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Abstract: Human umbilical-cord-derived mesenchymal stem cells (hUC-MSC) are a type of mes-
enchymal stem cells and are more primitive than other MSCs. In this study, we identify novel
genes and signal-activating proteins involved in the neural differentiation of hUC-MSCs induced
by Low-Intensity Sub-Sonic Vibration (LISSV). RNA sequencing was used to find genes involved in
the differentiation process by LISSV. The changes in hUC-MSCs caused by LISSV were confirmed
by PLXNA4 overexpression and gene knockdown through small interfering RNA experiments. The
six genes were increased among genes related to neurons and the nervous system. One of them,
the PLXNA4 gene, is known to play a role as a guide for axons in the development of the nervous
system. When the PLXNA4 recombinant protein was added, neuron-related genes were increased. In
the PLXNA4 gene knockdown experiment, the expression of neuron-related genes was not changed
by LISSV exposure. The PLXNA4 gene is activated by sema family ligands. The expression of
SEMA3A was increased by LISSV, and its downstream signaling molecule, FYN, was also activated.
We suggest that the PLXNA4 gene plays an important role in hUC-MSC neuronal differentiation
through exposure to LISSV. The differentiation process depends on SEMA3A-PLXNA4-dependent
FYN activation in hUC-MSCs.
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1. Introduction

The conversion of mechanical stimuli into biochemical information within cells pro-
vides biological activation or inactivation signals in various cell types. Mechanical stimula-
tion is a kind of physical force and has various effects on cells through the regulation of
cell proliferation and differentiation. Among categories of cells, mesenchymal stem cells
(MSCs) are differentiated into various types and have great potential for tissue engineering.

Although many studies on mechanical stimuli have been reported, few have examined
the effect on MSCs. In vascular tissue engineering studies, bone marrow-derived MSCs
(BM-MSCs) were differentiated into endothelial-like cells by shear stress [1–3], and these
results were similar to other tissue-derived MSCs, such as human placenta and adipose-
derived MSCs [4]. In cartilage tissue engineering, the combined treatment of MSCs with
chondrocytes improves symptoms of knee cartilage defects [5], and Lin et al. reported a syn-
ergistic effect of cartilage regeneration by dynamic compression in BM-MSCs [6]. Most of
the studies were performed by adding enzymes, cytokines, and growth factors that support
the potential regenerative capacity of MSCs, in addition to mechanical stimulation [4–7].

Sub-sonic refers to a frequency that is so low that it is inaudible and slower than the
speed of sound. Low-intensity vibration (LIV) is a stimulus that transmits vibration with
intensity in the range of 20 to 200 Hz frequencies. LIV can be effective in improving the bone

Int. J. Mol. Sci. 2022, 23, 1522. https://doi.org/10.3390/ijms23031522 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23031522
https://doi.org/10.3390/ijms23031522
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-7533-9605
https://doi.org/10.3390/ijms23031522
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23031522?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 1522 2 of 16

and muscle index at the tissue level [8–10] and reducing myeloma cell-induced osteoclast
formation [11]. Furthermore, LIV decreased the pro-inflammatory cytokines IL-6, IFN-γ,
and TNF-α in cultured murine macrophages [12] and inhibited tumor progression [13].

Plexin-A4 (encoded by PLXNA4) belongs to the plexin A family. It binds neuropilin to
propagate signals with class 3 semaphorins (SEMA3) into neurons and plays an important
role in the induction of axons to their synaptic target during neural development [14–17].
This complex activates the cdk-5-mediated isoform A of phosphatidylinositol 3-kinase
enhancer and promotes glioma cell invasion through the modulation of Akt activity [18,19].
In a recent report, Plxna4 variants were found to be involved in Alzheimer’s disease
pathogenesis through amyloid beta deposition [20].

