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Abstract

Apical–basal polarity is essential for the formation and function of epithelial tissues, whereas

loss of polarity is a hallmark of tumours. Studies in Drosophila have identified conserved

polarity factors that define the apical (Crumbs, Stardust, Par-6, atypical protein kinase C

[aPKC]), junctional (Bazooka [Baz]/Par-3), and basolateral (Scribbled [Scrib], Discs large

[Dlg], Lethal [2] giant larvae [Lgl]) domains of epithelial cells. Because these conserved fac-

tors mark equivalent domains in diverse types of vertebrate and invertebrate epithelia, it is

generally assumed that this system underlies polarity in all epithelia. Here, we show that this

is not the case, as none of these canonical factors are required for the polarisation of the

endodermal epithelium of the Drosophila adult midgut. Furthermore, like vertebrate epithelia

but not other Drosophila epithelia, the midgut epithelium forms occluding junctions above

adherens junctions (AJs) and requires the integrin adhesion complex for polarity. Thus, Dro-

sophila contains two types of epithelia that polarise by fundamentally different mechanisms.

This diversity of epithelial types may reflect their different developmental origins, junctional

arrangement, or whether they polarise in an apical–basal direction or vice versa. Since

knock-outs of canonical polarity factors in vertebrates often have little or no effect on epithe-

lial polarity and the Drosophila midgut shares several common features with vertebrate epi-

thelia, this diversity of polarity mechanisms is likely to be conserved in other animals.

Author summary

The Drosophila midgut is lined by a single-layered epithelium that acts as a barrier to the

environment while allowing for nutrient uptake and related physiological processes. To

fulfil these roles, midgut epithelial cells are highly polarised, with a pronounced asymmet-

ric distribution of cellular components. Previous work in Drosophila revealed a conserved

set of factors governing cell polarity, and it is thought that this network of proteins under-

lies all examples of polarity in Drosophila (and other organisms). Here, we demonstrate

that the epithelial cells in the Drosophila midgut are not polarised by these canonical

polarity factors but instead rely on the integrin adhesion complex. Thus, there are two

types of epithelia in Drosophila that polarise using fundamentally different mechanisms.
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This diversity may reflect a difference in developmental origin (endodermal versus ecto-

dermal), a difference in junctional arrangement, or the direction in which the respective

cells polarise. Since knock-outs of canonical polarity factors often have little or no effect

on epithelial polarity in vertebrate model systems, this diversity of polarity mechanisms

might be conserved in other organisms.

Introduction

Most animal organs and tissues are composed of epithelial cells that adhere laterally to each

other to form sheets that act as barriers between compartments. The formation of epithelial

monolayers depends on the coordinated polarisation of each cell along its apical–basal axis,

and this polarity underlies all aspects of epithelial biology [1,2]. For example, the function of

epithelia as barriers to fluids and pathogens depends on the correct positioning of the occlud-

ing cell–cell junctions (septate junctions [SJs] in invertebrates and tight junctions in verte-

brates), whereas the adhesion between cells depends on the lateral localisation of cadherin-

dependent adherens junctions (AJs).

Much of our understanding of how epithelial cells polarise comes from studies of Dro-
sophila melanogaster that have identified a conserved set of epithelial polarity factors that

define different cortical domains along the apical–basal axis of the cell. The apical domain is

specified by the transmembrane protein Crumbs, the adaptor protein Stardust, and the Par-

6/atypical protein kinase C (aPKC) complex; the boundary between the apical and lateral

domains is defined by Bazooka (Baz, Par-3 in other organisms), which positions the apical-

most lateral junction; and the rest of the lateral domain is marked by Scribbled (Scrib), Discs

large (Dlg), and Lethal (2) giant larvae (Lgl) [3]. Null mutations in any of these factors dis-

rupt epithelial polarity in the primary epithelium that forms from the cellular blastoderm of

the Drosophila embryo and gives rise to most of the structures of the larva and adult [4–11].

Similarly, loss of any of these genes disrupts the secondary epithelium formed by the follicle

cells that surround the developing oocyte [12–14]. In each tissue, Baz seems to play a pivotal

role in positioning the apical AJs and in localising the apical factors, which then exclude Baz

from the apical domain [15–19]. The identity of the apical and lateral domains is then main-

tained by mutual antagonism between apical and lateral factors [20,21]. The requirement

for some of these factors becomes less stringent in polarised epithelia as they mature. For

example, Crumbs is particularly important in epithelial tissues that are remodelling their cell

junctions as they undergo morphogenetic rearrangements, and Scrib, Dlg, and Lgl are not

required to maintain polarity in mid-embryogenesis, as the Yurt group of lateral proteins

takes over the antagonism of the apical factors, although Scrib and Dlg are still required for

the formation of the SJs [20–24].

Epithelial cells are thought to have evolved at the origin of multicellularity, as cells first

started to adhere to each other to form sheets, suggesting that apical–basal polarity is an

ancient invention that is controlled by a conserved mechanism [25]. In support of this view, all

of the canonical epithelial factors in Drosophila are conserved in vertebrates and localise to the

equivalent cortical domains [26–33]. Knock-downs or knock-outs of some of these factors

impair polarity in certain contexts, such as in Xenopus embryonic blastomeres and in some

cultured cell lines [34–37]. In most cases, however, knock-outs of canonical polarity factors

have little or no effect on polarity or cause unrelated phenotypes. For example, mice homozy-

gous for a null mutation in PAR-3 die in mid-gestation from a heart defect caused by a failure

of the epicardial cell migration, but other embryonic epithelia appear to form normally [38].
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Similarly, knock-out of PAR-3 in mouse mammary stem cells disrupts the morphogenesis of

the mammary gland but not the ability of the cells to polarise [39,40]. Finally, Scrib functions

as a planar cell polarity gene in mice but has no obvious effect on apical–basal polarity [41].

Although this lack of polarity phenotypes in mammals could be a result of redundancy

between paralogues, it raises the possibility that at least some vertebrate epithelia polarise by

different mechanisms from the model Drosophila epithelia. In support of this view, many

mammalian epithelia require integrin adhesion to the basement membrane to orient their

polarity, whereas the well-characterised Drosophila epithelia do not [42–44]. Furthermore, ver-

tebrate epithelial cells have an inverted arrangement of junctions compared to insect epithelia:

the apical junction in vertebrates is the occluding, tight junction, which forms at the apical/lat-

eral boundary above a lateral zonula adherens (ZA), whereas insect cells form lateral SJs, below

an apical ZA [45–47].

