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Abstract

Background: Circadian rhythms regulate many physiological, behavioral and reproductive processes. These rhythms are
often controlled by light, and daily cycles of solar illumination entrain many clock regulated processes. In scleractinian corals
a number of different processes and behaviors are associated with specific periods of solar illumination or non-
illumination—for example, skeletal deposition, feeding and both brooding and broadcast spawning.

Methodology/Principal Findings: We have undertaken an analysis of diurnal expression of the whole transcriptome and
more focused studies on a number of candidate circadian genes in the coral Acropora millepora using deep RNA sequencing
and quantitative PCR. Many examples of diurnal cycles of RNA abundance were identified, some of which are light
responsive and damped quickly under constant darkness, for example, cryptochrome 1 and timeless, but others that
continue to cycle in a robust manner when kept in constant darkness, for example, clock, cryptochrome 2, cycle and eyes
absent, indicating that their transcription is regulated by an endogenous clock entrained to the light-dark cycle. Many other
biological processes that varied between day and night were also identified by a clustering analysis of gene ontology
annotations.

Conclusions/Significance: Corals exhibit diurnal patterns of gene expression that may participate in the regulation of
circadian biological processes. Rhythmic cycles of gene expression occur under constant darkness in both populations of
coral larvae that lack zooxanthellae and in individual adult tissue containing zooxanthellae, indicating that transcription is
under the control of a biological clock. In addition to genes potentially involved in regulating circadian processes, many
other pathways were found to display diel cycles of transcription.
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Introduction

Biological clocks regulate many diverse aspects of animal

behavior and physiology. Light plays a major role in entraining

most biological clocks operating on a daily cycle, but other factors,

such as nutrient intake, can also drive clocks (e.g. [1,2]). Like other

animals, corals exhibit major transitions between daytime and

nighttime. For example, in daylight most scleractinian corals

retract their tentacles and rely on photosynthesis within endosym-

biotic zooxanthallae to produce energy. At night, when no

photosynthesis occurs, corals extend tentacles and actively feed on

drifting prey [3]. Like many daily cycles, the extension and

retraction of tentacles is an entrained biological process that

continues in a rhythmic manner in corals that are kept in constant

darkness [4].

Other processes in corals may also be under the control of

biological clocks, for example the carefully controlled timing of

gamete/planula release during sexual reproduction (e.g. [5–7])

and various metabolic processes [8]. In an effort to shed light on

circadian processes in corals, we and others have previously

searched in the coral transcriptome for potential orthologs of genes

involved in regulating circadian processes in other animals [9–11].

Candidate orthologs were identified for many such genes,

including bmal/cycle, clock, cryptochromes 1 and 2, nr1d1, period 1

and 2, timeless and many others, some of which have also been

described in the sea anemone Nematostella vectensis [10,11].

Photoreceptors that may synchronize light mediated responses

have also been described in corals [10,12].

There is an important difference between daily cycles that

respond directly to light, for example photoreception, and process

that are entrained by light but continue to cycle in a circadian

manner when kept in constant darkness. The former type of

process responds directly to light, while the latter are under the

control of an entrained clock [13]. Direct responses are sometimes

said to be controlled by an hour-glass mechanism while entrained

processes are described as being controlled by a biological clock or

a circadian mechanism. It is the entrained processes that play

central roles in regulating circadian cycles [14].

In this study we explore cyclic patterns of transcription in the

coral, Acropora millepora and whether such patterns are direct

responses to light or are controlled by a biological clock. These

analyses are preformed in both populations of azooxanthellar 7
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day old larvae by deep sequencing and by quantitative PCR

(QPCR), and in individual zooxanthellar adult tissue by QPCR.

Bioinformatic analysis of A. millepora transcriptome sequencing

shows that most, but not all, of the candidate circadian orthologs

display strong diurnal regulation, with up to 200 fold higher levels

of expression between different light conditions. Thousands of

other genes also display differences in transcription in response to

light. More detailed analysis of transcription profiles over a

24 hour period demonstrated that many patterns are, as predicted,

rhythmic, and continue to cycle for at least 24 hours when corals

are kept in total darkness.

Methods

Sample Collection
In November 2008, adult colonies of A. millepora were collected

from Cattle Bay at Orpheus Island (18u35953.40S 146u29928.80E)

and Pelorus Island (18u33940.60S 146u30903.030E), Great Barrier

Reef, Australia. Individual colonies were placed in separate bins

back at the Orpheus Island Research Station, and colonies

spawned at similar times as their species cohort on the reef.