Several studies have examined the effects of mechanical stimulation alone on hMSCs
and other cells. Previous work by our group and others reported the effects of mechanical
stimulation in hMSCs [21–24]. Neural differentiation of hMSCs was induced by sonic
vibration or/and electromagnetic fields, allowing therapeutic applications in models of
spinal cord injury and ischemic stroke [25,26]. This mechanical stimulation equally induced
neural differentiation of hMSCs, and in particular, morphological changes similar to the
neural cell shape were dramatically induced by sub-sonic vibrations [21]. In the present
study, we aimed to investigate key genes involved in this differentiation by low-intensity
sub-sonic vibration (LISSV) through RNA sequencing based on next-generation sequencing.

2. Results
2.1. RNA Sequencing Confirmed That Six Genes Were Increased by LISSV

In a previous study, we reported the effect of LISSV on hUC-MSCs [21]. A morpho-
logical change in the cells was induced and the shape was close to that of neurons. To
identify novel genes involved in this change, RNA-sequencing analysis was performed.
In the gene expression analysis related to the cell differentiation of hUC-MSCs, 16 genes
increased more than threefold, and among them, 5 genes increased during LISSV, including
PLXNA4, FMN1, AREG, STMN2, and SERPINI1 (Figure 1). Protein levels were detected
in a time-dependent manner. The levels of PLXNA4 increased, but FMN1 decreased, and
levels of SERPINI1 were unchanged (Figure 2).
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Figure 1. Expression of genes in human umbilical-cord-derived mesenchymal stem cells after low-
intensity sub-sonic vibration treatment using RNA sequencing. Cells were harvested 4 days after
LISSV treatment. Fold change in expression of Plexin-A4 (PLXNA4), Formin 1 (FMN1), Amphiregulin
(AREG), Stathmin 2 (STMN2), and Serpin Family I Member 1 (SERPINI1). Assayed using real-time
polymerase chain reaction. Column heights correspond to mean values and error bars to standard
deviations (n = 3).
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Figure 2. Expression of each protein in human umbilical-cord-derived mesenchymal stem cells after
low-intensity sub-sonic vibration treatment. Proteins detected were Serpin Family I Member 1 (SER-
PINI1), Plexin A4 (PLXNA4), Formin 1 (FMN1), and Amphiregulin (AREG). (a) Western blot image.
(b) Intensities of each Western blot band were quantified by Image J. Each band was normalized
using β-actin. Column heights correspond to mean values and error bars to standard deviations
(n = 3). * p < 0.05, ** p < 0.01.

2.2. Recombinant PLXNA4 Protein Affected Neural Differentiation of hUC-MSCs

Plexins are proteins involved in axon growth and are expressed on the surface of
axon growth cones. Nine genes have been identified. PLXNA4 belongs to class A along
with PLXNA1, PLXNA2, and PLXNA3. Plexin activation in growth cones causes actin and
microtubule destabilization and endocytosis, involved in the contraction of growth cone
protrusions [27]. The recombinant PLXNA4 protein was used for PLXNA4 overexpression
analysis. The recombinant PLXNA4 protein was non-toxic in hUC-MSCs up to 2 µg/mL
and significantly reduced the number of viable cells to 77% at 3 µg/mL (data were not
shown). To demonstrate the effect on hUC-MSCs, the morphological changes in hUC-MSCs
were observed daily after the addition of the recombinant PLXNA4 protein. Figure 3a shows
that the amount of PLXNA4 gene expression increased after treatment with recombinant
PLXNA4. On the fourth day, the inhibition of cell proliferation was confirmed by MTT
assay (Figure 3b), and a morphological change was observed on the fifth day (Figure 4).
The cells did not proliferate when treated with the recombinant PLXNA4 protein compared
to controls, as they did with LISSV exposure. The cell body was brighter than that of the
control group, and the filamentous shape was similar to that of the neuron. The expression
of neuron-related genes by the PLXNA4 protein addition was confirmed, and the expression
of most neuron-related genes, such as MAP2, NEUROD1, and NF-L, was increased, but
for MBP it was unclear (Figure 5). Voltage-gated calcium (Ca2+) channels are key channels
that induce changes in the membrane potential, and intracellular Ca2+ transients signal the
initiation of many physiological events. The Cav2 subfamily is primarily responsible for
the initiation of synaptic transmission [28]. The recombinant PLXNA4 protein has induced
the expression of Cav2.1 and Cav2.2 genes in hUC-MSCs (Figure 6).

