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ABSTRACT

We present TT2NE, a new algorithm to predict
RNA secondary structures with pseudoknots. The
method is based on a classification of RNA struc-
tures according to their topological genus. TT2NE
is guaranteed to find the minimum free energy
structure regardless of pseudoknot topology. This
unique proficiency is obtained at the expense of
the maximum length of sequences that can be
treated, but comparison with state-of-the-art algo-
rithms shows that TT2NE significantly improves the
quality of predictions. Analysis of TT2NE’s incorrect
predictions sheds light on the need to study how
sterical constraints limit the range of pseudoknotted
structures that can be formed from a given
sequence. An implementation of TT2NE on a public
server can be found at http://ipht.cea.fr/rna/tt2ne

.php.

INTRODUCTION

In the past 20 years, there has been a tremendous increase
of interest in RNA by the biological community. This
biopolymer, which was at first merely considered as a
simple information carrier, was gradually proven to be a
major actor in the biology of the cell (1). It was first dis-
covered that some RNAs have enzymatic activity (ribo-
zymes) and as such would directly play a crucial role in the
biochemical reactions taking place in the cell. More
recently, it was also discovered that some RNAs, in par-
ticular micro-RNAs, have a post-transcriptional regula-
tion role in the cell by controlling the level of translation
of some messenger RNAs: more than 60% of human
protein-coding genes have been under selective pressure
to maintain pairing to micro-RNAs (2). At present, it is
also believed that a considerable amount of ‘junk’
(non-coding) DNA is transcribed into some non-coding
RNAs, the role of which is still unclear.

Since the RNA functionality is mostly determined by its
3D conformation, the accurate prediction of RNA folding

from the nucleotide sequence is a central issue (3). It is
strongly believed that the biological activity of RNA (be it
enzymatic or regulatory), is implemented through the
binding of some unpaired bases of the RNA with their
ligand. It is thus crucial to have a precise and reliable
map of all the pairings taking place in RNA and to
correctly identify loops. The complete list of all Watson—
Crick and Wobble base pairs in RNA is called the ‘sec-
ondary structure’ of RNA.

Since the folding of even short RNA molecules takes
too long to perform with all-atom molecular dynamics
simulations including explicit solvent, the more modest
goal of solely obtaining the most probable secondary
structures based on experimentally derived base-pairing
and base-stacking free energies has been pursued. There
is convincing evidence showing that, as in NMR protein
structure prediction, the secondary structure of RNAs is
sufficiently constraining to entirely and unambiguously
determine the 3D structure of the molecule (4). This 3D
structure of the RNA in turn controls the biochemistry of
the molecule, by making certain regions of its surface ac-
cessible to the ligand molecule.

In this article, we will adhere to the notion that there is
an effective free energy which governs the formation of
secondary structures, so that the optimal folding of an
RNA sequence is found as the minimum free energy struc-
ture (MFE for short). The problem of finding the MFE
structure given a certain sequence has been conceptually
solved provided the MFE is planar, i.c. the MFE structure
contains no pair (i, j), (k, [) such that i <k <j <. In that
case, polynomial algorithms which can treat long RNAs
assuming a mostly linear free energy model have been
found (5-7). Otherwise, the MFE structure is said to
contain pseudoknots and finding it has been shown to
be an NP-complete problem with respect to the sequence
length (8). Even if pseudoknots represent a small part of
known structures, they often have a functional role (9,10)
and the problem of their prediction must be addressed.

Three main algorithmic strategies can be thought of to
take into account the NP-completeness of pseudoknotted
MFE prediction: (i) empirical search of the MFE using
heuristic methods (11-14) , (ii) efficient exact calculations
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on a restricted class of pseudoknots (15-17) and (iii) exact
calculations, using various tricks to allow for the treat-
ment of sequences as large as possible (18).