Gamete bundles from more than 10 adult colonies of A. millepora

were mixed and kept undisturbed for approximately 1–2 hours to

allow cross-fertilization. Newly fertilized larvae were washed and

transferred to two fiberglass 500 L larval culture tanks continu-

ously receiving 28uC 1.0 mm filtered seawater. Each tank was

exposed to 12 hours light and 12 hours dark (12:12 LD) for six

days. Light intensity was measured to be 150 lux under 40 watt

white fluorescent lights (40 Watt Sun-Glo fluorescent bulbs,

Hagen). On the seventh day, one tank continued the 12:12 LD

treatment, while the other was completely darkened for a 24-hour

continuous dark treatment (12:12 DD). Larvae were collected

every four hours, beginning two hours after initial lights on (and

subjective lights on for DD tank) for a 24-hour period. The larvae

were sieved using a fine nitex-mesh filter and preserved using a

commercial RNA storage product from Ambion (cat.

no. AM7024). 200 to 500 larvae were collected per sample. Dark

samples were collected using a minimal exposure to red light from

a red LED head lamp (Energizer HDL33AODE) and transferred

immediately into RNA storage solution and frozen. This

procedure was repeated in November, 2009, with a second batch

of similarly produced larvae.

Adult colonies collected from Cattle Bay, Orpheus Island in

November 2009, were also exposed to a 13:11 hour LD (light:dark)

treatment for 35 days in an experimental setting. Light intensity

was much higher at ,21,000 lux using full spectrum white lamps

(Sylvania Coral-Arc lamps HS1-TD-150 Watt, 20,000K). Two

individuals, 20 days apart, were sampled every four hours to

determine 24 hour changes in gene expression. One two to three

cm branch per sample was broken from the colony, immediately

immersed in 1 mL of trizol reagent (Invitrogen), and ground into a

slurry with a mortar and pestle. Samples were then stored at

280uC. All samples were transported to the laboratory on dry ice,

under GBRMPA Collection Permit Number G09/31214.1 and

CITES Export Number 2009-AU-563189.

RNA Extraction
Total RNA was extracted following the trizol protocol provided

by Invitrogen, after both adult and larval tissues were homoge-

nized using disposable pestles. Samples were further purified by a

DNase1 digestion, a phenol-chloroform extraction, potassium-

acetate and ethanol precipitation, and two washes in 75% ethanol.

RNA pellets were redissolved in RNase-free water. RNA quantity

was determined with a NanoDrop ND-1000 spectrophotomoter.

Deep Sequencing and Sequence Analysis
Two larval samples exposed to the 12:12 LD experimental

treatment in 2008 were selected for next generation whole

transcriptome sequencing. These samples were 12 hours apart in

sampling time, with the day sample collected 10 hours after initial

lights on and the night sample at 10 hours after lights off (22 hours

after initial lights on). The two samples were sent to the BC Cancer

Agency Genome Sciences Centre, Vancouver, Canada, for cDNA

library development and Illumina Genome Analyzer Solexa whole

transcriptome sequencing. The output from this data included 10

million reads for 59 and 39 ends, per sample. Public access to this

data set is available at ftp://ftp.xenbase.org/pub/Coral/.

Sequences from both sample outputs were compared against the

annotated A. millepora 454 and Expressed Sequence Tag (EST)

transcriptome gene set generated by Meyer et al. [15], via BLAST.

The BLAST analysis was optimized for highly similar sequences

(MegaBLAST, [16]), with a minimum e-value cut-off set to 1e-10.

The e-value is a score that indicates how similar two sequences are

to one another, with lower values indicating higher similarity. The

BLAST analysis was analyzed within custom perl-scripts that

counted the number of sequences matching the transcriptome

gene set for each sequence in either day and night samples. The

perl-scripts are available upon request.

The sequencing output was further analyzed for similar

biological functions, based on Gene Ontology (GO) terms,

through the Gene Set Enrichment Analysis (GSEA) software,

Version 2.06, supplied by the Broad Institute [17,18]. Three files

were created: i) Gene Cluster Text file, listing coral contig

identification numbers and transcript counts for day and night

(sum of 59 and 39 sequence reads for each experimental condition);

ii) Gene Matrix Transposed file, listing each Nematostella vectensis

GO term and all coral contigs identified by BLAST; and iii)

Categorical Class File, defining the class or template labels

associated with each sample in the expression data. The number of

permutations was set to 100, the maximum number of coral

contigs mapped to a GO term was set to 2,000 while the minimum

was set to 1. The Enrichment Score, which reflects the degree to

which a gene set is over-represented at the top or bottom of a

ranked list of genes, had the P-value set to 1.

