protein response (UPR) (Figure 4C) [98–100].
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However, when bortezomib was combined with VSV, a reduction in replication and spread
was seen in myeloma cells despite NF-κB activation being blocked. Interestingly, despite
these antagonistic effects in vitro, co-treatment in vivo did improve the antitumor effi-
cacy [101]. Similarly, another proteasome inhibitor PS-341 blocked the replication of VSV in
human adenocarcinoma A549 cells [102] and infection with HSV strains. These seemingly
contradictory studies make the combination of proteasome inhibitors and OVs a treatment
option that needs to be further elucidated.

2.5. Tankyrase Inhibition

Resistance to PI3/AktT inhibitors is linked to Wnt/b-catenin signaling hyperacti-
vation [103] and can be countered by the Wnt/tankyrase inhibitor NVP-TNKS656 [104].
Hence a direct synergy between tankyrase inhibitors (TNKSi) and OVs might be possible.
Tankyrases play a role in the replication of different herpes viruses. The inhibition of
tankyrase has been shown to promote replication of beta- (cytomegalovirus) and gamma-
herpesvirus (Epstein-Barr virus), with the underlying mechanism via which this benefits
the virus still to be elucidated [105,106]. In contrast, TNKS inhibition acts suppressive on
the alpha-herpesvirus, HSV-1 [104]. However, direct combination regimens of TNKSi and
OVs have not yet been published, but such studies might be merited.