Here we present TT2NE, an algorithm that falls into the
latter category. TT2NE relies on the ‘maximum weighted
independent set’ (WIS) formalism. In this formalism, an
RNA structure is viewed as an aggregate of stem-like
structures (helices possibly comprising bulges of size 1 or
internal loops of size 1 x 1). These stem-like structures can
be viewed as points in the space of all helical fragments
available from a given sequence and we will refer to them
as ‘helipoints’. Please note that our notion of helipoints
is in fact not trivial and differs from what is done in
algorithms based on the WIS formalism, where they
generally reduce to maximum helices (see the explanation
in ‘Material and Methods’ Section). Given a certain
sequence, the set of all possible helipoints is computed
and a weighted graph is built. The vertices of the graph
are the helipoints, with a weight given by —1 times their
free energy of formation. Two vertices are connected by
an arc if and only if the corresponding helipoints are not
compatible in the same secondary structure. Indeed, two
helipoints may be mutually exclusive in a graph: this is for
example the case if they share at least one base (since base
triples are forbidden). Finding the MFE structure thus
amounts to finding the maximum weighted independent
set of the graph, i.e. the set of pairwise compatible
helipoints such that the overall free energy is minimum.

Given a certain sequence Xx, let’s denote N, the number
of available helipoints and G, the associated graph. The
core routine of TT2NE is a simple exhaustive depth ex-
ploration of all independent sets of G, using a backtrack-
ing procedure, where vertices are added to the current
structure in the increasing order of their free energy,
that is decreasing order of weight (see black pseudocode
in Figure 1). There is in particular no restriction on the
pseudoknots topologies that TT2NE can generate.
However, this strategy is very inefficient. In this article
we propose two ideas to improve it. First, we use a new
treatment of pseudoknots that restrict TT2NE’s search to
a much smaller and relevant subspace of independent sets.
Secondly, we take advantage of a peculiar energy model to
enforce a branch-and-bound procedure that speeds up the
search of the MFE without loss of exactness. A server
implementation of TT2NE can be found at http://ipht
.cea.fr/rna/tt2ne.php

A new treatment of pseudoknots

In a previous series of studies (19,20), we have proposed
a classification of pseudoknots according to their topo-
logical genus. The genus is an integer number that
captures the complexity of a pseudoknot. Consider the
graph of the pairings of an RNA. We first close the
extremities of the backbone of the RNA to make a
circle, leaving the pairings outside the circle. Some of the
pairings may cross each other. The genus of the RNA
graph is defined as the number of handles one has to
carve in a sphere to be able to draw the RNA graph
without any crossing. For instance, all graphs without
crossings [i.e. those summed by the algorithm of
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Initialization of global variables
Current structure S, = )
Current free energy AF, =0
Current minimum free energy structure S, = ()
Current minimum free energy AF,,, =0

Procedure TT2NE
for i =1, N,
Recursive_exploration(i)
end for

Procedure Recursive_exploration(i)
(0) if (AF. + AF,,in (i) > AF,,,) exit

(1) Test of compatibility between S, and h;
if (h; conflicts with S..) exit
(2) Addition of h; to S. and update of AF,

8= 8:Uly AF, = AF(S,)

(2b) if (genus(Sec) > gmaz) g0 to step(5)

(3) Is the current structure the best one found so far ?
3 Scm = Sc
if(AF, < AF.y) AF.. = AF,

(4) Recursive expansion of S, with less stable helipoints
for j=i+1,N,
Recursive_exploration(j)
end for
(5) Backtrack

Se=Se— h; AF, = AF(S,)

Figure 1. Pseudocode of TT2NE. The core routine is written in black
and performs an exhaustive enumeration of all independent sets of G,.
In the end, the MFE structure can be read in the global variable AF,,,.
The two red lines are improvements discussed in the text.

McCaskill (7)] can be drawn on a sphere; thus they are
of genus 0. The standard H-pseudoknot cannot be drawn
without crossing on a sphere, but can be on a torus (20).
It is thus of genus . In addition, the genus is an additive
quantity: if there are several pseudoknots in an RNA, the
total genus of the RNA is the sum of the genii of its
pseudoknots.

We have shown that naturally occurring pseudoknots
have a much lower genus than expected in randomly
paired polymers (20). In particular, we have shown that
for sequences of sizes up to 500 nt, RNA structures may
comprise several pseudoknots with individual genii
smaller than 2. For sizes around 1500nt, the genus
ranges between 2 and 6. Finally, for the largest RNAs
(around 3000 nt) the total genus may reach 17.