Reverse Transcription and QPCR
50 mL of cDNA was synthesized from 500 ng of RNA by

reverse transcription. 10 U mL21 AMV Reverse Transcriptase

was used according to instructions by the supplier (NEB), with an

oligo (dT) primer12–18 (Invitrogen).

QPCR was used to identify relative changes in gene expression

over the complete 24 hour sampling period, as well as identify

whether candidate circadian genes were under the control of an

entrained biological clock or if they were regulated directly by

light. Candidate genes were selected based on results from Vize

[10], and primers were developed with Primer3 Software [19].

Primer specifications were set to generate 100–150 bp amplicons,

have an optimal size of 20 bases, a range of melting temperature

from 55–61uC, and a primer GC content ranging from 40–55%

(see Table S1 for primer sequences). One mL of cDNA was used in

triplicate 20 mL qPCR reactions, with 1 mM primers (1.5 mL

forward, 1.5 mL reverse), 6 mL nuclease-free water, and 10 mL

SYBR green with fluorescein mix (Quantace) for 40 cycles on a

BioRad iCycler iQ Real Time PCR System. Cycle threshold

values for each time point, in triplicate, were compared to the

internal reference genes RNA polymerase II (RPII) and adenosyl-

homocysteinase (AdoH), according the 22DDC
T method [20], with

10 hours after lights on (or subjective lights on) acting as the time

point for comparison. Amplification efficiencies were conducted
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using the methods described in Livak and Schmittgen [20]. A two-

fold serial dilution series was used, starting with 2000 ng RNA

equivalent cDNA from a separate A. millepora laval sample, and

ending with 62.5 ng RNA equivalent cDNA. A plot of log cDNA

dilution versus DCT (CT,gene - CT,RefGene) was made to ensure the

absolute value of the slope was #0.1. The results using AdoH as

the internal reference gene are not presented, as they did not differ

significantly from RPII.

Graphing and Statistical Analyses
QPCR data was analyzed through both graphical interpretation

and statistical analysis. Graphs were created using GraphPad

Prism Software, Version 5.0. Mean (6 SEM) of the triplicate fold

change in mRNA expression levels were graphed using the XY

scatterplot function. Statistical analyses were performed using JMP

Statistical Software Package, Version 8.0 Data were checked for

normal distributions using the Shapiro-Wilk W Goodness of Fit

test. Data with p-values$0.02 were classified as normally-

distributed. Box-Cox transformations were performed to make

data normal where necessary, and analyses were conducted on

transformed data (best transformations were used). Data was also

confirmed to have equal variances, using the Levene test. Standard

least squares multiple regressions were used to identify significant

interactions between light treatment (LD vs. DD) and time. One-

way ANOVAs were used to determine differences between light

treatments, and was followed with Bonferroni Post-Tests for

differences at each time point. Presented analyses are for the 2009

data, with similar statistical results confirmed in replicate samples.

Results

RNA was isolated from Acropora millepora larvae at 4 hour

intervals over a 24 hour period, beginning at 7 days of culture

post-fertilization. At this stage of development larvae are beginning

to transition from the free swimming elongated planulae form to a

pelagic pre-metamorphic morphology, with the beginning of

tentacle buds just beginning to appear. Larvae were collected from

two different mass culture tanks, one kept on a continuous 12:12

light:dark cycle for all 7 days (LD sample) and the a second tank

that was kept on a 12:12 LD cycle for 6 days, then kept in constant

darkness for the 24 hour sampling period (DD sample).

To determine which Acropora genes display diurnal patterns of

transcription, we preformed Solexa sequencing of LD samples

collected in the late day or late night. A total of 20 million reads

was generated from each RNA sample and processed via the

pipeline illustrated in Figure 1. The target transcriptome contained

40,000 contigs, representing approximately 36 coverage of the

transcriptome, assembled from Acropora millepora EST and 454

reads by Meyer et al. [15]. Each sequence read was analyzed by

BLAST [16] for matches to the target transcriptome with a cutoff

of 1e210. A custom perl script was then used to score the number

of matches to each contig. This script is available on request.