The possibility that the polarisation of some epithelia is independent of the canonical polar-

ity system prompted us to ask if all Drosophila epithelia polarise in the same way. We therefore

examined polarity in the Drosophila adult midgut epithelium, which is mainly absorptive

rather than secretory and is endodermal in origin, unlike the well-characterised epithelia,

which are secretory and arise from the ectoderm or mesoderm [48]. The adult midgut is a

homeostatic tissue in which basal intestinal stem cells (ISCs in Fig 1F) divide to produce new

cells that integrate into the epithelium to replace dying enterocytes (ECs), which are shed into

the gut lumen. This has the advantage that one can generate homozygous mutant stem cell

clones in heterozygotes at the late pupal or adult stage to produce clonal patches of mutant

ECs in the adult midgut without disrupting the development of the tissue. Our results reveal

that the polarisation of the midgut epithelium does not require any of the canonical polarity

factors and has several features in common with vertebrate epithelia, making it a useful model

for investigating alternative polarity pathways.

Results

The midgut is a typical epithelium with an apical brush border marked by F-actin (Fig 1A) and

phospho-Moesin (pMoe) (Fig 1B) as well as Myosin IA (Fig 1E) and an apical domain marked

by Myosin 7a(Fig 1C). However, our analysis led us to rediscover an interesting property of

this epithelium: the smooth SJs, which form the occluding barrier to paracellular diffusion,

form at the apical side of the lateral domain, above AJs, which are diffusely distributed over the

lateral domain [49–52] (Fig 1D and 1F). This is the opposite way around compared to other

Drosophila epithelia, in which the AJs condense to form a ZA around the apical margin of the

cell, with the SJs, if present, positioned more basally in the lateral membrane. The organisation

of junctions in the midgut therefore resembles the junctional arrangement in mammals, in

which the occluding tight junctions form above the AJ.

In secretory epithelia, the Crumbs/Stardust complex defines the apical and marginal region

and anchors the Par-6/aPKC complex in this domain [5,9,53]. Apical Crb and aPKC then

exclude Baz/Par-3 to define the apical/lateral boundary by positioning the apical AJs [17–19].

This raises the question of whether these factors mark the same positions or the same struc-

tures when the junctions are reversed in the midgut.

Crumbs is not detectable in the adult midgut epithelium, as has previously been observed

in the embryo [4] (Fig 2A). We used the mosaic analysis with a repressible cell marker

(MARCM) technique [54] to generate positively marked clones in the adult midgut epithelium

for null mutations in crumbs or stardust (crb8F–105, crb11A22; sdtk85). The adults were then dis-

sected 8 to 10 days after clone induction to allow the stem cells, which divide about once a day,

to go through multiple divisions because this rules out any perdurance of wild-type proteins
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Fig 1. Drosophila midgut epithelial cells have a reversed arrangement of intercellular junctions compared to other

Drosophila epithelia. All micrographs in this and succeeding figures show apical–basal confocal sections of the adult

Drosophila midgut epithelium, with apical on top. (A–E) The adult Drosophila midgut epithelium stained for the

following: (A) F-actin (phalloidin; red) and DNA (DAPI; blue), revealing the apical brush border. The strong basal

signal corresponds to the visceral musculature. (B) pMoe (red), Dlg (green), and DNA (DAPI; blue). (C) Lgl (green),

Myo7a (red), and DNA (DAPI, blue). The signal detected by the anti-Myo7a antibody in EC nuclei is unspecific, as it is

also present in ck13 (Myo7a) mutant clones (S1G Fig). (D) The AJ component Armadillo (green) and the SJ

component Mesh (red), revealing the organization of intercellular junctions in the midgut epithelium. (E) Myo31DF/
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MyoIA (green) and Myo7a (red). Myo31DF/MyoIA is mainly localised to the apical brush border and the BL, whereas

Myo7a is localised to the apical domain, slightly below the brush border. (F) Diagram of the midgut epithelium, which

is mainly composed of ECs with a lower frequency of ee cells, both of which turn over in the adult and are replaced by

the progeny of basal ISCs. The diagram shows the localisation of the SJs above the AJs and the BL. Scale bars, 10 μm.

AJ, adherens junction; Arm, Armadillo; BL, basal labyrinth; Dlg, Discs large; EC, enterocyte; ee, enteroendocrine cell;

ISC, intestinal stem cell; Lgl, Lethal (2) giant larvae; MyoIA, Myosin IA; Myo7a, Myosin 7a; Myo31DF, Myosin 31DF;

pMoe, phospho-Moesin; SJ, septate junction; YFP, yellow fluorescent protein.

https://doi.org/10.1371/journal.pbio.3000041.g001

Fig 2. Crb and Baz are neither detectably expressed nor required for apical–basal polarity in adult midgut ECs. (A) Adult midgut epithelium from

a female carrying a GFP protein trap insertion in the endogenous Crb locus stained with anti-GFP (green). Crb-GFP is not detectable in the adult

midgut epithelium. Cora (red) and aPKC (white) are also shown. (B) ECs homozygous for crb8F105 (marked by GFP, green). The apical domain forms

normally as revealed by the apical localization of Myo7a (red). (C) Conditional mis-expression of UAS-Crb in adult midgut ECs using MyoIA-GAL4;

tubP-GAL80ts. Crb (green) localises to the BL but does not perturb SJ formation as revealed by Tsp2a (red). (D) Adult midgut epithelium expressing

Baz-GFP under endogenous control (protein trap line), stained with anti-GFP (green) and anti-Baz (white). Baz/Baz-GFP is not detectable in ECs but is

expressed in ISCs, in which it localises apically (white arrowhead). Cora (red) labels the SJ. (E) ECs homozygous mutant for baz4 (marked by GFP,

green). The apical brush border forms normally as revealed by staining for F-actin with phalloidin (red). (F) Ectopic expression of UAS-Baz-GFP in

adult midgut ECs using MyoIA-GAL4; tubP-GAL80ts has no effect on the formation of the apical SJ marked by Dlg (red). Baz-GFP localises to the

apical domain and AJs (green). Scale bars, 10 μm. AJ, adherens junction; aPKC, atypical protein kinase C; Baz, Bazooka; BL, basal labyrinth; Cora,

Coracle; Crb, Crumbs; Dlg, Discs large; EC, enterocyte; GFP, green fluorescent protein; MyoIA, Myosin IA; Myo7a, Myosin 7a; SJ, septate junction;

Tsp2a, Tetraspanin 2a; tubP, tubulin promoter; UAS, Upstream Activation Sequence.

https://doi.org/10.1371/journal.pbio.3000041.g002
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expressed before the clones were induced. However, clones of crb and sdt null mutations give

no obvious phenotypes (Fig 2B, S1A, S1D and S1E Fig). Overexpression of Crumbs expands

the apical domain in other Drosophila epithelia [55]. By contrast, ectopic expression of Crumbs

in the adult midgut epithelium does not affect EC polarity and the Crumbs protein does not

localise apically, concentrating instead in the basal labyrinth (BL), an extensive set of tubular

membrane invaginations from the EC basal surface (Fig 2C). Baz/Par-3 is also not detectable

in ECs, although it is expressed in the ISCs, in which it localises apically as previously reported

[56] (Fig 2D). MARCM clones homozygous for baz null alleles (baz815–8; baz4) occur at a simi-

lar frequency to wild-type clones and contain a normal number of cells, arguing against a role

for Baz in asymmetric stem cell division, consistent with the view that these divisions are ran-

dom and largely symmetric [57]. More importantly, baz null mutant ECs integrate into the

epithelium and develop normal apical–basal polarity, in contrast to other epithelia in Drosoph-
ila (Fig 2E, S1B, S1C and S1F Fig). Baz-green fluorescent protein (GFP) localises apically and

to the AJs when ectopically expressed in the midgut epithelium, consistent with binding to the

Par-6/aPKC complex and to E-cadherin complexes (Fig 2F). However, ectopic Baz expression

has no effect on the polarity of the ECs or on the formation of an apical SJ.