2.3. The Neural Differentiation of hUC-MSCs by LISSV Was Not Induced upon PLXNA4
Gene Silencing

siRNA is a gene-silencing assay in which the RNA-induced silencing complex binds
to the target mRNA and interferes with the synthesis of the target protein. To evaluate the
role of PLXNA4 in neuronal differentiation, we performed a silencing PLXNA4 expression
experiment. We tested the cytotoxicity of siRNA duplex transfection in hUC-MSCs before
siRNA experiments. When treated with 90 nmol of siPLXNA4 duplex transfection, viable
cells were 93.1% after siNegative control transfection and 90.4% after siPLXNA4 transfection
(Figure 7). Figure 8 shows a morphological change or PLXNA4 level change in the case
of silencing Negative (siNegative) control and PLXNA4 (siPLXNA4) expressions, which
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occurred with or without LISSV exposure. A universal, scrambled, negative control siRNA
duplex was used as the silencing Negative (siNegative) control. This duplex and the
transfection regents did not affect cells when exposed to LISSV compared to controls. The
silencing Negative (siNegative) group with LISSV expressed the same level of PLXNA4 as
the only LISSV-treated group, whereas the silencing Negative (siNegative) and PLXNA4
(siPLXNA4) groups with (+) or without (−) LISSV expressed no PLXNA4. The PLXNA4
gene was not expressed even in the silencing PLXNA4 (siPLXNA4) expression group with
LISSV. LISSV exposure increased PLXNA4 levels in the silencing Negative (siNegative)
control group but not in the silencing PLXNA4 (siPLXNA4) group. LISSV affects PLXNA4
gene expression, and PLXNA4 gene expression is thought to be associated with neural
differentiation in hUC-MSCs. The expression of neuron-associated genes was analyzed by
RT-qPCR in a PLXNA4 gene-silencing study. When the PLXNA4 gene was knocked down
in hUC-MSC, the expression of neuronal-related genes, such as NF-L, MBP, and MAP2
genes, was not increased by LISSV (Figure 9).
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Figure 3. PLXNA4 gene expression after recombinant PLXNA4 protein treatment in human umbilical-
cord-derived mesenchymal stem cells. Cells were harvested 4 days after recombinant PLXNA4
protein treatment. (a) Real-time PCR data of each protein. (b) MTT data show the inhibition of
proliferation. Column heights correspond to mean values and error bars to standard deviations
(n = 3). * p < 0.05, ** p < 0.01.
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Figure 4. Morphological changes after recombinant PLXNA4 protein treatment for 5 days in human
umbilical-cord-derived mesenchymal stem cells. (a1,a2): Untreated control cells. (b1,b2): 1.5 µg of
protein-treated cells. (c1,c2): 2.0 µg of protein-treated cells. Original magnification 40×.
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Figure 5. Expression of neuron-related proteins and genes in human umbilical-cord-derived mes-
enchymal stem cells after recombinant PLXNA4 protein treatment. Cells were harvested 5 days after
2 µg/mL recombinant PLXNA4 protein treatment. (a) Fluorescence images of each protein. Original
magnification 200×. (b) Fold expression of each gene using real-time polymerase chain reaction
analysis. MAP2: Microtubule-associated protein 2. NEUROD1: Neuronal Differentiation 1, NF-L:
Neurofilament-L, MBP: Myelin basic protein, Column heights correspond to mean values and error
bars to standard deviations (n = 3). * p < 0.05, ** p < 0.01.
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Figure 6. Expression of calcium channels in human umbilical-cord-derived mesenchymal stem
cells after recombinant PLXNA4 protein treatment. Cells were harvested 5 days after 2 µg/mL
recombinant PLXNA4 protein treatment. Fold expression of each gene using real-time polymerase
chain reaction analysis. Cav2.1: Voltage-gated P/Q type calcium channel. Cav2.2: Voltage-gated
N-type calcium channel, Column heights correspond to mean values and error bars to standard
deviations (n = 3). ** p < 0.01.
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Figure 8. PLXNA4 gene silencing using small interfering RNA transfection methods in human
umbilical-cord-derived mesenchymal stem cells. Cells were harvested 4 days after low-intensity
sub-sonic vibration treatment. (a) Morphology of each sample: A. Control; B. low-intensity sub-
sonic vibration (LISSV); C. siNegative duplex 90 nmol without (−) LISSV; D. siPLXNA4 duplex
90 nmol without (−) LISSV; E. siNegative duplex with (+) LISSV; F. siPLXNA4 duplex with (+) LISSV.
Original magnification 40×. (b) Fold change in the expression PLXNA4 determined using real-time
polymerase chain reaction analysis. Column heights correspond to mean values and error bars to
standard deviations (n = 3). * p < 0.05, ** p < 0.01.
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2.4. Changes with LISSV versus PLXNA4 in Sema-Dependent Signaling