Over 11,800 contigs had read numbers that differed by less than

20% between night and day samples. These serve as 11,800

controls for contigs that had different scores between the two

samples. A 1.5 fold cut off difference is often used in genomics

approaches, such as microarrays, as a threshold indicating

functionally relevant differences in gene expression levels (e.g.

[21]). Table 1 presents the number of BLAST matches to

candidate circadian genes selected because of their involvement in

regulating circadian cycles in other organisms. All of the candidate

genes with one exception, slmb (supernumerary limbs), had greater

than 1.5 fold differences in abundance between the day and the

night samples. Two of these genes, cryptochrome 1 and 2 have been

previously reported to display diurnal patterns of transcription in

corals, with expression being higher in the light phase than in the

dark [7,8,9]. Similar results were found in our sequencing data,

with cry1 having a 16.2 LD ratio and cry2 having a 5.96 LD ratio.

Two additional genes had stronger expression in the light sample,

clock and per1, while two had stronger expression in the dark;

timeless (LD ratio 0.39) and vrille (LD ratio 0.005). The vrille gene, a

leucine-zipper class transcription factor essential for circadian

Figure 1. Solexa sequencing data processing pipeline. Detailed steps involved in Solexa deep sequencing of coral larvae samples for both day
and night (12 hour difference). Preparation of cDNA library, sequencing and generation of output were performed by the BC Genome Sciences
Centre, while all other components were performed by authors.
doi:10.1371/journal.pone.0025072.g001
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rhythms in Drosophila [22], displayed an extraordinary response to

the light cycle, with only 12 reads in the day sample but 2,499

reads in the night sample, a 200-fold difference (Table 1). Two

additional genes that have recently been shown to participate in

the seasonal responses to changes in day length are eyes absent (eya)

and the six homeobox (six) [23,24]. Both of these genes are

transcription factors, and both display diurnal differences in

expression in the sequence data, with eya having a LD ratio of 0.17

and six an LD of 0.59. Slmb (supernumerary limbs), had a 0.98 LD

ratio with 39 and 40 matches respectively within light and dark

samples, indicating that it does not respond to light. Slmb encodes

an F-box protein that is necessary for correct phosphorylation, but

not transcriptional cycling, of period and timeless genes in Drosophila

[25]. Although slmb protein levels do cycle modestly in Drosophila

under LD conditions [25], transcriptional oscillations have not

been previously reported for this gene.

The sequencing data was also searched for two additional types

of information; genes that showed no diurnal differences for use as

controls in later experiments, and clustering to search for groups of

genes participating in coordinated pathways that are co-regulated.

Two common control genes in gene expression studies are the

translation factor ef1a and various actin isoforms. Ef1a is a very

abundant mRNA (33,365 matches during the day and 30,896

during the night) and therefore not an ideal control. Cytoplasmic

actin varies in abundance between day (27 matches) and night (66

matches) samples with a LD ratio of 0.41, and though commonly

used as a control, may not be a good choice. Various other

common control genes were therefore evaluated, and two, RNA

polymerase II and adenosyl homocysteinase, were found to have very

similar day:night sequence read numbers, 0.99 and 1.01

respectively (Table 1). As the abundance of RNA polymerase II

transcripts was similar to many of the circadian candidate genes

this gene was used as the primary control, but all data were also

secondarily confirmed using adenosyl homocysteinase.

Pathway analysis
GO terms were assigned to Acropora contigs by identifying the

closest blast hit to the machine annotated Nematostella genome. The

number of sequence hits against each GO term in day and night

samples was then analyzed using the GSEA software package (see

Methods). This system identified 26 gene sets that were expressed

at different levels in the two samples. Processes that differed

between day and night samples included mitosis, mitochondrial

energy production, cellular energy production and light associated

processes such as retinal metabolic processes and rhodopsin gene

expression. Selected examples of differently active processes in

daytime samples are illustrated by Table 2, and the full analysis in

supplemental data (Table S2).

Quantitative expression analysis of candidate circadian
genes in larva

In order to determine whether differences in levels of expression

between samples collected from light or dark were under the

control of an endogenous clock, QPCR was performed on RNA

from two different sample sets, one collected following the 2008

spawn and used in deep sequencing (Table 1) and a sample

collected after the 2009 spawning event (see Methods). Coral

larvae were kept in duplicate tanks under a 12:12 light:dark (LD)

regimen for 6 days followed by a 24 hour sampling period during

which one tank continued to receive the 12:12 LD regimen while

the other was kept in total darkness. The time at which lights were

activated in the morning is denoted as zero hours and lights were

turned off at 12 hours (Figure 2). Periods of darkness are denoted

in Figure 2 with a grey background.