Both aPKC and Par-6 are expressed in the midgut and localise apically, as they do in all

other epithelia (Fig 3A and 3B). In most polarised cells, the apical localisation of the Par-6/

aPKC complex depends on Baz/Par-3, and in epithelia, this also requires Crumbs and Stardust

[2]. Consistent with our observation that these proteins are absent from ECs, neither Baz nor

Crb are required for the localisation of Par-6, indicating that the latter must be targeted api-

cally by a distinct mechanism (S1A and S1B Fig). Surprisingly, the apical domain forms

normally in par-6Δ226 and aPKCk06043 mutant clones, and the morphology of the cells is unaf-

fected (Fig 3C, S1H and S1J Fig). Although aPKCk06043 is considered a null allele, the corre-

sponding P element insertion does not disrupt the shorter isoforms of aPKC. Thus, it is

conceivable that some aPKC activity remains in aPKCk06043 homozygous mutant cells. We

therefore used CRISPR to generate a complete null, aPKCHC, a frameshift mutation resulting

in a premature stop codon and a truncation of aPKC at amino acid 409, which is located in the

middle of the kinase domain (S1L Fig). Homozygous aPKCHC clones also show no phenotype,

forming normal actin-rich brush borders and SJs, confirming that aPKC is dispensable for EC

polarity (Fig 3D and 3E). Nevertheless, Par-6 is lost from the apical domain in aPKCk06043

clones and aPKC is not apical in par-6Δ226 clones, showing that their localisations are interde-

pendent (Fig 3F and 3G). Thus, the Par-6/aPKC complex still marks the apical domain of the

midgut epithelium but is not required for its formation or maintenance.

The lateral polarity factors Scrib, Dlg, and Lgl are all expressed in the midgut and colocalise

with each other to the SJs, marked by the conserved SJ component, Coracle [58] (Fig 1B and

1C, S2A Fig). Since the SJs form at the apical side of the lateral membrane in the midgut, in the

position occupied by the AJs in other Drosophila epithelia, these proteins mark a conserved

structure rather than a conserved position. The lateral epithelial polarity factors are required

for the formation of pleated SJs in the embryo [20,21,59]. However, the smooth SJs form nor-

mally in scrib, dlg, and lgl mutant clones or when these factors are depleted by RNA interfer-

ence (RNAi) (Fig 4A and 4C, S2B Fig). The apical domain is also unaffected in scrib, dlg,
and lgl mutant or knock-down cells, in contrast to other epithelia in which apical factors are

mislocalised to the basolateral domain (Fig 4E and 4F, S2C and S2D Fig). In stage 13 embryos,

the Yurt complex excludes apical factors from the lateral membrane in place of Scrib, Dlg, and

Lgl [23,24]. We therefore also examined the role of Yurt in the midgut. Yurt localises to the

SJs, as it does in the embryo, but yurt mutant clones still polarise normally and form SJs that

recruit Lgl (Fig 5). Finally, we examined Par-1, which localises laterally in other epithelia in

which it plays a role in localising AJs through phosphorylation of Baz and in organising the
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Fig 3. aPKC and Par-6 are not required for EC polarity. Subcellular localisation of endogenously tagged Par-6–GFP (A) and GFP-

aPKC (B), as revealed by anti-GFP staining (green). MARCM clones (marked by GFP, green) homozygous mutant for par-6Δ226 (C)

and aPKCHC (D, E) show normal apical actin brush borders (F-actin in red) and SJ localisation (E; Mesh, red). The apical localisation

of Par-6 (red) is lost in aPKCK06043 MARCM clones (marked by GFP, green) (F) as is the apical localisation of aPKC (red) in par6Δ226

MARCM clones (marked by GFP, green) (G). Scale bars, 10 μm. aPKC, atypical protein kinase C; EC, enterocyte; GFP, green

fluorescent protein; MARCM, mosaic analysis with a repressible cell marker; SJ, septate junction.

https://doi.org/10.1371/journal.pbio.3000041.g003
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Fig 4. Scrib, Dlg, and Lgl localise to SJs but are not required for SJ formation or apical–basal polarity. (A) Mosaic knock-down of Scrib

by RNAi in adult ECs. The SJ markers Cora (green) and Mesh (red) localise normally in cells depleted of Scrib (white). The ECs lacking Scrib

are indicated by dashed lines above. (B) Dlg (red) does not localise to the SJs in Scrib–RNAi MARCM clones (marked by GFP, green). (C)

Cora (red) and Scrib (white) localise to the SJs in dlg114 MARCM clones (marked by GFP, green). (D) Lgl does not localise to the SJ between

dlg114 mutant cells (marked by GFP, green). The white arrow indicates the SJ between the dlg114 mutant cells. (E) Myo7a (red) and Scrib

(white) localise normally to the apical cortex and SJs respectively in lgl4 MARCM clones (marked by GFP, green). (F) Dlg (red) and pMoe

(white) localise normally in lgl4 mutant cells (marked by GFP, green). White asterisks mark the mutant cells. Scale bars, 10 μm. Dlg, Discs

large; EC, enterocyte; GFP, green fluorescent protein; Lgl, Lethal (2) giant larvae; MARCM, mosaic analysis with a repressible cell marker;
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microtubule cytoskeleton [60,61]. Par-1 is expressed in the ISCs, in which it localises laterally

but is not detectable in the ECs. Consistent with its lack of expression, par-19 mutant ECs

show normal apical–basal polarity (S3A and S3B Fig). Thus, all the canonical epithelial polarity

factors are dispensable for the polarisation of the midgut epithelium, even though Par-6,

aPKC, Scrib, Dlg, Lgl, and Yurt are expressed and localise to equivalent positions to secretory

epithelia.