2.6. Receptor Tyrosine Kinase Inhibitor

In the antiviral context, direct inhibition of PKR and Rnase was also achieved by
another class of small molecule compounds. The ATP-competitive inhibitor of vascular
endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) receptors, suni-
tinib, was reported also to be a strong inhibitor for both PKR and RnaseL [107] (Figure 2).
These compounds also have more direct impact on tumor growth through their negative
regulation of tumor vascularization. Due to their broader mode of action this group of
inhibitors can be referred to in more general terms as receptor tyrosine kinase inhibitors
(RTKIs). These compounds proved to be very beneficial when combined with oncolytic VSV,
leading to the elimination of prostate, breast, and kidney malignant tumors in mice [108].
Synergistic effects with RTKIs were also shown for vaccinia and reovirus in pancreatic
neuroendocrine tumors and renal cell carcinoma, respectively [109,110], as well as for the
combination with HSV in glioblastoma [111]. However, vaccine virus is also connected to
the activation of the epidermal growth factor receptor (EGFR) pathway for their replication
and spread. Here, simultaneous administration of RTKIs, such as imatinib and sorafenib,
resulted in the inhibition of vaccinia virus replication [112,113]. Nonetheless, oncolytic
vaccinia virotherapy, followed by sorafenib treatment, showed enhanced efficacy com-
pared to either monotherapy. This is most likely due to OV-mediated sensitization of the
tumor cells and tumor vasculature to VEGF/VEGFR inhibitors [112]. Part of these reported
benefits are also achieved through modulation of the tumor microenvironment. When
MC38 tumor bearing mice were pretreated with sunitinib, the anti-tumor response, induced
by a tumor associated antigen (TAA)-armed virus, was markedly improved through a
decrease in inhibitory regulatory T cells (Tregs) and myeloid-derived suppressor cells
(MDSCs) after sunitinib treatment [114]. This adaptive immune modulation is achieved
by interacting with RTKs expressed on regulatory immune cell populations, such as c-KIT
and VEGFR-1 [115,116]. In a similar setting, the more broad-range RTK inhibitor cabozan-
tinib also showed a more diverse and potent effect and immunomodulatory effects with
additional expression of MHC-I molecules, ICAM-1, Fas, and calreticulin on tumor cells.
Modulation of antigen expression is most likely to be facilitated by its hepatocyte growth
factor receptor (MET) inhibition [117]. Another more specific EGFR inhibitor, erlotinib,
also seems to enhance the oncolytic effect in some human pancreatic cancer cells through a
similar mechanism for oncolytic HSV. Here, prolonged viral presence was reported [118].
On the other hand, in tumors, characterized by upregulated EGFR signaling, the synergism
seemed predominantly driven by a concerted antiangiogenic effect [119].
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Figure 4. Increasing bystander killing of tumor cells by small molecules after OV treatment. (A) Cy-
tokines produced in response to OV treatment of the tumor can activate the extrinsic pathway for
apoptosis through binding with death receptors such as Fas and TNF-α receptor. Oligomerization of
these receptors in turn facilitates the recruitment of adaptor proteins, for example, binding of Fas
ligand with Fas recruits caspase-8 through the adaptor protein FADD. Cleaved caspase-8 can directly
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activate caspase-3 and result in cell death. (B) Additionally, cleaved caspase-8 connects to the
pathways of intrinsic apoptosis. This occurs when it cleaves Bid. Truncated Bid subsequently trans-
locates to the mitochondria where it induces cytochrome release leading to activation of caspase-9
and caspase-3. This cytochrome c release is facilitated by the oligomerization of the pro-apoptotic
Bax and Bak proteins at the outer mitochondria membrane. This process stands under the control
of several proteins including Bcl-2, Bcl-xL and MCL-1. These pro-survival proteins in turn are
inhibited by “BH3 only” proteins. (C) Intrinsic apoptosis can also be additionally stimulated through
compounds that induce DNA damage, since this leads to p53 upregulation, resulting in indirectly
Bax/Bak activation. ER stress signaling, caused by the accumulation of misfolded protein in the
ER, can also facilitate this effect through ASK1 with the activation and subsequent translocation of
JNK to the mitochondrial membrane. In addition, ER stress can also promote cell death through the
activation of MAPK-mediated activation of eIF2α and ATF4 leading to the nuclear translocation of
CHOP where it promotes transcription of pro-apoptotic genes. Apart from promoting cell death,
eIF2α and TRAF2 also attenuates protein translation when misfolded protein accumulate in the ER.
Since this is often the case during OV replication, the inhibition of these mechanisms can improve
the efficacy of OV treatment. (D) Also the stabilizing or destabilizing of microtubules can trigger
apoptosis. More specially, when cells are arrested G2/M phase, this can lead to the activation of
intrinsic apoptosis. Targeting these pathways can improve oncolysis, tumor immunogenicity and
viral replication depending on what aspect of cell death is targeted. Small molecule compounds
targeting different stages of this process are presented by red annotated squares. See the main text
for more information. Created with biorender.com. (E) Selected chemical structures of compounds
depicted in panels A-D. All structures throughout were drawn using MarvinSketch (ChemAxon)
from publicly available information. Abbreviations: TRADD, TNFR1-associated death domain
protein; TRAF2, TNF receptor-associated factor 2; cIAP, cellular inhibitor of apoptosis; RIP, receptor
interacting protein; FADD, fas-associated death domain; BH3, BCL-2 homology domain 3; SMC,
Second mitochondria-derived activator of caspase mimetic compounds; Ub, ubiquitin; MCL-1;
myeloid cell leukemia 1; XIAP, X-linked inhibitor of apoptosis protein; BID, BH3 interacting-domain
death agonist; tBID, truncated Bid; AdV, adenovirus; JNK, c-Jun NH2-terminal kinase; BCL-xL, B-cell
lymphoma, extra-large; BCL-2, B-cell lymphoma 2; BAX, BCL2 associated X; BAK, Bcl-2 homologous
antagonist killer; Apaf-1, apoptotic protease activating factor-1; ASK1, Apoptosis signal-regulating
kinase 1; CHOP, CCAAT-enhancer-binding protein homologous protein; DOX, downstream of CHOP;
DR5, death receptor 5 (DR5); MDA, microtubule-destabilizing agents; MSA, microtubule-stabilizing
agent; ATF4, Activating transcription factor 4; PERK, PRKR-like endoplasmic reticulum kinase; IRE1,
inositol-requiring enzyme; CP, cyclophosphamide; Gem, gemcitabine; 5-Fu, fluorouracil; GBF-1,
Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1; GCA-2, GBF-1 inhibitor
golgicide A; P, phosphorylated; VCP, valosin-containing protein; eIF2α, eukaryotic translation
initiation factor 2α.