We use this fact to guide TT2NE’s search of relevant
pseudoknots in two ways. First, a penalty for pseudoknot
formation depending on their genus is introduced in the
free energy model. Although more sophisticated forms
could be imagined, for now we chose a simple linear
form, dictated by the fact that as we mentioned before,
the genus is additive. A pseudoknot of genus g is assigned
a penalty +ug where we set 1 to +1.5 kcal/mol. This value
of u was obtained by optimizing the number of correctly
predicted base pairs by our algorithm. Second, an upper
limit g,,,. is introduced. This limit, tunable by the user,
has a critical importance as it defines the space of
pseudoknots where TT2NE will restrict its search. The
size of this space grows exponentially with g,,.. (21), so
this number has a great impact on the computational time
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required by TT2NE. Based on the relation of RNA size to
genus mentioned above, we may safely fix a maximum
genus of 3 for RNA sizes smaller than 250, typically the
maximal size we can treat with our present algorithm due
to computational time constraints.

We have shown that the most standard pseudoknots,
i.e. the H-pseudoknot (ABAB topology) and the
kissing-hairpins (ABACBC topology), have both genus
1. It implies that if one is interested in short chains
which carry these kind of pseudoknots, setting g,,,. to 1
is sufficient and would save a lot of computational time.
Setting g, to a large value would leave the problem as
open as possible, but again, a wise tuning of this param-
eter proves to be a relevant and efficient way to locate the
MFE in a fast way.

A branch-and-bound procedure

The core routine of TT2NE can be improved using a
branch-and-bound procedure. The idea is to speed up
the search of the MFE of G, by computing first the
MFE of some relevant subgraphs. The crux of such a
branch-and-bound procedure is to be able to relate those
partial solutions to the general problem and this can be
done in TT2NE by taking advantage of a peculiar energy
model.

Energy model. Vertices are sorted in increasing order of
free energy, i.e. the vertex 1 represents the most favorable
helipoint. We denote AF), the free energy of the p-th vertex
(the way to compute the free energy of a helipoint is
defined in the next subsection, in Equation 4). Then in
TT2NE the free energy of a structure S made of n
helipoints {#;, h;,...,h; } is computed with the following
model M;:

AFYMI(S) = Zn: AFy +v.npu(S) + p-g(S) 1)
=1

where 7,,(S) is the number of multi-branch loops of S and
v is the corresponding penalty of formation. Note that
in this model there is no term for large internal loops
or bulges, nor a penalty depending on the number of
branches of multi-branch loops. In our present implemen-
tation of TT2NE, we did not include any penalty for
multi-branch loops formation, i.e. we set v = 0.

We also introduce the simple model M, where the free
energy of S is just the sum of the free energies of the
helipoints it is made of:

AFM(S) = Z AF; ()
J=1

Property. Let AF,,;,(i) be the MFE of structures
comprised of helipoints with indices larger than 7, accord-
ing to the energy model M. AF,,;,(i) would simply be the
output of TT2NE when used on the restriction of G, to its
N, —i last vertices with model M. Let S° be a structure
made of n helipoints and i, the index of its least stable
helipoint. Let’s denote #*(S) the restriction of a structure S
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to its k most stable helipoints. Then it can be straightfor-
wardly shown that the following property holds:

forj=0 or 1, VS,
"(S)= 8= AFM(S) > AFM(S%) + AFu(iy + 1)
3)

The practical meaning of this relation is: there is a lower
limit to the free energy of all structures that can be derived
from S° by adding any combination of helipoints of
indices larger than 7,. Consequently, if this lower limit is
found to be larger than the current MFE that TT2NE has
found so far, TT2NE can safely ignore all these structures:
the global MFE cannot be found in this ensemble. This
property thus allows to further restrict the size of the
search space for the MFE.

Those two improvements can be incorporated in
TT2NE as can be seen in red in Figure 1.