The relationships between the lateral factors has been difficult to assess in other epithelia

because mutants in scrib, dlg, and lgl give rise to round, unpolarised cells without an identifi-

able lateral domain [11]. We took advantage of the normal EC polarisation in these mutants

to investigate the interdependence of their recruitment to the SJs. Neither Dlg nor Lgl are

recruited to SJs in cells depleted of Scrib by RNAi (Fig 4B and S2D Fig). Scrib localises nor-

mally in dlg mutant clones, whereas both Scrib and Dlg localise normally to the SJs in lgl
mutant clones (Fig 4C–4F). Thus, there is a simple hierarchical relationship between these fac-

tors in the midgut epithelium, in which Scrib is required to recruit Dlg, which is needed for

Lgl localisation.

The surprising observation that none of the classical epithelial polarity factors are required

for the apical–basal polarisation of the midgut epithelium raises the question of how polarity is

generated and maintained. Given the similar junctional arrangement to mammalian epithelia,

we addressed whether polarity in midgut ECs depends on integrin-dependent adhesion to the

extracellular matrix, as it does in several mammalian epithelia [42–44]. Components of the

integrin adhesion complex, such as the α-integrin Mew and the essential cytoplasmic adaptor

proteins Talin (Drosophila Rhea) [63] and Kindlin (Drosophila Fit 1 [64]; Fit 2 is not detectable

expressed in the midgut) are highly localised to the basal side of the midgut epithelium (Fig

6A). The expression of two α-integrins and two β-integrins in the midgut complicates the

genetic analysis of their function, so we focused on the cytoplasmic components of the integrin

adhesion complex. Clones of cells homozygous for null alleles of rhea (rhea79a and rheaB128)

detach from the basement membrane and fail to polarise, forming irregularly shaped cells that

do not form SJs or an apical domain (Fig 6B). Most rhea mutant cells remain within the epithe-

lial layer, below the SJs of the wild-type cells, probably because they do not form SJs themselves

(Fig 6B and S4A Fig). Despite their inability to polarise and integrate into the epithelium, the

mutant cells still appear to differentiate: they become polyploid, the size of their nuclei is not

significantly different from that of wild-type cells (rhea nuclear long axis: 6.0 μm ± 1.0 μm ver-

sus heterozygous cells: 6.9 μm ± 0.9 μm), and they express the marker for differentiating ECs,

Pdm1 [65] (Fig 6B). Cells mutant for both Fit1 and Fit2 show a similar phenotype to Talin

mutants. Mutant cells have normal nuclear dimensions (Fit1 Fit2 nuclear long axis:

6.6 μm ± 1.2 μm versus heterozygous cells: 6.9 μm ± 1.0 μm) and express Pdm1 but fail to

localise apical markers or form SJs (Fig 6C and S4B Fig).

The ISCs lie beneath the epithelium and differentiating ECs must therefore integrate into

the epithelium from the basal side, inserting between the SJs of the flanking ECs while main-

taining an intact barrier. We therefore examined the effects of mutations in the core SJ compo-

nents Tsp2a and Mesh [51,52]. More than 90% of mutant cells fail to integrate through the SJs

of the neighbouring wild-type cells, and the clones form clusters on the basal side of the epithe-

lium (Fig 7A, S3A and S4C Figs). Nevertheless, the mutant cells still appear to differentiate

normally, as shown by their nuclear size (Tsp2a nuclear long axis: 6.0 μm ± 0.9 μm versus het-

erozygous cells: 6.6 μm ± 0.8 μm) and Pdm1 expression (S4D Fig). Wild-type cells start to

Myo7a, Myosin 7a; pMoe, phospho-Moesin; RNAi, RNA intereference; Scrib, Scribbled; SJ, septate junction; UAS, Upstream Activation

Sequence.

https://doi.org/10.1371/journal.pbio.3000041.g004
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Fig 5. Yurt is not required for EC polarisation. (A) Yurt (red) localises to SJs and is not detectable in ECs mutant for the loss-of-function

allele yrt[E99] (marked by GFP, green). (B) In yurt mutant clones (marked by GFP, green), Par-6 (white) still localises to apical domain and

Na+ K+ ATPase (stained with the pan-Na–pump β-subunit (Nrv) [62] antibody Nrv5F7 (red)) still localises to BL. (C) and (D) Yurt is not

required for SJ formation, as Cora (C) (red) and Lgl (D) (red) still localise to SJ in yurt mutant clones (marked by GFP, green). Scale bars,

10 μm. BL, basal labyrinth; EC, enterocyte; GFP, green fluorescent protein; Lgl, Lethal (2) giant larvae; Nrv, Nervana; SJ, septate junction.

https://doi.org/10.1371/journal.pbio.3000041.g005
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Fig 6. The integrin adhesion complex is required for EC polarisation and integration. (A) The α-integrin Mew and the

cytoplasmic adaptor proteins of the integrin adhesion complex, Talin (Rhea) and Fermitin (Fit, also known as Kindlin), localise to

the basal surface of the midgut epithelium. Mew-YFP, Rhea-GFP (protein trap insertions), and Fit1-GFP (a genomic fosmid

construct) [66] were detected with an anti-GFP antibody (green), whereas the subcellular localization of Talin was also revealed

with an anti-Talin antibody (red). (B) rhea79a mutant cells (marked by GFP, green) detach from the basement membrane and fail to

polarise. Shot (red) is apically enriched in neighbouring wild-type ECs but is not localised in rhea mutant cells, which fail to form

SJs marked by Tsp2a (white). Most rheaB128 mutant cells (marked by GFP, green) express Pdm1 (red), a marker for differentiating

ECs. (C) Fit118 Fit283 double mutant clones show a similar phenotype: Myo7a is not enriched apically (red), Lgl (white) spreads

around the whole plasma membrane, and SJs fail to form as shown by the loss of Tsp2a localization (red). White asterisks � mark

the mutant clones. Scale bars, 10 μm. EC, enterocyte; GFP, green fluorescent protein; Lgl, Lethal (2) giant larvae; Myo7a, Myosin 7a;

SJ, septate junction; Tsp2a, Tetraspanin 2a; YFP, yellow fluorescent protein.

https://doi.org/10.1371/journal.pbio.3000041.g006

An alternative mode of epithelial polarity in the Drosophila midgut

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000041 October 19, 2018 11 / 24

https://doi.org/10.1371/journal.pbio.3000041.g006
https://doi.org/10.1371/journal.pbio.3000041


form an apical domain as they integrate, before they have a free apical surface, as shown by the

enrichment of apical components such as Myo7a (arrowhead in Fig 7B). By contrast, apical

markers only weakly localise in cells mutant for SJ components and never form a clear apical

domain, even if the cells are extruded from the apical side of the epithelium (Fig 7B and 7C).