2.7. Histone Deacetylase Inhibitors (HDIs)

Transcription regulation requires deacetylase activity [120]. Histone deacetylase in-
hibitor compounds (HDIs) were found to rescue viral replication in resistant cells [120–122],
which led to several investigations into the potential to augment OV replication. Inter-
estingly, the blunting of the antiviral response (Figure 1) seemed to be limited to tumor
cells, leaving the inhibition of viral replication in normal tissue intact [17]. However, an
enhanced effect was also seen in proliferating endothelial cells [123]. The mechanism
by which this specificity occurs remains unclear. It is suggested that this might be due
to either an inherent preference of OVs for tumor cells or an enhanced susceptibility of
tumor cells for these small molecules [124]. This enhanced susceptibility could be caused
by the aberrant activity of histone deacetylases (HDACs), documented for several types
of cancers [125–127]. Numerous HDI/OV combinations were tested in different tumor
models showing the therapeutic benefit of blunting the innate antiviral response during
OV treatment (Table 1). Some HDIs, such as butyrate and trichostatin A (TSA), can also
indirectly inhibit the innate immune signaling through the inhibition of NF-κB activa-
tion by reducing proteasome subunit expression [128]. Apart from inhibiting the innate
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immune response, the adaptive immune response was also beneficially influenced with
entinostat resulting in prolonged lymphopenia and depletion of Tregs [129–131]. Another
HDI, valproate, was shown to suppress production of IFN-γ, and immune cell infiltration
including NK cells, macrophages and lymphocytes, which helped promote virus growth
but also has the potential to dampen anti-tumor immune responses [130,132–134]. This
discrepancy in modulating the adaptive immune response can be related to the differences
in HDAC targets of the different HDIs. Trichostatin A inhibits class I and II HDACS [135],
Entinostat inhibits class I HDACs [136], whereas vorinostat and to a lesser extent valproate
are pan-HDAC inhibitors [137,138]. Among the HDIs vorinostat is considered the more
potent candidate for combination with OVs. However, more recent screenings have un-
covered an even more potent compound to promote viral replication in less permissive
tumors, namely viral sensitizer 1 and analog 28 (VSe1-28). This increased viral yield of VSV
up to 2000 fold in vitro [124]. Further, reovirus has recently been described to synergize
with HDAC inhibitor belinostat in both sensitive and belinostat-resistant T cell lymphoma
cells [139].

Table 1. Synergy of HDIs and OVs.

HDI OV Tumor References

entinostat VSV B16-F10, CT26, L363(MM),
HT29, M14, PC3, SW620, 4T1 [17,129,130,140]

vorinostat VSV B16-F10 [130,141]

trichostatin HSV, vaccinia SAS, Ca9-22, HSC, HCT116,
B26-F10, U87, SW480, HeLa [123,142,143]

valproate HSV, H1 U87, AGS1, U251, Gli36, HeLa [132–134,144]

Scriptaid & LBH589 Adenovirus Glioblastoma [145]

In addition, the HDI trichostatin has been reported to increase expression of MHC-I
molecules on the cell surface [146]. This is of particular interest for OVs used in a cancer
vaccine setting, where downregulation of MHC-I expression can result in a relapse [147].
This increased MHC-I expression was further improved when trichostatin was combined
with the hypomethylation agent, 5-azacytidine [146,148]. Beyond the interference with
the innate antiviral activity and stimulating effects on the adaptive immune responses,
HDIs have also been shown to enhance the direct tumor cell killing and replication of H1
parvovirus by increasing the acetylation of the viral NS-1 protein [144].

3. Combinations Enhancing Tumor Cell Death

Evasion of cell death is one of the main hallmarks of cancer. Apoptosis resistance
develops frequently by either upregulation of anti-apoptotic elements or countering pro-
apoptotic stimuli [149]. Though less prominent, other forms of programmed cell death
can be similarly overridden, such as necroptosis [150]. Of note, some viruses employ
analogous strategies to counter cell death as an archetypal cellular defense mechanism
against viral infection, exemplified by the oncolytic HSV [151] and vaccinia virus [152].
Consequently, viral oncolysis alone rarely leads to widespread and complete cell death,
opening the door for a combination approach with cell death sensitizers. Another aspect
of such combinations links the aforementioned often limited intra-tumoral spread of OVs
with the potential of bystander killing of uninfected cells [153]. Sensitizing a tumor mass
with agents promoting cell death has been shown to significantly increase the kill zone
of oncolytic viruses beyond the infected areas, yet still confined to the tumor [154]. The
following section gives an overview of small molecule compounds that augment tumor
cell killing and thus hold promise to synergize with oncolytic virotherapy.
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3.1. ER Stress Inducers

One approach to promote tumor cell death is by amplifying ER stress. When cells
synthesize secretory proteins in amounts that exceed the processing machinery, proteins
are accumulated in the ER. Because this setting is linked to cells with high protein synthesis
levels such as cancer cells and virally infected cells [155,156], OV-infected tumor cells
would be particularly sensitive to disruption of ER homeostasis. The protein accumulation
triggers the unfolded protein response (UPR) which tries to alleviate the ER by increasing
ER chaperone gene transcription, lowering protein synthesis, and, if all else fails, inducing
cell death (Figure 4C) [157]. Inhibiting these adaptive UPR measures has been studied
in combination with the oncolytic M1- and adenovirus using the valosin-containing pro-
tein (VCP) inhibitor Eeyarestatin I and the Golgi-specific brefeldin A-resistant guanine
nucleotide exchange factor 1 (GBF-1) inhibitor golgicide A (GCA-2), respectively. These
combinations resulted in the significantly enhanced anticancer efficacy of the OV treat-
ment [158,159]. The fine balance between homeostasis and apoptotic induction by the
UPRER, now requires more mechanistic knowledge of virus interactions with the UPRER
and drug synergy experiments, before this field is ripe for clinical applications [160]. In-
direct effects of ER stress inducers, such as thapsigargin (Tg) and ionomycin (Im), can
also enhance the activity of oncolytic adenoviruses through an alteration in Ca2+ flux and
protein kinase C signaling [161].