MATERIALS AND METHODS
Generation of the initial graph

We define a helix as a stack of base pairs possibly
comprising bulges of size 1 or internal loops of size
1 x 1. A helipoint is an ensemble of helices that are
demarcated by the same extremal (initial and terminal)
base pairs. They are closely related to the 4-index matrix
Ay introduced in (19,22), where they are defined as the
sum of all ladder diagrams (diagrams with no crossing
pairing lines in between) between extremal pairs, and
satisfy a simple recursion equation. Given two extremal
pairs (i, /) and (k, /), the set ], of all helices that end with
these two pairs can be generated and their individual
energies calculated according to a given energy model.
The free energy AF}, of the helipoint is then computed as

exp (—BAF]) = Y exp(—BAF(h))

ij
hew),

with B = (kzT)™"!

)

where AF(h) is the free energy of formation of helix /.
In our implementation, when computing this sum,
helices of non-negative (i.e. unfavorable) energies are neg-
lected, since their Boltzmann weight would strongly
suppress their contribution. Helipoints are stem-like struc-
tural building blocks which account for all possible
internal pairing possibilities that occur between their
extremal pairs. The importance of this notion is well
captured by considering for example such a sequence:
GGGAGGG [...] CCCUUCCC. As one can see, a helix
containing a ‘bulged’ uracil can be formed from this
sequence, but there are two ways to choose the ‘bulged’
uracil. In order to describe this fact appropriately in stat-
istical mechanics, it is important not to neglect any of
these possibilities nor to consider them as distinct com-
petitors. Rather, the notion of helipoint implies that both
possibilities would ‘stabilize’ the pairing of these regions
of the sequence. In this example, the calculation of the free
energy according to Equation 4 would indeed introduce
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an entropic bonus of —kzT'In2 that accounts for this
variability.

The computation of the free energy of all helipoints
requires the setting of some values for the basic structural
elements of RNA folds: stacking, terminal mismatches,
helix formation penalty, bulges and internal loops. The
three first families of terms have been taken from
Mathews et al. (23). We computed the free energy of the
bulges of size one as the energy of the stack of pairs
closing this bulge plus 3.8 kcal/mol. The energy of a
helix comprising a 1 x | internal loop is computed as the
sum of the free energies of the two helices delimited by this
internal loop minus 3.85kcal/mol. Larger internal loops
and bulges of size more than one were not taken into
account. In particular, helipoints do not include such
kind of motifs. The multibranch loop formation penalty
was not used (i.e. set to 0) in the work presented here, even
though TT2NE could handle it. Only helipoints of favor-
able (i.e. negative) free energies were kept to build the
graph. Note that in most other algorithms based on the
WIS formalism, only ‘maximal’ favorable helices are kept
(i.e. helices such that the outer nearest neighbors of their
extremal pairs cannot pair). Our choice not to restrict our
algorithm to maximal helipoints makes the problem
harder since it makes the graph wider, but the reason
will be explained in the discussion part below.

Two helipoints are considered incompatible (i.e. they
are connected in the graph) if they overlap, if their
concatenation generates an existing helipoint or if their
concatenation produces a sterically impossible structure.

This last requirement anticipates a point that will be
explained in the ‘Comments and discussion’ section.

Efficient calculation of the genus

TT2NE requires to be able to efficiently update the genus
of a structure upon addition or removal of a helipoint. In
order to do so, we use a technique which was introduced
by t"Hooft (24). A structure of RNA is represented as a
diagram whose arcs are double lines that connect paired
bases (see Figure 2).

In this process, loops are created within those diagrams
and it can be shown that the genus g of the corresponding
structures can simply be calculated with:

_P-L
T2
where P is the number of pairs and L the number of loops.

Upon addition of a new pair to a structure, the genus
variation Ag is given by

1— AL
Ag = 5 (6)

g Q)

We found a property that allows to calculate the term AL
in an efficient way (the idea of the proof is given as sup-
plementary information). Upon addition of a pair (i, j) to
a certain diagram,

1 if i and j belong to the same loop
—1 otherwise

AL = { 7
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(a) (b)

c

/ /

Figure 2. Examples of how to calculate the genus with a double-line
diagram representation. (a) P=5, L=5—¢g=0, (b) P=5, L=3—>g=1.