Thus, the midgut epithelium appears to polarise in a basal to apical manner, in which adhesion

to the ECM is required for the formation of the SJs and the SJs are needed for the formation of

the apical domain (Fig 7D).

Fig 7. SJ proteins are required for EC polarisation and integration. (A) Tsp2a mutant clones (marked by GFP, green) fail to integrate into the

epithelium, forming basal clusters that lack SJs, as indicated by the loss of Cora (red) localization and diffuse Lgl staining (white). (B) and (C) Neither

Tsp2a mutant cells (marked by GFP, green) that cluster on the basal side (B) or that face the lumen of the gut (C) form an apical domain, as shown by

the lack of apical Myo7a (red) enrichment. (D) Model of the steps in EC polarisation: adhesion to the basement membrane is required for SJ formation,

which in turn is necessary for the formation of an apical domain. White asterisks � mark the mutant clones. White arrowhead in (B) marks the

integrating EC. Scale bars, 10 μm. Cora, Coracle; EC, enterocyte; GFP, green fluorescent protein; Lgl, Lethal (2) giant larvae; Myo7a; Myosin 7a; SJ,

septate junction; Tsp2a, Tetraspanin 2a.

https://doi.org/10.1371/journal.pbio.3000041.g007
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Discussion

Our results reveal that the intestinal epithelium polarises by a fundamentally different mecha-

nism from other Drosophila epithelia, as none of the classical epithelial polarity genes are

required for its apical–basal polarisation. This cannot be attributed to redundancy between

paralogues, as might be the case in vertebrates, because all of the polarity factors are single-

copy genes in Drosophila. Thus, our observations provide strong evidence against the idea that

there is a universal system for polarising epithelial cells. Nevertheless, a core set of the polarity

factors (Par-6, aPKC, Scrib, Dlg, and Lgl) is expressed in the midgut epithelium, and these pro-

teins localise to the equivalent positions to other Drosophila epithelia. Thus, they may still

serve important functions in the midgut epithelium that are not essential for the overall api-

cal–basal polarisation of the cells.

Given that all other epithelia in Drosophila use the canonical polarity pathway, our obser-

vations raise the question of why the midgut epithelium is different. This is unlikely to reflect

the fact that the midgut is absorptive rather than secretory, as secretory cells in the midgut,

such as the enteroendocrine (ee) cells and the acid-secreting copper cells, polarise in the

same way as the ECs (S1J and S1K Fig). One key difference between the midgut epithelium

and other epithelia is that it is the only epithelial tissue of endodermal origin in the fly,

whereas all other epithelia are ectodermal or mesodermal. Thus, it is possible that endoder-

mal epithelia are intrinsically different in the way that they polarise. In support of this view,

it has recently been found that PAR-3, PAR-6, and aPKC are degraded in the invaginating

endomesoderm of the Cnidarian Nematostella vectensis and are not required for this tissue

to form an epithelium [67]. Thus, the difference between endodermal and ectodermal polar-

ity systems may have evolved before the origin of Bilateria. The Drosophila midgut arises

from the cellular blastoderm of the embryo and initially polarises in the same way as other

embryonic epithelia before it undergoes an epithelial-to-mesenchymal transition (EMT)

under the control of the endodermal GATA family transcription factor, Serpent [68]. Serpent

drives EMT at least in part by inhibiting the transcription of crumbs and stardust and might

therefore contribute to the switch in polarity mechanisms. However, Serpent is turned off as

the midgut primordium migrates and is not expressed when the cells reform an epithelium

to generate the midgut tube. Indeed, continued expression of Serpent blocks the cells from

re-epithelising after migration. Thus, a pulse of Serpent expression may trigger the switch in

polarity mechanisms, perhaps through downstream transcription factors, but Serpent itself

prevents epithelial polarisation.

A second important difference between the adult midgut epithelium and other epithelia in

Drosophila is its reversed arrangement of occluding junctions and AJs, with apical SJs forming

above lateral AJs. In other Drosophila epithelia, Baz plays a key role in concentrating the AJs at

the apical margin of the lateral membrane to form the ZA [69]. Thus, the absence of Baz in

midgut ECs may contribute to the absence of an apical ZA. This cannot be the only factor

making the midgut different, however, as ectopic expression of Baz in midgut ECs does not

alter the position of the SJs. One reason why the SJs may have evolved to form above the AJs in

the midgut is that this places the barrier to paracellular diffusion apically, thereby preventing

the contents of the gut lumen from accessing the lateral sides of the cell, which is presumably

important because the gut is full of digestive enzymes and potential pathogens. Other Drosoph-
ila epithelia that face the external environment—such as the epidermis, trachea, foregut, and

hindgut—secrete an impermeable cuticle, which provides a protective covering to prevent

pathogens from accessing the cell surface [70]. The development of the typical arthropod cutic-

ular exoskeleton may therefore have freed these epithelia from the need to place their occlud-

ing junctions apically, allowing the apical positioning of the ZA.
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The third important difference between the midgut epithelium and other epithelia is that

the ECs polarise in a basal-to-apical direction as they integrate into the epithelium, whereas all

other Drosophila epithelia polarise in an apical-to-basal direction. For example, the primary

embryonic epithelium forms during cellularisation, as the furrow canals grow in from the api-

cal surface of the embryo between the nuclei, while the follicle cells polarise in response to an

apical cue from the germ line [14,71]. Thus, it is possible that the mechanism by which cells

polarise depends on the order in which they generate the basal, lateral, and apical domains.

Since the midgut is the only endodermal epithelium in Drosophila, the only epithelium with

apical SJs, and the only epithelium that polarises from basal to apical, it is not possible to deter-

mine which of these characteristics underlies its alternative mechanism of cell polarisation,

and this will require analysis in other organisms with a greater diversity of epithelial cell types.

Whatever the reason for the alternative polarity mechanism in the Drosophila midgut epi-

thelium, its polarity is much more similar to that of well-characterised vertebrate epithelia

than other Drosophila epithelia. Firstly, the midgut and vertebrate epithelia have apical occlud-

ing junctions above lateral AJs, whereas other Drosophila epithelia have a reversed arrange-

ment of junctions. Secondly, the midgut epithelium does not require the canonical epithelial

polarity factors that are essential in other Drosophila epithelia, and this also seems to be the

case in some vertebrate epithelia, although this may be due to redundancy between paralogues.

Thirdly, the midgut epithelium and a number of vertebrate epithelia depend on signals from

the integrin adhesion complex to polarise correctly [42–44]. These similarities suggest that the

Drosophila midgut epithelium may prove a better in vivo model for at least some types of ver-

tebrate epithelia. It will therefore be important to determine whether vertebrates also contain

distinct types of epithelia whose polarity is controlled by different factors.