Our results showed that the PLXNA4 gene is associated with neuronal differentia-
tion of hUC-MSCs. In a previous study, we reported the differentiation of hUC-MSCs by
LISSV [21]. The differentiation was induced in the LDMEM medium without any sup-
plements for neural induction. The differentiation was non-specific, so genes related to
oligodendrocytes, astrocytes, and neurons were all expressed. To compare neural differ-
entiation patterns between LISSV and PLXNA4, we studied three types of neural-specific
gene expression. As shown in Figure 10, the induction of neural differentiation by LISSV
was non-specific, but only the MAP2 and NEUROD1 genes were expressed by the PLXNA4
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recombinant protein. Differentiation of hUC-MSCs by the PLXNA4 recombinant protein is
thought to be induced specifically in neurons.
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 Figure 10. Expression of neural differentiation-specific genes in human umbilical-cord-derived
mesenchymal stem cells after low-intensity sub-sonic vibration versus recombinant PLXNA4 protein.
Cells were harvested 4 days after low-intensity sub-sonic vibration treatment and 5 days after
recombinant PLXNA4 protein treatment. The fold change in the expression of each gene was
analyzed using a real-time polymerase chain reaction. MAP2: Microtubule-associated protein 2.
NEUROD1: Neuronal Differentiation 1, GFAP: Glial Fibrillary Acidic Protein, MBP: Myelin basic
protein. Column heights correspond to mean values and error bars to standard deviations (n = 3).
* p < 0.05, ** p < 0.01.

We thought that MSC-specific markers were no longer expressed when differentiation
was induced by both LISSV and recombinant PLXNA4 protein. CD73, CD105, and CD90
are markers specifically expressed in human MSCs [29]. In Fluorescence-activated cell
sorting (FACS) analysis, we analyzed anti-CD73 and anti-CD105 expression after LISSV
and recombinant PLXNA4 protein treatment (Figure 11). Before treatment, anti-CD73 was
expressed at 97.8% in hUC-MSCs and anti-CD105 was expressed at 81.3%. Before treatment,
anti-CD73 was expressed at 97.8% and anti-CD105 was expressed at 81.3% in hUC-MSCs.
When LISSV was given for 3 days, the expression of anti-CD73 was reduced to 90.4%, and
anti-CD105 was reduced to 62.5%. In the case of PLXNA4 treatment, the expression of anti-
CD73 was reduced to 83.2%, like LISSV, and anti-CD105 was also reduced to 62.5%. Both
LISSV and recombinant PLXNA4 protein treatment reduced the expression of MSC-specific
markers, suggesting that the differentiation process of hUC-MSCs is in progress.