Therefore, Ag can be straightforwardly calculated by
checking whether the newly paired bases belong to the
same loop and this operation can be efficiently performed
in a time linear in the number of pairs of the diagram.
The case of the removal of a pair is symmetric.

Branch-and-bound procedure

The Equation 4 requires a prior computation of the terms
AF,,;,(i), that is the MFE of G restricted to helipoints
of index larger than i. Those quantities are obtained
by running TT2NE on those subgraphs. However,
calculating those terms for all i is useless since the only
needed quantity is AF,,;,(1). Rather, one must choose a
certain level up to which these terms should be calculated,
in order to get a good balance between the time spent
in doing so and the time saved later in the search of the
MFE. In the work presented here, we generally computed
the quantities AF,,,;,(i) for the 300 least stable helipoints.

Suboptimal structures

The algorithm presented here only outputs the MFE. It is
very easy to adapt it to output a certain number (specified
by the user) of suboptimal structures, if needed. This
option is available on TT2NE’s web server at http://ipht
.cea.fr/rna/tt2ne.php.

Heuristic

For longer sequences, a heuristic can be used: the above
techniques are first applied to the restriction of the graph
to its IV, most stable helipoints and the best structures
output are then saturated with the remaining helipoints.
This heuristic is identical to the initial problem with
Nj;, = N, and becomes less and less precise as N,/N,— 0.

DETAILED RESULTS

We compared TT2NE with McQfold (12), HotKnots (13),
ProbKnots (14) and Mfold (25) on a set of 47 sequences.
The sequences that were chosen are a subset of those used
in the HotKnots paper (13), supplemented by a set of ex-
perimentally determined structures. We have avoided
using too many structures inferred by sequence compari-
son, as its output is not reliable.

The results are displayed as a Supplementary Data
(‘Results.pdf’). This set includes most of the sequences
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on which HotKnots has been tested and shown to perform
better than ILM and PKnots-rg, so we will not compare
TT2NE to these latter algorithms. We did not compare
TT2NE with the Pknots algorithm of Rivas and Eddy (26)
as its computation time is very long (it scales like the 6th
power of the length of the sequence).

Most of the native structures of genus 1 have the top-
ology of the H-pseudoknot except for sequences 1u8d,
CoxB3, HCV_229E, satRPV which are kissing-hairpins
and Ec_alpha which is the only known example of the
ABCABC topology. Structures of higher genus are gener-
ally concatenation of H-pseudoknots except for HDV
which has a more complex topology and PSIV_IRES
which contains an H-pseudoknot ‘nested’ into another
one.

For each sequence, sensitivity and positive predicted
value (PPV) have been measured. The sensitivity is
defined as the fraction of correctly predicted pairs of the
native structure. The PPV is defined as the fraction of
correctly predicted pairs of the predicted structure. In all
those tests, TT2NE’s parameter g,,,,. was set to 3 and u to
1.5 kcal/mol. This value of u was obtained by optimiza-
tion on this very set of sequences but this setting will be
discussed below. The sequences, the native structures and
TT2NE’s predictions are given in detail as Supplementary
Data (‘Detailed-structures.txt’)

The total number of base pairs to be predicted in this
set is 1115. Mfold, HotKnots, McQfold, ProbKnots and
TT2NE, respectively predicted 618, 671, 740, 669 and 870
of them. The total number of base pairs predicted is
respectively 1024, 1019, 991, 1041 and 1146. On the
average, TT2NE achieves better performance on this set.
The statistical significance of this better performance of
TT2NE is supported by a t-test analysis. In terms of sen-
sitivity, comparing TT2NE with ProbKnots, McQfold,
HotKnots and Mfold, respectively yields a t-value of
4.6, 1.8, 2.5, 5.1. Given the size of our samples (N = 47),
this corresponds to a P-value smaller than 0.05 (except for
McQfold, for which P x 0.08). Therefore, as far as the
sensitivity is concerned, TT2NE outperforms the other
algorithms. For the PPV, we find t-values of 4.6, 0.2, 1.7
and 3.3. This shows that TT2NE significantly outperforms
Mfold, HotKnots and ProbKnots, but not McQfold.
The size of our sample is thus sufficiently large to
satisfactorily discriminate between TT2NE and the other
algorithms, except for McQfold in terms of the PPV. One
might wonder whether this statistical similarity of
McQfold and TT2NE implies the similarity of the pre-
dicted MFEs. To answer this question, we computed the
correlation between the two sets of predicted MFEs,
defined as the ratio of the pairs common to both MFEs
and the average number of pairs of the two MFEs. This
correlation is equal to 1 if the MFEs are identical and 0
if they have no common pair. We found a correlation
of 62%, smaller than the average sensitivities and PPVs
of both methods. This is a good evidence that the two
algorithms predict MFEs which are different in nature.
It is thus judicious to use both methods to predict
pseudoknots.