Materials and methods

D. melanogaster genetics

w1118 or y2 or OreR flies were used as wild type unless otherwise specified. Other stocks used in

this study were as follows:

Fluorescently tagged protein lines: EGFP-aPKC (this paper), Par6-EGFP [72], Mew-YFP [73]

(Kyoto DGRC #115524), Baz-EGFP [74] (Bloomington #51572), Myo31DF-YFP [73]

(Kyoto DGRC #115611), Crb-EGFP [75] (gift from Y. Hong, University of Pittsburgh,

United States of America), Fit1-EGFP [66] (gift from B. Klapholz and N. Brown, Depart-

ment of Physiology, Development and Neuroscience, University of Cambridge, United

Kingdom), Rhea-GFP (Bloomington #39650), Par-1-GFP [61,76].

Mutant stocks: aPKCk06043 [6], aPKCHC (this paper), par6Δ226 [77], dlg1A (Bloomington

#57086), dlg114 [59], lgl4 [78], baz815-8 [79], baz4 [8], crb8F105 [4], crb11A22 [4], yurtE99 [80],

ck13 (Bloomington #5259), Tsp2A1-2, Tsp2A3-3, Tsp2A2-9 [52] (gift from M. Furuse, Kobe

University, Japan), meshf04955 [51] (Kyoto DGRC #114660), Fit118, Fit283, Fit118Fit283 [64],

rhea79a [63], rheaB28, rheaB128 [64], ilk54 [81] (gifts from B. Klapholz and N. Brown, Depart-

ment of Physiology, Development and Neuroscience, University of Cambridge, UK), par-19

(a missense mutation that changes Valine 279 to Aspartate adjacent to the ATP binding

pocket of the Par-1 kinase domain. This allele was characterised by Teresa Niccoli and

behaves like a null mutation genetically).

UAS responder lines: UAS-Scrib–RNAi (Bloomington #35748), UAS-Crb (Bloomington

#5544), UAS-Baz-GFP [17].

The following stocks were used to generate (positively labelled) MARCM [54] clones:
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MARCM FRTG13: y w, UAS-mCD8::GFP, Act5C-GAL4, hsFLP[1]; FRTG13 tubP-GAL80.

MARCM FRT82B: y w, UAS-mCD8::GFP, Act5C-GAL4, hsFLP[1];; FRT82B tubP-GAL80.

MARCM FRT19A: w, hsFLP, tubP-GAL80, FRT19A;; tubP-GAL4, UAS-mCD8::GFP/TM3,

Sb.

MARCM FRT2A: hsFLP[1]; tubP-GAL4, UAS-mCD8::GFP/CyO, GFP; FRT2A tubP-GAL80

(gift from B. Klapholz and N. Brown).

MARCM FRT40A: y w, UAS-mCD8::GFP, Act5C-GAL4, hsFLP[1]; FRT40A tubP-GAL80.

Negatively marked clones on the X chromosome were generated using the following stock:

y w His2Av::GFP hsFLP[12] FRT19A/FM7a (Bloomington #32045).

Clones mutant for mesh were generated using the following stock: esg-GAL4, UAS-FLP,

tubP-GAL80[ts]/CyO; FRT82B nlsGFP (referred to as esg> FLP[ts] in S4C Fig; gift from

G. Kolahgar, Department of Physiology, Development and Neuroscience, University of

Cambridge, UK).

UAS-Crb and Baz-GFP were expressed in the adult midgut epithelium using the following

driver line: y w; MyoIA-GAL4, tubP-GAL80[ts] (referred to as MyoIA[ts] in Figs 2C, 2F

and 4A and S2D Fig; gift from G. Kolahgar).

Stock maintenance

Standard procedures were used for Drosophila husbandry and experiments. Flies were reared

on standard fly food supplemented with live yeast at 25 ˚C. For the conditional expression of

UAS responder constructs (e.g., RNAi) in adult flies, parental flies were crossed at 18 ˚C and

the resulting offspring reared at the same temperature until eclosion. Adult offspring were col-

lected for 3 days and then transferred to 29 ˚C to inactivate the temperature-sensitive GAL80

protein. To generate MARCM or GFP-negative clones, flies were crossed at 25 ˚C and the

resulting offspring subjected to heat shocks either as larvae (from L2 until eclosion) or as adults

(5–9 days after eclosion). Heat shocks were performed at 37 ˚C for 1 h (twice daily). Flies were

transferred to fresh food vials every 2–3 days and kept at 25 ˚C for at least 9 days after the last

heat shock to ensure that all wild-type gene products from the heterozygous progenitor cells

had turned over. For this study, all (midgut) samples were obtained from adult female flies.

Formaldehyde fixation

Samples were dissected in PBS and fixed with 8% formaldehyde (in PBS containing 0.1% Tri-

ton X-100) for 10 min at room temperature. Following several washes with PBS supplemented

with 0.1% Triton X-100 (washing buffer), samples were incubated in PBS containing 3% nor-

mal goat serum (NGS, Stratech Scientific Ltd, Cat. #005-000-121; concentration of stock solu-

tion: 10 mg/ml) and 0.1% Triton X-100 (blocking buffer) for 30 min. This fixation method was

only used for samples in which F-actin was stained with fluorescently labelled phalloidin, as

phalloidin staining is incompatible with heat fixation.

Heat fixation

The heat fixation protocol is based on a heat–methanol fixation method used for Drosophila
embryos [82]. Samples were dissected in PBS, transferred to a wire mesh basket, and fixed in

hot 1X TSS buffer (0.03% Triton X-100, 4 g/L NaCl; 95 ˚C) for 3 s before being transferred to
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ice-cold 1X TSS buffer and chilled for at least 1 min. Subsequently, samples were transferred to

washing buffer and processed for immunofluorescence stainings.

Immunofluorescence staining

After blocking, samples were incubated with the appropriate primary antibody/antibodies

diluted in blocking buffer at 4 ˚C overnight. Following several washes, samples were incubated

with the appropriate secondary antibody/antibodies either at room temperature for 2 h or at

4 ˚C overnight. Samples were then washed several times in washing buffer and mounted in

Vectashield containing DAPI (Vector Laboratories) on borosilicate glass slides (No. 1.5, VWR

International). All antibodies used in this study were tested for specificity using clonal analysis

(MARCM) or RNAi.

Primary antibodies:

Mouse monoclonal antibodies: anti-Dlg (4F3), anti-Cora (c615.16), anti-αSpec (3A9),

anti-Arm (N2 7A1), anti-Talin (A22A, E16B), anti-Pros (MR1A), anti-Crb (Cq4), anti-Nrv

(Nrv5F7), anti-Mys (CF.6G11). All monoclonal antibodies were obtained from the Develop-

mental Studies Hybridoma Bank and used at 1:100 dilution.