3.2. Analogues of DNA Building Blocks

Pyrimidine analogues, such as Gemcitabine and 5-fluorouracil, are common chemother-
apeutic compounds used for treating various types of malignancies. By interfering with
DNA replication these antimetabolites induce inhibition of DNA synthesis with subsequent
p53 upregulation, which ultimately can lead to cell death (Figure 4C) [162]. Naturally,
these cytotoxic compounds combine well with several OVs [163–169]. However, these
antimetabolites can also induce senescence of tumor cells which can regain proliferative
activity after treatment cessation [170]. Here certain OVs, like oncolytic measles virus,
have been shown to contribute to eliminating these senescent cells, thereby avoiding re-
lapse [167]. Specific pyrimidine analogues can also have immune modulating effects. These
have been suggested to positively affect the antitumor immune response over the antiviral
one [166].

3.3. Antagonizing Inhibitors of Apoptosis (IAPs)

One major barrier to effective OV therapy is virus-induced expression of type I IFN
and nuclear factor kappa B (NF-κB)-responsive cytokines, which can orchestrate an antivi-
ral state in tumors. On the other hand, the subsequently produced cytokines (TNF-α, Fas
ligand (FasL), TNF-related apoptosis-inducing ligand (TRAIL), etc.) can also be exploited
to induce tumor cell killing beyond the zone of initial infection, facilitated via co-treatment
with a number of different pharmaceutical agents, such as SMAC-mimetic compounds
(SMCs) [154,171,172] and B cell lymphoma-2 (BCL-2) homology domain 3 (BH3) mimet-
ics [173,174]. Of note, tumor cells are often more sensitive to these chemical compounds
than normal cells since NF-κB signaling is frequently constitutively activated [175], leading
to elevated expression of proteins participating in cell death pathways [176].

The second mitochondria-derived activator of caspase (SMAC) is a pro-apoptotic
factor released from the mitochondria during the process of cell death. Cytosolic SMAC
can potentiate the activity of different caspases by inhibiting X-linked inhibitor of apoptosis
protein (XIAP) and cellular inhibitors of apoptosis (cIAPs) (Figure 4B), which otherwise
antagonize caspase cleavage [177]. SMAC mimetic compounds (SMCs) are small molecule
mimetics of this cellular factor that can potentiate TRAIL- and TNF-α-mediated cell death
(Figure 4A,B), especially in tumor cells where theses signaling pathways are aberrant [178].
Despite their potent effects on certain cell lines as a single agent due to the presence of
endogenous TNF-α, SMAC mimetics are ineffective as a monotherapy in most tumor cell
lines. In addition, drug resistance mechanisms include a SMC-induced upregulation of
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cIAP2 [179] and LRIG1 [180]. As enhancers of pro-apoptotic stimuli, however, they act
as strong enhancers of the cytotoxicity of many apoptosis-inducing therapies, such as
OVs [181]. This synergy has been described for several SMCs and viruses (see Table 2)
and is mainly facilitated by the cytokines produced in response to OV infection. The most
important cytokines involved are TRAIL [178,182,183], IL-8 [183], IL-1A [183], IL-1β [184]
and TNF-α [176,185]. To improve the synergy between SMC and OVs even further, OVs
have been armed with exogenous tumor cell death enhancing (TCDE) cytokines, like
TNF-α [186], which also addresses toxicity issues commonly associated with their systemic
delivery. In an armed OV setting, production of these cytokines is largely limited to the
tumor [187].

Table 2. Selected SMC/OV combinations.

SMC OV Tumor Model References

LCL-161 VSV, M1 EMT-6, CT26, MOC-11, SNB75, SG539,
BTIC, HCT-116, Kym-1, M-3 [154,183,186,188–191]

Birinapant M1 HCT-116, Huh-7 [183,191]

Apart from enhanced cytotoxic effects, SMC/OV combinations can also improve the
antitumor response by modulating the adaptive immune response. Exhaustion of CD8+

T-cells was reduced by an SMC-induced tumor macrophage M2 to M1 repolarization, an
effect that could be further enhanced by PD-1 checkpoint blockade [190].