Clock. This gene (NCBI EZ010226) displayed a diurnal

transcription pattern. Deep sequencing found stronger clock

expression in light (LD ratio 3.15) as did QPCR analysis of the

same samples plus a second independent larval sample (Figure 2a).

Clock transcription is strongly rhythmic in larvae and shows a

similar pattern of expression under constant darkness as it does

under a 12:12 LD treatment. The LD and DD expression patterns

were the same, indicating that expression is under the control of an

endogenous biological clock.

Cryptochrome 1. Cry1 (NCBI EZ010289) [9], annotated in

the sea anemone Nematostella as cry1a [11], shows light responsive

transcription (Figure 2b) but no clock driven expression, as has also

previously been reported by Levy et al. [9] and Reitzel et al. [11].

The LD ratio via deep sequencing is very high, at 16.2, with

highest expression in the day time. In all three larval samples

examined expression is strongest in the middle of the light period,

approximately 6 hours after lights on. The interaction of light

treatment and time (i.e. how the light treatment varies across each

time point) is significant(P,0.0001). Under constant darkness cry1

expression remains low indicating that transcription is not under

the control of an endogenous clock.

Cryptochrome 2. Cry2 (NCBI EF202590, [7,9,10]), annotated

as Cry1b in Nematostella [11], displayed strong expression in light (deep

sequencing LD ratio of 5.96), and robust rhythmic cycling under

constant darkness (Figure 2c). Expression peaked late in the day,

consistent with the deep sequencing data. There was no difference

between LD and DD samples, as expected for a gene whose

transcription is regulated by an entrained biological clock.

Cycle/bmal. The cycle gene (NCBI EZ013275) was found to

be expressed in a cyclic manner and displayed rhythmic

transcriptional oscillations under constant darkness. Analysis of

larval samples by QPCR and deep sequencing showed higher

levels of expression at night, despite a second peak shortly after

lights on in the 2009 larval LD sample. In deep sequencing there

were 6 reads in the day sample, and 10 at night for an LD ratio of

0.6, only just relevant via our 1.5 fold threshold (discussed above).

Only time point 2 h had a significant difference (P,0.001); all

other time points had no difference between LD and DD samples.

Together these data show that this gene is transcribed in a

circadian pattern under the control of a biological clock and

probably plays a similar role as the cycle/bmal genes that play

critical roles in clocks in other animals (see [14] for a review).

Table 1. Analysis of diurnal transcription using Solexa
sequencing.

Gene
Day
Reads

Night
Reads

LD
Ratio NCBI

RNA polymerase II 745 750 0.99 EZ031385

adenosyl homocysteinase 3947 3920 1.01 EZ019649

cry1 5724 353 16.2 EZ010289

cry2 1843 309 5.96 EF202590

clock 681 216 3.15 EZ010226

vrille 12 2499 0.005 EZ035738

eya 4 23 0.17 EZ014333

timeless 27 69 0.39 EZ013923

six 345 589 0.57 EZ036950

cycle 6 10 0.6 EZ013275

slmb 39 40 0.98 EZ011919

doi:10.1371/journal.pone.0025072.t001

Circadian Transcription in Coral

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e25072



Eya. The eyes absent transcription factor eya has recently been

shown to play a role in circadian processes and it, along with

another transcription factor, six, have been implicated as key

factors in regulating responses to changing day length [23,24]. The

closest match identified to eya in Acropora is NCBI EZ014333

(Figure S1). This gene is expressed at very low levels but displays

strongest expression at night according to deep sequencing results,

with a LD ratio of 0.17 (Table 1). Transcription is under the

Table 2. GSEA pathway analysis.