Rabbit polyclonal antibodies: anti-pEzrin (NEB Cat. #3726S, 1:200 dilution); anti-Lgl

(Santa Cruz Biotechnoloy Inc., d-300, Cat. #SC98260, 1:200 dilution); anti-aPKC (Santa Cruz

Biotechnoloy Inc., Cat #SC216, 1:100 dilution); anti-βHSpec [83] (gift from C. Thomas, The

Pennsylvania State University, USA, 1:1,000 dilution); anti-Baz [6] (gift from A. Wodarz, Uni-

versity of Cologne, Germany, 1:200 dilution); anti-Par6 [84] (gift from D. J. Montell, UCSB,

USA, 1:500 dilution); anti-Mesh [51] and anti-Tsp2A [52] (gift from M. Furuse, 1:1,000 dilu-

tion); anti-Scrib [85] (gift from C. Q. Doe, University of Oregon, USA, 1:1,000 dilution);

anti-Pdm1 [86] (gift from F. J. Diaz-Benjumea, Centre for Molecular Biology "Severo Ochoa"

(CBMSO), Spain, 1:1,000 dilution); anti-Cno [87] (gift from M. Peifer, UNC, USA, 1:1,000

dilution).

Other antibodies used: chicken anti-GFP (Abcam, Cat. #ab13970, 1:1,000 dilution); guinea

pig anti-Yurt [88] (gift from U. Tepass, University of Toronto, Canada, 1:1,000 dilution);

guinea pig anti-Myo7a [89] (gift from D. Godt, University of Toronto, Canada, 1:1,000 dilu-

tion); guinea pig anti-Shot [90] (1:1,000 dilution); rat anti-Mesh [51] (gift from M. Furuse,

1:1,000 dilution).

Secondary antibodies:

Alexa Fluor secondary antibodies (Invitrogen) were used at a dilution of 1:1,000.

Alexa Fluor 488 goat anti-mouse (#A11029), Alexa Fluor 488 goat anti-rabbit (#A11034),

Alexa Fluor 488 goat anti-guinea pig (#A11073), Alexa Fluor 488 goat anti-chicken IgY

(#A11039), Alexa Fluor 555 goat anti-rat (#A21434), Alexa Fluor 555 goat anti-mouse

(#A21422), Alexa Fluor 555 goat anti-rabbit (#A21428), Alexa Fluor 568 goat anti-guinea pig

(#A11075), Alexa Fluor 647 goat anti-mouse (#A21236), Alexa Fluor 647 goat anti-rabbit

(#A21245), Alexa Fluor 647 goat anti-rat (#A21247). Only cross-adsorbed secondary antibod-

ies were used in this study to eliminate the risk of cross-reactivity.

F-Actin was stained with phalloidin conjugated to Rhodamine (Invitrogen, Cat. #R415,

1:500 dilution).

Imaging

Images were collected on an Olympus IX81 (40× 1.35 NA Oil UPlanSApo, 60× 1.35 NA Oil

UPlanSApo) using the Olympus FluoView software Version 3.1 and processed with Fiji

(ImageJ).
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Generation of endogenous EGFP-aPKC

Endogenously tagged aPKC with EGFP fused to the N-terminus was generated by CRISPR-

mediated homologous recombination. In vitro synthesised gRNA [91] to a CRISPR target

approximately 60 nucleotides downstream from the aPKC start codon (target sequence GAA

TAGCGCCAGTATGAACATGG) and a plasmid donor containing the ORF of EGFP as well

as appropriate homology arms (1.5 kb upstream and downstream) were coinjected into nos-

Cas9–expressing embryos (Bloomington #54591; also known as CFD2) [92]. Single F0 flies

were mated to y w flies and allowed to produce larvae before the parent was retrieved for PCR

analysis. Progeny from F0 flies in which a recombination event occurred (as indicated by

PCR) were further crossed and analysed to confirm integration. Several independent EGFP-

aPKC lines were isolated. Recombinants carry the EGFP coding sequence inserted immedi-

ately downstream of the endogenous start codon and a short linker (amino acid sequence:

Gly-Ser-Gly-Ser) between the coding sequence for EGFP and the coding sequence for aPKC.

Homozygous flies are viable and healthy.

Generation of aPKC[HC]
We used the CRISPR/Cas9 method [91] to generate a null allele of aPKC. sgRNA was in vitro

transcribed from a DNA template created by PCR from two partially complementary primers:

forward primer: 50-GAAATTAATACGACTCACTATAggattacggcatgtgtaaggGTTTTAGAGC

TAGAAATAGC-30; reverse primer: 50- AAAAGCACCGACTCGGTGCCACTTTTTCAAG

TTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC-30. The

sgRNA was injected into Act5c-Cas9 embryos [92]. Putative aPKC mutants in the progeny of

the injected embryos were recovered, balanced, and sequenced. The aPKCHC allele contains a

small deletion around the CRISPR site, resulting in one missense mutation and a frameshift

that leads to stop codon at amino acid 409 in the middle of the kinase domain, which is shared

by all isoforms (S1L Fig). The aPKCHC allele was subsequently recombined onto FRTG13 to

generate MARCM clones. No aPKC protein was detectable by antibody staining in both mid-

gut and follicle cell clones, and follicle cells homozygous for aPKCHC display a phenotype that

is indistinguishable from that observed in follicle cells homozygous for the aPKCK06403 allele.

Quantification and statistical analysis

The proportions of rhea, Fit, and Tsp2a mutant cells inside the epithelial layer were calculated

as follows: images were taken of different regions of several midguts containing MARCM

clones stained with an apical marker. Cells that were above the neighbouring cells or had a

clear apical domain were counted as ‘cells NOT inside the layer’, whereas cells without a

detectable free apical surface were counted as ‘cells inside the layer’. Data were analysed with

Graphpad Prism software. The graph in S4A Fig shows the average percent of cells inside the

layer ± SD%.

The nuclear long axis of rhea, Fit, and Tsp2a mutant clones was manually measured in 20

random mutant cells (stained with DAPI, excluding obvious ISCs) and 20 surrounding hetero-

zygous cells using Fiji.

Reproducibility of experiments

All experiments were repeated multiple times with independent crosses: Baz-EGFP (4 indepen-

dent experiments), EGFP-aPKC (9 independent experiments), Mew-YFP (5 independent

experiments), Par6-EGFP (4 independent experiments), Crb-EGFP (5 independent experi-

ments), Fit1-EGFP (4 independent experiments), Myo31DF-YFP (4 independent experiments),
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MyoIA[ts] > UAS-Scrib-RNAi (11 independent experiments), MyoIA[ts] > UAS-Crb (6 inde-

pendent experiments), and MyoIA[ts] > UAS-Baz-GFP (3 independent experiments).