B cell lymphoma-2 (BCL-2) homology domain 3 (BH3) mimetics are antagonists that
can bind with the hydrophobic Bcl-2 homology (BH) groove of Bcl-2 family proteins,
thereby inhibiting these pro-survival proteins and restoring the apoptotic processes in tu-
mor cells (Figure 4B) [192]. Several BH3 mimetics, namely GX15-070 (Obatoclax), EM20-25,
BI-97D6 were shown to synergistically increase tumor cell death when combined with
oncolytic vaccinia virus, VSV and AdV, respectively [173,174,193,194]. BH3 mimetics also
could have a place in the cancer vaccine setting where treatment with GX15-070 (Obatoclax)
increased intra-tumoral activated CD8+ T-cells while reducing Treg activity [193].

3.4. Microtubule Targeting Compounds

Taxane compounds achieve their therapeutic effect through stabilizing the spindle
microtubule dynamics resulting in inhibited cell division (Figure 4D) [195]. In combination
with OVs, the microtubule stabilizing agents (MSAs), docetaxel and paclitaxel, were able
to sensitize a variety of tumor types to cell death following stimulation by a subset of
OV infection-induced cytokines [196–202]. In combination with reovirus, even tumor
cells not sensitive to paclitaxel alone showed a strongly enhanced cell death, which was
less due to increased oncolyis but, rather, resulted from activation of cell death programs
prior to viral assembly [203]. OVs, armed with pro-apoptotic cargos, could sensitized the
cancer cells even further to combination treatment [204]. More out-of-the-box ideas, such
as encapsulating paclitaxel and oncolytic adenovirus, together in extracellular vesicles
with improved transduction and efficacy, show that there new modes of synergy still to be
elucidated [205].

Another way of interfering with the tubuline network is through destabilization.
Indeed, microtubule-destabilizing agents (MDAs), such as vinca alkaloids, colchicine
and platinum compounds, have long been used as cancer chemotherapeutics. These
compounds can also increase cell death through bystander killing after exposure to OV-
induced cytokines [206–208]. The synergy of these types of compounds have been described
in numerous animal and human settings [200,201,203,208–213]. In addition, MDAs were
able to increase OV replication through a previously unappreciated role of microtubule
structures in regulating type I IFN translation (Figure 1). A colchicine-induced drop in IFN
and ISG expression allowed for a more robust replication of an oncolytic VSV variant with
a heightened IFN sensitivity [206,214]. On the other hand, HSV-induced cisplatin retention
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was reported, resulting in increased DNA damage and anti-tumor immunity [215]. An
additional route through which OV treatment can facilitate cell death in combination with
chemotherapeutics, more specifically platinum compounds, is by downregulating myeloid
cell leukemia 1 (MCL-1) (Figure 4B). MCL-1 is an anti-apoptotic member of the BCL-2
protein family that is more strongly degraded during oncolytic adenovirus infection. Its
elimination in turn allows compounds like cisplatin to push tumor cells more efficiently
towards cell death [216].

3.5. Topoisomerase Inhibitors

DNA topoisomerases are enzymes that solve topological problems associated with
DNA replication, transcription, recombination, and chromatin remodeling by introducing
temporary single- or double-strand breaks in the DNA [217]. Topoisomerase inhibitors
are small molecules that interfere with the function of these enzymes through either in-
tercalation or alkylation, leading to single and double stranded DNA breaks (Figure 4C).
When the integrity of the genome is sufficiently compromised, apoptosis and cell death
will follow, particularly in fast dividing cells, such as tumor cells, which are especially
sensitive to this [218,219]. Improving the potency of these inhibitors, specifically in tumor
cells, could allow lower dosing of these compounds, thereby limiting their adverse effects.
This is of special importance for these therapeutics, since their use has been linked to
the development of leukemia later in life [220,221]. An important mode of action of the
reported synergy between OV treatment and doxorubicin is believed to be both treat-
ments pushing the tumor cells in conflicting states of mitotic progression, resulting in
higher tumor cell death than either monotherapy could achieve [222]. In addition, the
effect of doxorubicin can be augmented by OV-mediated MCL-1 downregulation with
co-treatment significantly increasing tumor cell death (Figure 4B,C) [223].For several cancer
types, doxorubicin-treated senescent tumor cells, which are resistant to more classical
methods of treatment, were efficiently killed by an oncolytic measles virus [167]. The
combination of doxorubicin with an oncolytic adenovirus improved cell death in a more
immunogenic fashion. This was further enhanced with additional co-treatment of the
cyclophosphamide analogue ifosfamide [224]. Alternatively, the co-application of doxoru-
bicin can also promote an increased infectivity of tumor cells by oncolytic viruses such
as certain reovirus strains [225,226]. A more complex interplay has also been reported,
where OV treatment induces the nuclear translocation of the cytoplasmic transcription
factor cAMP response element-binding protein 3-like 1 (CREB3L1) [227], which in turn is
associated with augmented doxorubicin-mediated cell death [228].