Gene set Enrichment Score P Value Core Genes

DNA photolyase 1.58 0 4

mitochondrial respiratory chain 1.47 0 7

mitotic cell cycle checkpoint 1.42 0 1

histone acetyltransferase complex 1.42 0 1

neuropeptide signaling 1.39 0 16

generation of precursor metabolites and energy 1.34 0.08 4

regulation of mitosis 1.33 0.09 1

retinal metabolic processes 1.33 0.05 1

regulation of rhodopsin gene expression 1.32 0.1 1

doi:10.1371/journal.pone.0025072.t002

Figure 2. QPCR analysis of candidate circadian gene expression in larvae. Larvae were exposed to either a 12:12 LD treatment or 12:12 DD
treatment for 24 hours, and were analyzed with QPCR for rhythmicity in candidate circadian genes (a. clock, b. cryptochrome 1, c. cryptochrome 2, d.
cycle, e. eyes absent, f. timeless). Relative fold changes (mean 6 SEM of triplicate QPCR reactions) in RNA expression levels are presented based on
QPCR analysis of the 2009 larval sample. Shaded areas represent periods of darkness, with the exception of DD samples, which were darkened for
24 hours. Bonferroni post-tests were performed to confirm statistical significant differences at each time point. * represents P,0.05, ** represents
P,0.01, and *** represents P,0.001.
doi:10.1371/journal.pone.0025072.g002
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control of the endogenous light entrained clock, as the DD samples

continued to show rhythmic cycling, with peak expression at night,

although a second peak is present in the LD sample shortly after

lights on (Figure 2e). Despite three time points having different

expression levels (2 h: P,0.001, 14 h: P,0.05, 22 h: P,0.001),

the one-way ANOVA confirmed no difference between LD and

DD samples.

Timeless. Timeless (NCBI EZ013923) was expressed at

highest levels in the dark (LD ratio 0.39) in two larval samples

but does not show any diel rhythym under DD (Figure 2f). The

interaction of light treatment and time was significantly different

(P = 0.0057), as was the overall difference between light treatment

(P = 0.0324) while time points 14 h (P,0.001), and 22 h

(P,0.001), were significantly different between light treatments.

Cyclic expression in adult tissues containing
zooxanthellae

The data presented above were all obtained using larval

mRNA, and in this species of coral, larvae lack zooxanthellae [26].

In adult tissues coral transcription may be influenced by the

photosynthetic activity of zooxanthellae. To examine if the adult

holobiont has similar cycles of transcription, adult tissue was

collected and analyzed for expression of circadian genes by

QPCR. Adult coral colonies were kept on a 13:11 LD cycle, the

same length as they had been exposed to on the reef prior to

collection. Once again RNA polymerase II was used as a control, and

all results independently confirmed using adenosyl homocysteinase.

The results of this analysis are shown in Figure 3.

The six genes analyzed in adult tissues, clock cry1, cry2, cycle, eya

and timeless, all displayed similar but altered patterns over their

13:11 LD cycle as compared to their expression in 12:12 LD cycle

azooxanthallate larvae. Adult cry1 (Figure 3b) displayed strongest

expression 6 hours after lights on, mirroring both the pattern and

timing of larval expression, although the fold change in the adult

sample was a smaller scale. The four remaining genes displayed

similar diurnal transcription curves in both larvae and adult, yet

peaks and troughs were shifted by up to five hours. A three hour

shift in peak clock expression was observed between larvae and

adult (Figure 3a); larvae expression peaked at two hours prior to

lights off, while in adult tissue it occurred one hour after lights off.

A four hour shift in peak and trough expression patterns of cry2

was observed (Figure 3c), with levels beginning to increase two

hours after lights off in larvae, and six hours after lights off in adult

tissue. Peak expression of cycle was observed during the night for

both adult and larval samples (confirmed with deep RNA

sequencing), and a peak shortly after lights on in larvae. Adult

Figure 3. Comparison of larvae and adult diurnal gene expression. QPCR analysis of candidate circadian gene expression in larvae.
Larvae and adult tissues were compared using QPCR, to determine similar patterns of gene expression over a 12:12 LD treatment (a. clock, b.
cryptochrome 1, c. cryptochrome 2, d. cycle, e. eyes absent, f. timeless). Relative fold changes in RNA expression levels (mean 6 SEM of triplicate QPCR
reactions) are presented for both 2009 larvae (primary y-axis) and adult tissue (secondary y-axis). Shaded areas represent the 12 hours of darkness for
larvae (12:12 LD) and 11 hours of darkness for adult tissue (13:11 LD).
doi:10.1371/journal.pone.0025072.g003
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samples demonstrated highest expression levels one hour after

lights off, and larval samples six hours, indicating a five hour shift.

Cycle was the only gene that demonstrated earlier peaks and

troughs of expression levels in adult samples compared to larvae

(Figure 3d). Eya gene expression in larvae peaked six hours after

lights off and the adult tissue also peaked at 6 hours lights off

(Figure 3e). Timeless expression demonstrated a peak in larvae

2 hours after lights off while adult samples occurred six hours after

lights off, demonstrating a four hour shift (Figure 3f). Most adult

samples showed a larger fold change in expression levels compared

to larvae. This may be due to the stronger light intensity to which

adults were exposed (see methods).