Plexins are proteins involved in the signaling of the semaphorin family, and plxna4
belongs to class A of four types. Class A plexins interact with neuropilin co-receptor pro-
teins, and specifically, the plxna4 and neuropilin signaling cascade can be activated by both
SEMA3A and SEMA6A [30]. To identify semaphorins involved in inducing the expression
of neuron-associated proteins in hUC-MSCs, we analyzed the expression of both SEMA3A
and SEMA6A. SEMA3A was increased selectively (Figure 12) and its downstream signal-
ing molecule, FYN, was activated in a time-dependent manner (Figure 13). Presynaptic
vesicles for neurite outgrowth in neurons are induced through the activation of this signal.
GAP43 regulates presynaptic vesicle interactions and SYN1 and synaptophysin proteins
are presynaptic vesicle proteins. LISSV and the recombinant PLXNA4 protein increased
the expression levels of SYN1, GAP43, and synaptophysin genes (Figure 14). The expression
of neuron-related proteins was induced by activation of the semaphorin 3A-dependent
plexin-A4 signaling cascade by LISSV in hUC-MSCs.
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Figure 11. The changes of specific markers in human umbilical-cord-derived mesenchymal stem
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PLXNA4 protein treatment.
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Figure 12. Expression of PLXNA4-dependent semaphorin signaling molecules in human umbilical-
cord-derived mesenchymal stem cells by low-intensity sub-sonic vibration using real-time polymerase
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SEMA3A: Semaphorin 3A, SEMA6A: Semaphorin 6A. Column heights correspond to mean values
and error bars to standard deviations (n = 3).
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Figure 14. Expression of presynaptic vesicle protein-associated genes in human umbilical-cord-
derived mesenchymal stem cells after low-intensity sub-sonic vibration versus recombinant PLXNA4
protein. Cells were harvested 4 days after low-intensity sub-sonic vibration treatment and 5 days
after recombinant PLXNA4 protein treatment. The fold change in the expression of each gene was
analyzed using real-time polymerase chain reaction. SYN1: Synapsin 1, GAP43: Growth-Associated
Protein 43, Column heights correspond to mean values and error bars to standard deviations (n = 3).
* p < 0.05, ** p < 0.01.

3. Discussion

In a previous study, we reported the neural differentiation of hUC-MSCs by LISSV.
These changes are specifically due to mechanical stimulation in cells that were lacking
growth factors and cytokines for the differentiation process. To find genes involved
in this differentiation, RNA sequencing analysis was performed after LISSV exposure
in hUC-MSCs.