Comparison between TT2NE and HotKnots shows that
the novelties of TT2NE, namely finding the MFE and
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introducing a genus penalty, are responsible for the im-
provement in the quality of the predictions, since
HotKnots and TT2NE use essentially the same energy
model. ProbKnot achieves approximately the same
average results as HotKnots, but it fails to predict even
one single structure correctly on this set of mostly ex-
perimental structures. Moreover, ProbKnots predicts
pseudoknotted structures for only 3 out of 47 sequences.
In terms of sensitivity, HotKnots and ProbKnots improve
by 6% on average on Mfold, which predicts only
pseudoknot-free sequences.

McQFold is the second best algorithm on this set of
sequences and could certainly be further improved, as it
uses a minimalist energy model and does not include the
constraint that a hairpin loop should be at least 3 bases
long. Trying to elucidate the success rates of these differ-
ent algorithms, we have calculated how each algorithm’s
predictions correlates with Mfold’s, i.e. we calculated what
fraction of each MFE belongs to Mfold’s MFE. As Mfold
achieves a sensitivity of 55% on this set of sequences, an
ideal algorithm should have a correlation of 55% with
Mfold (note that the inverse is not true). We found that
TT2NE has 56% correlation, McQfold 65%, HotKnots
74% and ProbKnots 78%. HotKnots and ProbKnots
both rely partly on Mfold: both build their prediction
on the basis of the calculation of likeliness of base pairs
(ProbKnots) or ‘hotspots’ (HotKnots) in a pseudoknot-
free context. It is therefore not a surprise to see a higher
correlation between HotKnots, ProbKnots and Mfold
than between McQfold, TT2NE and Mfold. The fact
that Mfold only achieves a sensitivity 55% shows that
the problem of pseudoknot prediction is not a simple ‘ex-
tension’ of the problem of prediction of pseudknot-free
structures, in the sense that in most cases the
pseudoknotted MFE is not the pseudoknot-free MFE in
which some helices have been added. On the average, half
of the structures predicted by Mfold must be folded dif-
ferently, but which half? We think this is the reason
why heuristics based on Mfold (or Mc Caskill’s recursion
relations) have poorer performance than TT2NE which
does find the MFE.

Comments and discussion

Despite the fact that TT2NE can find any type of topology
and guarantees to output the MFE, it does not achieve a
100% success. Why is that so? We have investigated the
errors generated by TT2NE and we see that they fall in
two categories: the first relates to the limit of the energy
model used and the second is more specific to the nature of
pseudoknots. Of course, in the case of structures proposed
through sequence comparison, one cannot rule out the
possibility that those speculated structures are actually
wrong.

Limits due to the free energy model. The Turner free
energy model has been shown to be partly unable to
explain planar secondary structures (27). TT2NE uses
only a subset of this model: thus, there are errors
coming from the part of this model we use, and others
coming from the part we do not use.
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An example of the first case is provided by the sequence
satRPV: the native secondary structure is almost correctly

2CAGA
GUCU"®

thermodynamically favorable than

'ACAG
uGuc!e”

with the sequence TEV: the computed energy of its short
helices is found to be not favorable enough to form a
pseudoknot.