4. Combinations Improving the Antitumor Immune Response

Although initially envisioned to act primarily via their tumoricidal actions, over the
last decade oncolytic viruses have emerged as potent immune activators and promis-
ing partners for cancer immunotherapies. The potential and promising preclinical and
clinical findings of combinations of OVs with major immunotherapeutic approaches
such as immune checkpoint inhibitors, T cell therapies, and cancer vaccines are beyond
the scope of this small molecule themed review but are extensively discussed in recent
publications [22,229–233]. Small molecule compounds that augment the antitumor im-
mune response can modulate the tumor microenvironment or affect the adaptive immunity
arm. The natural immune-activating characteristics renders OVs as the ideal platform to
work in conjunction with small molecule immunotherapies. The TME consists of extracellu-
lar matrix (ECM), stromal and immune cells. Some of these cells such as Tregs, MDSCs and
M2 macrophages drive an immunosuppressive environment by the secretion of cytokines
such as IL-10 or TGF-β [234,235]. Within the TME many human tumors are infiltrated by
Tregs [236], with preclinical data indicating that their depletion can enhance or restore anti-
tumor immunity [237]. This makes Treg-depleting small molecules attractive candidates to
counter cancer relapses caused by these immunosuppressive cells after OV treatment.
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4.1. Cyclophosphamide (CP)

CP was extensively tested in combination with OVs, where synergy was described
mostly through CPs immunosuppressive effects which allowed the OVs to replicate longer,
thereby prolonging and enhancing their therapeutic efficacy [238–241]. However, CP can
also play a role in improving the anti-tumor immune response elicited by initial OV treat-
ment. Low-dose CP does not have the same immunosuppressive and toxic effects that
allow increased OV replication, but does decrease the number of Tregs without compromis-
ing induction of antitumor or antiviral T-cell responses [242,243]. This selective sensitivity
of Tregs to CP, comprehensively reviewed by Madondo et al. [244], works through several
mechanisms. Combined, these mechanisms allow for depletion or reduced activity of
Tregs, while leaving other cell populations intact [244]. This approach shows great promise,
especially in combination with oncolytic virus-based cancer vaccination [245].

4.2. Inhibitors of VEGF and PDGF Signaling

VEGF-targeting agents such as sunitinib and cabozantinib can modulate the com-
position of immune cell subpopulations in the tumor and have been shown to enhance
the efficacy of OV treatment. These agents, in combination with OVs, also act on several
other aspects of the tumor adaptive immunity and TME, but mainly act through reducing
the function of immunosuppressive cells, such as MDSCs, which in turn change cytokine
levels (IL-1b, IL-6 and C-X-C motif chemokine ligand 1 (CXCL1)) and amplify the CD4+

and CD8+-mediated tumor regression [109,110,117,246]. The molecular mechanism under-
lying this MDSC depletion is believed to relate to inhibition of STAT3, which blocks the
development of immature myeloid cells into MDSCs, and VEGFR blockade, which results
in a lower capacity of MDSCs to migrate to the TME [247].

4.3. Transforming Growth Factor-β TGF-β Inhibition

During cancer progression, cross-talk of EGFR signaling occurs with another important
signaling cascade, which is centered around the cytokine family of TGF-β [248,249]. The
effects of TGF-β are very diverse and affect many signaling pathways of numerous cell
types in vivo, including cancer cells [249]. Due to the interaction complexity, the effect
of TGF-β evolves throughout the progression of cancer. Initially, it has a suppressing
effect by triggering cell cycle arrest [250]. However, as cancer progresses, tumor cells
become resistant to this response and TGF-β signaling results in epithelial–to-mesenchymal
transition and increased cell migration with subsequent metastases [250,251]. TGF-β
also contributes to an immunosuppressive TME [252], which impedes any anti-tumor
immune response that is elicited during OV treatment [253]. Indeed, when a small-molecule
inhibitor of TGF-β receptor 1 (TGF-βR1), known as A8301 [254], was combined with
oncolytic HSV as treatment for murine rhabdomyosarcoma, an increased efficacy was
seen due to an improved anti-tumor T cell response [255]. During non-canonical TGF-β
signaling, crosstalk occurs with numerous other signaling pathways, such as PI3K, JNK
and NF-κB [249]. As described above, these signaling pathways can have inhibiting effects
on the replication and potency of OVs. In certain tumor settings an indirect inhibition
of the pathways through TGF-β blockage could also promote OV replication. Indeed,
in glioblastoma (GBM) the TGF-βRI kinase inhibitors, galunisertib [256], SB431542 and
LY2109761 facilitated an increase in HSV replication through indirect inhibition of JNK-
MAPK signaling [257]. Interestingly, SB431542 also inhibited oncolytic reovirus-mediated
cell lysis, contrary to A8301 and galunisertib (LY2157299), indicating TGF-β signaling
independent mechanisms further to be elucidated [258].