The phenotypes of homozygous mutant clones were analysed in multiple guts from inde-

pendent experiments as follows: baz4 (13 independent experiments, 3,078 mutant cells ana-

lysed); baz815-8 (4 independent experiments, 734 cells analysed); aPKCk06043 (8 independent

experiments, 3,681 mutant cells analysed); aPKCHC (9 independent experiments, 15,984

mutant cells analysed); par6Δ226 (4 independent experiments, 2,558 mutant cells analysed);

crb11A22 (4 independent experiments, 1,478 mutant cells analysed); crb8F105 (5 independent

experiments, 3,288 mutant cells analysed); lgl4 (6 independent experiments, 6,790 mutant cells

analysed); dlg114 (5 independent experiments, 3,092 mutant cells analysed); rhea79a, rheaB28,

rheaB128 (4 independent experiments for each genotype, 184 mutant cells analysed in total);

Fit118Fit283 (7 independent experiments, 608 double mutant cells analysed); Fit118 (4 indepen-

dent experiments, 854 mutant cells analysed); ilk54 (5 independent experiments, 65 mutant

cells analysed); Tsp2a1-2, Tsp2a2-9, and Tsp2a3-3 (7, 4, and 6 independent experiments, respec-

tively; a total of 1,205 Tsp2a mutant cells were analysed); and meshf04955 (5 independent experi-

ments, 643 mutant cells analysed).

Supporting information

S1 Fig. Baz and Crb are not detectable in ECs and are not required for polarity. (A) and (B)

Par-6 (red) localises normally to the apical surface of crb8F105 (A) and baz4 (B) mutant cells

(marked by GFP, green). (C) baz815–8 mutant cells (marked by GFP, green) form a normal api-

cal brush border as revealed by phalloidin staining of F-actin (red). (D) crb11A22 MARCM

clones (marked by GFP, green) show normal Mesh (red) and Cno (white) localisation. (E)

sdtK85 MARCM clones (marked by GFP, green) show normal Arm (red) and Lgl (white) locali-

sation. (F) baz4 MARCM clones (marked by GFP, green) show normal Mesh (red) and Cno

(white) localization. (G) Unspecific signals of Myo7a staining (red) in nuclei are present in

ck13 MARCM clones (marked by GFP, green). (H) aPKCk06043 MARCM clones show normal

Cora (red) at SJs and βHSpec (white) at the apical domain. (I) aPKCk06043 MARCM clones

show normal αSpec (red) localization at the cortex. (J) The copper cell region has similar

polarity to other regions of the midgut, with pMoe (red) at the apical domain, although

folded inside, and Dlg (green) at apical SJs. (K) ee cells, which are labelled with Pros (green in

nucleus), have Tsp2a (red) at the apical SJ and Arm (green) at the lateral AJ. (L) Schematic

genomic map showing the aPKCHC allele and corresponding protein sequence. Scale bars,

10 μm. AJ, adherens junction; aPKC, atypical protein kinase C; Arm, Armadillo; αSpec, α-

Spectrin; Baz, Bazooka; βHSpec, βH-Spectrin; Cno, Canoe; Crb, Crumbs; Dlg, Discs large; EC,

enterocyte; ee, enteroendocrine; GFP, green fluorescent protein; Lgl, Lethal (2) giant larvae;

MARCM, mosaic analysis with a repressible cell marker; Myo7a, Myosin 7a; pMoe, phospho-

Moesin; Pros, Prospero; SJ, septate junction.

(TIF)

S2 Fig. Loss of Scrib or Dlg has no effect on apical domain formation in ECs. (A) Scrib

(red) localises to the EC SJs, marked by Cora (green). (B) Mesh (red) localises normally to the

SJs of lgl4 mutant cells (marked by GFP, green). (C) dlg114 MARCM clones (marked by GFP,

green) show normal apical localization of α-Spectrin (red) and βH-Spectrin (white). (D) RNAi

knock-down of Scrib in adult midgut ECs has no effect on the subcellular localization of

Myo7a (red) but disrupts Dlg (green) and Lgl (white) localisation to the SJs. Scale bar, 10 μm.

Dlg, Discs large; EC, enterocyte; GFP, green fluorescent protein; Lgl, Lethal (2) giant larvae;

MARCM, Mosaic analysis with a repressible cell marker; Myo7a, Myosin 7a; RNAi, RNA
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interference; Scrib, Scribbled; SJ, septate junction.

(TIF)

S3 Fig. Par-1 is not required for EC polarity. (A) Par-1 is not detectable in ECs, although it

is expressed in ISCs, as revealed by staining for GFP (green) in a Par-1 GFP protein trap line.

Dlg is in red and aPKC in white. (B) A MARCM clone of par-19 (marked by GFP, green). The

mutant cells form normal SJs marked by Lgl (red). Scale bar, 10 μm. aPKC, atypical protein

kinase C; Dlg, Discs large; EC, enterocyte; GFP, green fluorescent protein; ISC, intestinal stem

cell; Lgl, Lethal (2) giant larvae; MARCM, mosaic analysis with a repressible cell marker; SJ,

septate junction.

(TIF)

S4 Fig. Talin, Kindlin, and SJ components are required for EC polarity. (A) Most rhea,

Fit1, Fit1 Fit2, and Tsp2a mutant cells remain inside the epithelia layer. The graph is based

on the analysis of 299 cells in wild-type MARCM clones (13 images), 1,205 Tsp2a mutant

cells (25 images from Tsp2a1–2, Tsp2a 3–3, and Tsp2a 2–9 clones), 608 Fit118 Fit283 (FitD) dou-

ble mutant cells (23 images), 854 Fit118 mutant cells (24 images), and 184 rhea mutant cells

(18 images from rheaB28, rhea79a, and rhea B128). The underlying data can be found in S1

Data. (B) Fit118 Fit283 double mutant cells (marked by GFP, green) differentiate as ECs, as

revealed by the expression of Pdm1 (white). Talin is in red. (C) A meshf04955 mutant clone

(marked by the loss of GFP) stained for α–Spectrin (red) and Mesh (white). (D) Tsp2a1–2

mutant cells (marked by GFP, green) differentiate as ECs, as revealed by the expression

of Pdm1 (red). White asterisks � and lines mark the mutant clones. Scale bars, 10 μm. EC,

enterocyte; GFP, green fluorescent protein; MARCM, mosaic analysis with a repressible cell

marker; SJ, septate junction.

(TIF)

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

of S4A Fig. Images were taken of different regions of several midguts containing MARCM

clones stained with an apical marker. Cells that were above the neighbouring cells or had a

clear apical domain were counted as ‘cells NOT inside the layer’, whereas cells without a

detectable free apical surface were counted as ‘cells inside the layer’. For each image, the per-

centage of clones inside the layer among all clones was calculated. Data were analysed with

Graphpad Prism software. The graph in S4A Fig shows the average percent of cells inside the

layer ± SD%.

(XLSX)
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