An example of errors due to the inability of TT2NE of
correctly computing the energy of long internal loops
can be seen with Ec-Rpml. There, the native structure
contains a helipoint containing a 2 x 1 internal loop.
The thermodynamics properties of 2 x 1 internal loops
are not properly taken into account in TT2NE. As a con-
sequence, the energy of formation of that helipoint is not
found to be negative and therefore it is not recognized as a
relevant helipoint to store into the initial graph. In other
words, this helipoint is not favorable and is thus not kept
in the construction of the graph. This problem could
be solved by allowing for the inclusion of 2 x 1 internal
loops but this would dramatically increase the number of
possible helipoints and the running time of TT2NE would
grow exponentially.

predicted, but an error is made because the helix is

considered more

the native one An other example can be seen

Limits due to the absence of steric constraints. We also
realized that predicting a pseudoknot is not only a
question of free energy minimization: steric constraints
also matter and some predicted sets of helipoints must
sometimes be rejected because they do not correspond to
any feasible geometry in 3D space. For example, here is a
feature observed in the second best secondary structure
predicted for the sequence Ec_alpha (using a parsing
representation):

CCUGAAAACGGGCUUUUCAGC...UGGCCCGUA
ccccccrrreeemrrIIr- 11111110

This pseudoknot is made of two helices respectively
drawn in blue and black. Let’s focus on the seven bases
of the 5 strand of the black helix (ACGGGCU). The
geometry of the nucleotides implies that the pairings
organize according to the canonical A-helix shape.
However, those seven bases also connect the two ends of
the blue helix: they should therefore make up a hairpin
loop. It is clear that these two kinds of geometry are
mutually exclusive. This diagram therefore cannot match
a real RNA structure and must be rejected. To create a
sterically allowable pseudoknot between those regions,
one or both helices should be shortened. We thus think
that a perfect pseudoknot prediction algorithm should be
able to include non-maximal helices. This necessity is also
very well illustrated by the example of the mouse
mammary tumor virus pseudoknot whose 3D structure
has been resolved (PDB entry: Irnk) (28). This
pseudoknot is an H-pseudoknot and one of its helices is
non-maximal. By looking at the sequence, one could think
that one additional Wobble pair could form but from
looking at the 3D structure, it is clear that due to the
peculiar geometry of this pseudoknot, the bases of the
putative pair are in fact too far from each other to be
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able to pair. All algorithms tested on that sequence
wrongly predict this additional pair (sensitivity of 1 but
PPV of 0.91). We thus have chosen by design to include all
possible favorable non-maximal helipoints in the initial
graph that TT2NE generates, even though it makes calcu-
lations longer.

In fact, it is worth noticing that whenever a pseudoknot
is predicted by TT2NE, its PPV is almost always less than
(or equal to) the sensitivity. This means that the predicted
structures are somewhat overloaded with spurious
pairings. We examined TT2NE’s predicted MFEs and
we are convinced that most of the time, the helipoints
predicted in excess cannot exist due to steric consider-
ations. This point therefore raises an important difference
in the evaluation of algorithms for the prediction of sec-
ondary structures with and without pseudoknots, such as
Mfold. For the latter, if some modifications entail an
overall improvement of the sensitivity and the PPV of
the predicted MFEs, then we can conclude that the pre-
dictive power of such an algorithm has been improved. In
contrast, with pseudoknot prediction algorithms, such an
improvement can be misleading. In fact, the real output to
be taken into account is not the MFE but the first steric-
ally possible structure. Even if the predicted MFE has
good sensitivity and PPV, it may happen that the best
sterically possible structure is in fact completely different
and has a bad score. For example, TT2NE’s prediction for
the sequence GLV_IRES has a sensitivity of 100% but a
PPV of 85%: it contains an additional helix that may
render the structure sterically impossible. Would the sen-
sitivity and the PPV of the first sterically possible structure
be as good? We therefore think that the problem of the
determination of sterically impossible structures is essen-
tial. As long as we do not know how to detect impossible
structures in a fast and efficient way, pseudoknot predic-
tion algorithms may output lots of impossible structures
and the evaluation of such algorithms with standard stat-
istical estimates such as sensitivity and PPV of the MFE
may be meaningless. How to deal properly with steric
constraints? To our knowledge this is an open question.
No clear criteria is known to decide whether a proposed
pseudoknot is possible or not. It would be an easy task
though to include such a criteria in TT2NE as far as only
two helipoints are involved (that is the case of simple
H-pseudoknots). Indeed, during the generation of the
initial graph, it is sufficient to declare two helipoints
incompatible if they form a sterically impossible
pseudoknot. In this version of TT2NE, we have used a
simple test depicted in Figure 3. However, this test is not
foolproof as TT2NE still wrongly predicts the Wobble
pair in the case discussed above.