RNA sequencing is a very useful technique for elucidating the presence and sequences
of RNA in a sample using next-generation sequencing. This technique shows changes
in the cellular transcriptome at a given moment. After 4 days of exposure to LISSV, the
hUC-MSCs changed their shape to a neuron-like morphology, at which time the cells
were harvested for RNA sequencing. First, we focused on upregulated genes, and among
16 genes, 5 genes were identified using real-time PCR: PLXNA4, FMN1, AREG, STMN2, and
SERPINI1. Among these, four genes were expressed at the protein level in a time-dependent
manner. PLXNA4 increased gradually over 6 days, and FMN1 decreased. The PLXNA4
gene belongs to the plexin A family, and plexin A is a neuronal semaphorin receptor
involved in axon guidance during neural development and neuron migration to synaptic
organization [31–34]. In neurons, semaphorins transduce activation signals through plexin
receptor proteins and the neuropilin family [35]. The recombinant PLXNA4 protein was
used to study the role of the PLXNA4 gene in hUC-MSC differentiation by LISSV. The
PLXNA4 gene was well expressed when 1.5 g or 2.0 g per well was added to hUC-MSCs.
Cell proliferation was inhibited without dead cells. Thus, the reduction of cells by the
PLXNA4 protein in the MTT assay indicates that hUC-MSCs have entered the differentiation
process. After 5 days, a morphological change was induced and the morphology was close
to that of a neuron. The cell body shone brightly, and two filaments extended in both
directions around the cell body. Neuronal differentiation-related proteins such as MAP2,
NEUROD1, and NF-L were expressed strongly in the immunofluorescence analysis, and
the same results were confirmed in real-time PCR assays. These proteins and genes were
also expressed in hUC-MSCs by LISSV [21], and the morphology of the differentiated cells
was very similar in both cases. We observed that the differentiation process of hUC-MSCs
induced by LISSV and PLXNA4 was slightly different. In our previous report, when LISSV
was given to hUC-MSCs, differentiation of hUC-MSCs was a neural non-specific process,
so all three types of neural cell markers, astrocytes, oligodendrocytes, and neurons, were
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induced. However, PLXNA4-induced differentiation in hUC-MSCs is a neuron-specific
process, as GFAP and MBP were not expressed. Voltage-gated calcium channels are the
main mediators that allow calcium to flow into neurons when depolarization occurs. The
Cav2.1 is a P/Q-type calcium channel, and Cav2.2 is an N-type calcium channel, while P/Q
and N channels trigger neurotransmitter release [36]. The recombinant PLXNA4 protein
induced neural differentiation while expressing Cav2.1 and Cav2.2.

hUC-MSCs are cells capable of self-renewal and differentiation into various lin-
eages [37]. Wharton’s jelly derived from the human umbilical cord contains a higher
amount of primitive MSCs compared to MSCs derived from bone marrow [38]. When MSCs
begin to differentiate into cells of other lineages, those cells cannot maintain their stemness.
Human MSCs express CD73, CD90, and CD105, but not CD34, CD45, or CD14 [39,40]. Dur-
ing both LISSV and recombinant PLXNA4 protein treatment, the expression of hUC-MSC
specific markers, CD73 and CD105, was reduced. Therefore, those cells have begun to
differentiate into other cells, particularly nerve-like cells.

To validate the function of the PLXNA4 gene, PLXNA4 gene silencing using siRNA
analysis was performed. This assay was transient, and only 20–27 base pairs were used
for gene silencing. After transfection of a specific gene base pair for an interfering RNA,
the expression of the specific gene interferes with the complementary nucleotide sequence
so the mRNA is degraded after transcription. In this assay, we used a transfection reagent
for siRNA duplex transfection. The viable cells reached over 90% after transfection. We
observed morphological changes and PLXNA4 gene silencing in hUC-MSCs. After silenc-
ing, no change was noted in the level of PLXNA4 gene expression in both the silencing
Negative (siNegative) and PLXNA4 (siPLXNA4) without LISSV. However, in the case of
LISSV exposure, PLXNA4 gene expression increased only in the silencing Negative (siNeg-
ative) expression group, and no change took place in the silencing PLXNA4 (siPLXNA4)
expression group. The same results were observed in the morphological change data, and
in the case of silencing PLXNA4 (siPLXNA4) expression, no morphological change occurred
after exposure to LISSV. To confirm the neuronal differentiation after silencing PLXNA4
(siPLXNA4) expression in hUC-MSCs, we analyzed the neuron-related gene expression by
LISSV. After silencing PLXNA4 (siPLXNA4) expression, the expression of neuron-related
genes, NF-L, MBP, and MAP2, was unchanged compared to the controls and silencing Neg-
ative (siNegative) without LISSV groups. Consequently, we established that the PLXNA4
gene is associated with the neural differentiation of hUC-MSCs by LISSV.