4.4. Topoisomerase Inhibitors

The cytotoxicity of some topoisomerase inhibitor compounds has been shown to be
associated with enhanced immunogenicity of dying cells, in part due to the widespread
genomic damages [259]. In addition, topoisomerase inhibitors can also improve tumor
immunogenicity by upregulating antigen presentation as shown for a variety of melanoma
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cell lines and gliomas in response to nanomolar levels of DNA intercalating daunoru-
bicin [260]. These immune activating characteristics could be synergistically enhanced by
a combination of an oncolytic herpesvirus and adenovirus with mitoxantrone [261] and
temozolomide [27,262,263].

4.5. Novel Compounds Targeting Adaptive Treatment Resistance of the Tumor

There are also numerous other small molecule inhibitors that counteract different
aspects of immunosuppressive adaptive-mediated treatment resistance. However, these
compounds have yet to be tested in combination with OVs and will therefore only be
mentioned briefly, for example, inhibition of ubiquitin-specific peptidase 7 (USP7) [264,265],
PI3Kdelta [266], the CBP/EP300. In addition, topoisomerase inhibitors can also improve
tumor immunogenicity by upregulating antigen presentation as shown for a variety of
melanoma cell lines and gliomas in response to nanomolar levels of DNA intercalating
daunorubicin [260] or bromodomain [267]; all have been shown to inhibit Treg function,
subsequently allowing for a more potent antitumor immune response to arise.

4.6. Checkpoint Inhibitors (CPIs)

The benefits of combining antibody-based CPIs with OVs are well-known and have
been comprehensively reviewed elsewhere [22,268–270]. Naturally, upregulation of im-
mune checkpoints is a common result after OV treatment, leading to an increase in immune
suppression and subsequent tumor relapse [32]. This can be countered by macromolecule
CPIs. However, small molecule CPIs have also been developed and hold several benefits
over their antibody counterparts. This upcoming class of small molecules has been exten-
sively reviewed [271–274]. However, combinations with OVs have not yet been described
for small molecule CPIs.

4.7. Stimulator of Interferon Genes (STING)

The cyclic guanosine monophosphate–adenosine monophosphate (GMP-AMP) syn-
thase (cGAS)-stimulator of the interferon genes (STING) signaling pathway has recently
been described as playing an important role, not only in the innate response to infec-
tion [275–278], but also in cancer immune surveillance. STING activation initiates a type
I interferon (IFN)-driven pro-inflammatory program that stimulates basic leucine zipper
transcriptional factor ATF-like 3 (BATF3)-dependent dendritic cell (DC) cross-presentation
and promotes CD8+ T cell-mediated anti-tumor immune responses [279–282]. STING ago-
nists have thus emerged as a class of promising new therapeutics that may enhance tumor
immunogenicity and several candidates are being evaluated in pre-clinical and clinical
contexts [283–285]. However, STING deficiency is common in several cancer entities due
to the anti-tumorigenic and immune-activating role of STING signaling [286–288] and data
suggest that, consequently, oncolytic viruses benefit from STING loss due to a decreased
antiviral IFN response [287,288]. Several OVs also encode gene products that interfere
with the cGAS–STING signaling pathway [289,290]. These considerations make a potential
combination of OV with STING agonists at first look counterintuitive. However, STING
deficiency or dysfunction has been associated with an exclusion of lymphoid cells from the
TME [279] and, while viral replication may be enhanced in STING loss tumors, an optimal
induction of an adaptive anti-tumor immune response could be hindered. Indeed, OVs
that induce an IFN response via cGAS-STING signaling may have an advantage due to
the involvement of this pathway in the bridging of innate and adaptive immunity [291].
Hence, the combination of small molecule STING agonists with certain oncolytic viruses
may represent an interesting novel approach to enhance anti-tumor immune responses
in OV therapy, although careful assessment of the co-treatment regimen to balance the
antiviral and antitumoral effects of STING will be paramount.
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5. Safety Considerations