Discussion

Through the use of deep sequencing and QPCR, we have

demonstrated diurnal patterns of circadian gene expression in the

coral Acropora millepora. While all genes display distinct patterns

throughout a 12:12 LD period, only some can be classified as

being regulated by a biological clock and showing similar cycles in

both LD and DD experiments. Clock, cryptochrome 2, cycle, and eyes

absent all continued rhythmic patterns of gene expression in the

absence of light, while cryptochrome 1 and timeless lost rhythmicity.

Clock and both cryptochromes demonstrate higher expression during

the day time, while eya, cycle and timeless have peak expression

during the night.

Clock and light driven diurnal patterns of transcription both

occur in 7 day old azooxanthallar larvae and in zooxanthallar

adult holobiont tissue, though for most genes there is a shift in the

time at which expression peaks in larvae versus adults. One

possible reason for a shift in peaks of expression between larvae

and adult is differences in sample light and dark exposure cycles.

Larvae were on a 12:12 LD cycle while adults were on a 13:11 LD

cycle; this shift in hours of daylight is correlated with an average

shift in gene expression levels by up to five hours. As the number of

daylight hours increases, the pattern of gene expression is expected

to change as many circadian genes are entrained by light and

participate in the transcription-translation feedback loop in

response to the number of hours of sunlight exposure. With a

longer exposure to light in the entrainment period, it is expected to

see a later shift in peaks and troughs within samples. The intensity

of white light also differed between the larvae and adult samples,

and may have led to changes in amplitude and fold change. Adult

samples had higher intensity of light (,21,000 lux), while larvae

were exposed to lower intensity (,150 lux). Dim light entrainment

and exposure can alter the amplitude of changes in circadian gene

transcription, but periodicity is normally not affected [27,28].

Other differences may also have been a result of differences

between the holobiont adult tissue and azooxanthellae larval

tissue.

Parts of this research confirm results by Reitzel et al. [11],

Hoadley et al. [7] and Levy et al. [9], yet distinct differences are

present from each of these studies. Levy et al. (2007) [9] found

both cry1 and cry2 genes in A. millepora to become arrhythmic in

constant darkness, acting only as light-regulated genes, yet results

from our research suggests otherwise. While cry1 confirms the

previous report, cry2 displays strong rhythmicity in constant

darkness, indicating that, as in more complex animals [29], its

transcriptional rhythm is driven by a light entrained biological

clock in corals. Data by Hoadley et al. [7] also found elevated

levels of cry2 transcription levels in F. fragum under constant

darkness in windows corresponding to daytime peaks, though the

authors do not find these to be statistically significant they are

clearly visible. Similarly, in the starlet sea anemone Nematostella

vectensis, Reizel et al. [11] observed 2 to 3 times higher expression

in the equivalent gene in the day window of animals kept under

constant darkness ([11], Figure 3C). In each of these studies the

transcription level of cry2 under constant darkness was much less

than observed in response to light, yet in our studies, at least for

the first 24 hour cycle in full darkness, the peak in expression in

subjective day is just as high under constant darkness (Figure 2).

Interestingly, there are considerable differences between the

cycles of transcription reported here for Acropora and those

described in Nematostella [11]. Unlike Reitzel et al. [11] we

identified a clear light driven diurnal cycle of timeless expression,

with peak expression during the early night, similar to patterns

displayed in Drosophila timeless expression [30], while Reitzel et al.

[11] showed only slight differences between different points in the

light cycle in the anemone timeout/timeless gene.

The data for the cycle gene are also very different between

organisms. In coral (this study), the cycle gene displays rhythmic

expression in constant darkness, continuing to peak in DD at the

same time as light treated samples (Figure 2), while in F. fragum cycle

shows strongest and clock driven expression in the day [7]. In the

anemone only minor diurnal differences were noted in both LD

and DD samples [11]. Considering how well conserved networks

tend to be in related organisms, these differences are surprising.

The Favia cycle-like gene (NCBI AEH41598) is the most closely

related gene to Acropora cycle, with the second closest being

vertebrate bmal. It is possible that these genes are not orthologous,

and these two studies are in fact investigating different but related

genes, though this seems unlikely. It is more likely that the very

small differences in cycle expression levels over time that were

observed in Nematostella are not large enough to detect cyclic

patterns accurately. It is also possible that the choice of control

genes, and minor experimental differences, such as experimental

light intensity or how well a specific primer pair works, might

explain some of the differences. It is also possible that these

animals do express some genes in different patterns.