The interaction of the neuropilin (Nrp)/plexin receptor complex and semaphorins
plays an important role in axonal development in the central nervous system. This com-
plex is also involved in a variety of other developmental processes, spanning from cell
polarization to migration to neuronal maturation [41]. The semaphorin protein family
consists of eight classes and is found in vertebrates and invertebrates. Plexin receptors for
SEMA are classified into four classes, and plexin-A4 interacts with specific SEMA classes
to mediate signal activation. The Nrp/PLXNA4 receptor complex interacts with class 3
and class 6 semaphorins and is involved in axon guidance and anti-angiogenesis when
interacting with class 3 semaphorins [42,43]. SEMA3A, one of the class 3 semaphorins,
interacts with plexins-A1 and -A4 to induce cytoskeletal disruption, the inhibition of cell
proliferation, and adhesion in endothelial cells [44]. SEMA6A acts as a chemical repellent
for sympathetic axons and is involved in lamina-specific axon formation in the hippocam-
pus [45,46]. To identify SEMAs interacting with PLXNA4 in hUC-MSCs by LISSV, we
analyzed the gene expression of SEMA3A and SEMA6A after LISSV exposure. We found
that SEMA3A is upregulated by 5-fold, but the level of SEMA6A is not changed. When the
Nrp/plxna4 receptor complex interacted with SEMA3A, its downstream molecule, FYN, is
recruited for signal activation, which is involved in the process of collapse for cell differ-
entiation [47]. We confirmed that the FYN protein increases in a time-dependent manner.
These results showed that increased levels of PLXNA4 expression induced by LISSV in
hUC-MSCs are associated with an increase in SEMA3A, and that neuronal differentiation of
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hUC-MSCs induced by LISSV is thought to be due to semaphorin 3A–plexin-A4-dependent
signaling activation.

Sema3A regulates the density of the dendritic spine, small membrane protrusions from
dendrites of neurons [48,49], and this signaling activation induces growth cone collapse and
neuronal cells [41,50]. SYN1 and Synaptophysin are presynaptic vesicle proteins located in
the cytoplasmic membrane of the presynapse, and GAP43, a neuromodulin, plays a role
in regulating presynaptic vesicular function and axonal growth [51,52]. The expression of
SYN1, GAP43, and synaptophysin was induced in hUC-MSCs through sema3 signaling
activation upon treatment with LISSV and the recombinant PLXNA4 protein.

Many studies have reported the differentiation of MSCs, which is multi-day dependent
and requires various growth and neurotropic factors and cytokines [53–55]. We reported
neuronal differentiation of hUC-MSCs caused by LISSV alone, a mechanical stimulus. After
4–5 days, the shape of hUC-MSCs modified to neuron-like and neuron-related genes were
expressed. This neuronal differentiation was activated through the Nrp/plxna4 receptor
complex with the SEMA3A-dependent signaling mechanism. Discovering the specific
mechanism that induces neural differentiation in hUC-MSCs via LISSV and applying it to
neurodegenerative disorders will be very useful in stem cell therapy.

4. Materials and Methods
4.1. Cell Culture

hUC-MSCs were purchased from the American Type Culture Collection (ATCC, Wash-
ington, D.C., VA, USA) and were cultured in a nonhematopoietic (NH) stem cell medium
(Miltenyi Biotech, Bergisch Gladbach, Germany) supplemented with 100 units/mL of peni-
cillin and 100 µg/mL of streptomycin (Invitrogen, Carlsbad, CA, USA). Passage 6–10 cells
were used in this experiment and the culture medium was replaced every 3–4 days. When
hUC-MSCs reached approximately 80% density in 100 mm culture dishes, they were pas-
saged in a 1:4 plate ratio using accutase (Innovative Cell Tech., San Diego, CA, USA) for
cell isolation. One day before the experiment, the medium was replaced with low-glucose
DMEM (LDMEM) supplemented with 10% FBS (Invitrogen, Carlsbad, CA, USA) followed
by LISSV exposure.