To date, clinical experience with virotherapy-enhancing combinations is limited and
our current understanding on the synergism of select combinations has been based on
extensive preclinical studies. Twenty years of clinical testing of OV’s in monotherapy
settings have underlined their excellent safety profile with grade 1 and 2 being the most
commonly reported adverse events [5]. To what extent some small molecule combinations
may compromise such a safety profile or adversely affect the overall therapeutic efficacy of
oncolytic viruses is currently, in large part, subject to conjecture and should therefore be
carefully addressed in pre-clinical settings. For example, dimethyl fumarate potentiates
replication and oncolysis induced by VSV∆M51 [66], but lowers leukocyte counts and can
result in reactivation of JC virus, leading to multifocal leukoencephalopathy (PML). Some
HDIs have also been shown to reactivate latent HIV [292], EBV and HSV-1 [293]. The risk
that such compounds may reactivate a second virus, with that virus’ interactions with
the initial oncolytic virus being unknown, should not be underestimated. The specific
inhibition profiles of the particular small molecule, as well as the OV in question, will
also determine the outcome of an OV/drug combination. While enhancing OV replica-
tion, inhibition of certain HDACs (HDAC 2, 6, 11) may enhance Treg function [294], so
choosing a drug with a favorable profile, selection of patients with low tumor Treg counts
or careful scheduling of the drug and OV may enhance the final anti-tumor synergy. In
addition, some virotherapy-enhancing combinations may also potentially enhance the
safety profile. For example, ruxolitinib has long been proposed to enhance activity of
numerous OVs due to countering the antiviral JAK/STAT signaling and no toxicities have
been reported in different preclinical studies [44,49]. However, its combination with an
interferon-armed VSV-hIFN-NIS in two current clinical trials (see Table 3) may also act
to offset potential toxicities caused by excessive production of the interferon transgene in
particularly permissive tumors.

Table 3. Currently active * clinical trials with oncolytic virus and small molecule compound combinations.

Virus
Family Oncolytic Virus Design Small Molecule

Compound Indication Phase/Status CinicalTrials.gov
Reference

HSV

rQNestin34.5v.2
HSV-1 with viral gene ICP34.5
under glioma specific nestin

promoter control

Cyclophosphamide Glioma I
recruiting NCT03152318

TBI-1401(HF10)
naturally attenuated HSV-1

Gemcitabine +
nab-pactitaxel Pancreatic cancer I

not recruiting NCT03252808

AdV

ONCOS-102
Ad5/3-24 expressing a

GM-CSF transgene
Cyclophosphamide Melanoma I

not recruiting NCT03003676

ONCOS-102
Ad5/3-24 expressing a

GM-CSF transgene
Cyclophosphamide Mesothelioma II

not recruiting NCT02879669

LOAd703
AdV5/35 expressing

TMZ-CD40L and 4-1BBL
transgenes

Gemcitabine +
nab-pactitaxel Pancreatic cancer I/IIa

recruiting NCT02705196

RV

Pelareorep
Unmodified human reovirus

typ 3 (Dearing strain)
Paclitaxel Breast cancer II

recruiting NCT04215146

Pelareorep
Unmodified human reovirus

typ 3 (Dearing strain)
Carfilzomib Multiple myeloma I

recruiting NCT03605719

VV
JX-594 (Pexa-Vec)

Wyeth strain VV expressing a
GM-CSF transgene

Cyclophosphamide Sarcoma, breast
cancer

II
recruiting NCT02630368
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Table 3. Cont.

Virus
Family Oncolytic Virus Design Small Molecule

Compound Indication Phase/Status CinicalTrials.gov
Reference

VSV

VSV-hIFN-NIS
VSV expressing an interferon

and a sodium iodide
symporter transgene

Ruxolitinib
Multiple myeloma,

AML, T-cell
lymphoma

I
recruiting NCT03017820

VSV-hIFN-NIS
VSV expressing an interferon

and a sodium iodide
symporter transgene

Ruxolitinib Endometrial
cancer

I
recruiting NCT03120624

AdV, adenovirus; GM-CSF, granulocyte-macrophage colony-stimulating factor; hIFN, human interferon; HSV-1, herpes simplex virus type
1; ICP, infected cell protein; TMZ-CD40L, trimerized membrane-bound CD40 ligand; VSV, vesicular stomatitis virus; VV, vaccinia virus.
* clinicaltrials.org accessed on 23 June 2021; search term “oncolytic”; filters “recruiting” and “active, not recruiting”.

6. Conclusions

While our understanding of how to capture the full potential of oncolytic virotherapy
continues to evolve, it appears clear that release of tumor associated antigens and activation
of the immune system is crucial for these anti-oncolytic agents. Consequently, combinations
of oncolytic viruses with immune checkpoint inhibitors are dominating the current clinical
trial landscape [295,296]. However, combinations with select small molecule compounds
can address some of the limitations of the oncolytic core features and improve oncolysis,
intra-tumoral spread, immunogenicity of tumor cell killing, as well as improving antigen
processing and the regulation of immune cell populations. Such combinations have now
also entered clinical testing [18] (for currently active trials, see Table 3).

In conclusion, there are many potent compounds available to counter most im-
munosuppressive mechanisms a tumor can display. The big challenge will be to
develop methods to efficiently and affordably determine which combination to use
when, and for which patients.
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