Clock shows peak expression during late subjective day in

Nematostella [11], similar to both Acropora [9] and Favia [7], and is

confirmed with the results presented in this study. Despite these

similarities, both Nematostella and Favia clock gene show little to no

expression during constant darkness, while in this Acropora study,

strong diurnal cycling in both LD and DD conditions are observed

(Figure 2). This continued rhythmic expression in constant dark

shows strong similarity to the Drosophila clock gene, which also

continues cyclic expression in the absence of an entraining agent,

although it shows peak expression in early morning rather than in

the afternoon as we observe [31].

The deep sequencing data presented here serves as a powerful

source of both controls for QPCR and a source for pathway

analysis. It allows expression of low level abundance genes to be

quantified, unlike microarray analysis. Deep sequencing also gives

accurate quantitation and does not suffer from the variability

introduced by differences in mRNA abundance, primer efficiency,

magnesium optimization or other factors that can impact PCR

based approaches. One of the drawbacks of this method is cost,

which resulted in only two time points being sequenced. As

different genes peak at different points in a 24 hour cycle the

sequence analysis will be biased towards genes whose peaks or

troughs happen to coincide with the selected samples.

Pathway analysis of the sequencing data was performed using

GSEA [17,18]. The presented clustering analysis is preliminary

only. Sequencing of more samples and better annotation of the

coral transcriptome will be necessary to perform an in depth

analysis of differences between transcription under different light

regimens. Gene ontology (GO) terms were selected for coral
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sequences by blasting Acropora contigs against the Nematostella

genome. However, as the target genome has only been machine

annotated and will contain many annotation errors, the GO terms

attributed to coral transcripts will have a significant error rate that

would be compounded by BLAST errors. Despite this caveat the

clustering analysis did produce a interesting list of preliminary

results showing diurnal differences in a number of pathways that

have been previously described to display such cycles in other

animals, for example mitosis [32], or pathways that make logical

sense in an experiment such as ours- for example the activation of

retinal metabolic processes and rhodopsin gene expression in the

light phase [33]. A related study has recently been performed

using microarrays by Levy et al. [8]. That study was performed in

adult tissue containing zooxanthallae. Both our data from deep

sequencing of azooxanthellate larvae and the zooxanthellate adult

microarray data of Levy et al. [8] find the pathway showing the

greatest difference between day and night to be the DNA

photolyase gene set, despite the different sampling and clustering

methodologies implemented. This is likely due to the presence of

the cryptochrome genes within this group. Another pathway

detected as activated in the daytime by both studies was

mitochondrial respiration, and both studies also demonstrate that

the cell cycle is regulated in a diel manner. Unfortunately the full

cluster analysis of Levy et al. [8] is not published and more

detailed comparisons of the different datasets will require future

bioinformatic analysis. With better annotation and additional

sequencing runs these types of approaches will allow accurate

mapping of diel patterns of metabolism and be a powerful tool for

understanding coral physiology.

In sum, our data shows that large changes in transcription occur

over a 24 hour time period in corals when exposed to a 12:12 or a

13:11 light:dark cycle. Some of the genes displaying diurnal

transcription patterns correspond to genes known to regulate

circadian processes in other animals. Some diurnal patterns are

under the control of a light entrained endogenous clock and

continue in constant darkness, while others respond directly to

light. These results provide a basis for exploring how the genome

contributes to the sensing and responses to time in corals and

provide tools with which temporally regulated biological processes

such as spawn timing can be dissected and understood.

Supporting Information

Figure S1 Acropora eyes absent aligned against Dro-
sophila eya (NCBI NP_523492.1) E = 1e221, 34/60 iden-
tities, 44/60 positives. The reciprocal best match when

searching the NCBI NR protein database are various vertebrate

eya1 homologs, such as mouse CAA07818.1 and human

EAW86974.1 along with Nematostella XP_001629445.1. The

closest match in nucleotide BLAST searches are Nematostella

XM_001629395.1 (E 2e227, 149/199 [75%] identity) and

Xenopus eya1 NM_001090419.1.

(EPS)

Table S1 QPCR primer sequences.
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Table S2 Supporting Dataset: full analysis of GO clustering

pathway analysis. Excel File.
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