Topological control. TT2NE allows to partly overcome
the two main aforementioned problems through param-
eters u and g,,,,. Indeed, the user can play on these par-
ameters to scan the space of possible pseudoknots in order
to get other good candidates with a genus different from
the MFE predicted by TT2NE. In five cases, TT2NE pre-
dicted structures of higher genus than the native one and a
proper 3D-modeling would certainly show that each of
these structures must be rejected due to steric constraints.
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Figure 3. Naive stericity tests used in this work for H-pseudoknots.
The constraint (*) is used to prevent the formation of real knots.

TT2NE offers the possibility to limit the complexity of the
predicted pseudoknot by playing with the parameter g,
We therefore folded again these five sequences with an
appropriate setting of g,,,,, which brought some improve-
ments (except for HDV_anti) as can be seen in the table of
results. In nine other cases, TT2NE predicted a structure
of lower genus than the native one. As the energy model
is far from perfect, we folded again these sequences
with u = 0. This way, we expect that the flaws of the
energy model might be compensated by the lower cost
of pseudoknot formation. This approach brought clear
improvements in all cases except for sequence Hs PrP.
Altogether, these improvements bring the average sensi-
tivity of TT2NE to 82% (934 base pairs correctly pre-
dicted) and its average PPV to 79% (1189 base pairs
predicted). Therefore, the parameter u should not be
thought as a fixed parameter whose value is intrinsic to
RNA. Rather, playing with u allows the user to get the
best candidates between different genii. It is then up to the
user to decide which structure is the most likely, given the
limits of the energy model and the absence of steric
constraints.

CPU time. The CPU time required by TT2NE depends on
the combinatorics of the initial graph G, which is not
simply related to the length L of the sequence. It also
depends on the choice of g,,.. since the size of the space
of available pseudoknots scales as (0.146 L)**"/g,...! (21).
On the same processor, folding satRPV (L = 73) took less
than 1s, hTER (L = 121) 95, Bs_glms (L = 158) 209 s and
1y0q (L = 229) 28 h. With g,,,. = 1, 1y0q took 3 h.

The growth of the CPU time with sequence length
might seem to prevent the treatment of longer RNAs.
However, it is easy to see that the search strategy of
TT2NE can be fully parallelized, allowing thus to treat
longer sequences.

CONCLUSION

In this article, we present TT2NE, an efficient algorithm
for RNA pseudoknot prediction, which proves that
classifying pseudoknots according to their genus is a
relevant and successful concept. We showed that on a
set of (mostly) experimentally validated RNA structures,
TT2NE performs significantly better than most of present
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state-of-the-art algorithms. We also showed that playing
with the ‘topologic energy’ u.g allows one to scan the
space of possible psecudoknots in a relevant way: the
user can tune the genus of the output of TT2NE to
partly compensate the imperfections of the energy model
or the absence of steric constraints.

In order to further improve the performance of TT2NE,
we see 3 main directions: (i) obviously, there is room for
improvement on the computing techniques, in particular
on the graph independent-set exploration. In addition,
parallelization of the algorithm will allow to increase
the size of RNAs that can be treated by TT2NE at this
time. (ii)) improvement of the energy model, which is
needed for all algorithms, including the pseudoknot-free
ones, such as Mfold. (iii) studying and including steric
constraints. As TT2NE builds RNA folds gradually by
adding helipoints, as soon as a steric constraint verifica-
tion algorithm will be available, it will be possible to have
an ongoing procedure that will detect sterically impossible
structures and will stop that branch of the search tree.
In addition to improving on the quality of predictions,
this will speed up the search algorithm and allow for the
study of longer sequences of RNAs.
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