4.2. LISSV Exposure

A Turbosonic Low-Intensity Sub-Sonic Vibrator (Turbosonic Korea, Seoul, Korea) was
used [8]. The machine moves up and down creating undulating waves in the medium,
which affects the cells. The hUC-MSCs were cultured at a low density and exposed to
LISSV continuously for 4 days at a frequency of 30 Hz and acceleration of 13.5 to 14.1 after
1 day.

4.3. Cell Growth Assay

A cell growth assay was performed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) (Sigma-Aldrich, St. Louis, MO, USA) solution as an indicator of cell viability
and proliferation. Viable cells containing NAD(P)H-dependent oxidoreductase enzymes
were reduced to formazan by MTT. The MTT solution is added to cells in culture, at a final
concentration of 0.83 mg/mL, and incubated for 3.5 h. At 570 nm, the absorbance was
measured using a Versamax microplate reader (Molecular Device, Sunnyvale, CA, USA).

4.4. RNA-Sequencing Assay

The total RNA was extracted from the samples as above, and the concentration and
purity were determined using a spectrophotometer with optical densities of A260 and
A260/A280. RNA sequencing libraries of each sample were prepared using the TruSeq
RNA Library Prep Kit (Illumina, San Diego, CA, USA), and the result was obtained using
the Illumina HiSeq 2000 system. RNA-seq experiments were performed on hUC-MSCs ex-
posed to LISSV for 4 days. The levels of gene expression were normalized to RPKM/FPKM
(reads of paired-end fragments per kb of exon model per million mapped reads/fragment
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per kb of transcript per million mapped reads). The quality of the sequencing reads
obtained from RNA-sequencing experiments was validated using an Excel-based differen-
tially expressed gene analysis tool. Heatmaps were generated to visualize transcriptome
differences between the control and LISSV.

4.5. Treatment with Recombinant PLXN4 Protein

The purified recombinant protein of human Plexin-A4 was purchased from OriGene
Technologies Inc. (Rockville, MD, USA). The hUC-MSCs were cultured with a density of
1 × 105 cells/35 mm dish, and the PLXNA4 recombinant protein 1.5 and 2.0 µg/100 µL
medium was added 1 day later. The morphological changes in the cells were observed
every day. After 5 days, cell images were obtained using an optical microscope.

4.6. Small Interfering RNA (siRNA) Transfection

For gene silencing, the siTran 2.0 transfection reagent from OriGene Technologies Inc.
(Rockville, MD, USA) was used. In total, 8 × 103 cells were seeded before transfection in
6-well culture plates, and 1 mL of growth media, 90 nmol siPLXNA4 Oligo duplex, 2.4 µL
of the siTran 2.0 transfection reagent, and 100 µL of the transfection buffer were added to
the cells. To lower the cytotoxicity, the medium was replaced 24 h after the addition of the
transfection complex, and the cells were harvested 24 h later. The sequences of the siRNAs
were as follows: siPLXNA4, 5′-CGCAUAUGUCUACAAGAACCACUCT-3′; and siNegative
control, 5′- CGUUAAUCGCGUAUAAUACGCGUAT-3′.

4.7. Polymerase Chain Reaction (PCR) and Real-Time qPCR

Total RNA extraction from hUC-MSCs was performed using the Trizol solution (Qia-
gen, Valencia, CA, USA) and cDNA was obtained from total RNA using an Advantage RT-
PCR kit (Clontech, Palo Alto, CA, USA). Table 1 shows the primer sequences used for real-
time qPCR. The following genes were examined: Plexin A4 (PLXNA4), Formin 1 (FMN1),
Amphiregulin (AREG), Stathmin 2 (STMN2), Serpin Family I Member 1 (SERPINI1),
Microtubule-associated protein 2 (MAP2), Neuronal Differentiation 1 (NEUROD1), Glial
fibrillary acidic protein (GFAP), Myelin basic protein (MBP), and Neurofilament-L (NF-L).

Table 1. Primer sequences used for RT-PCR.

Genes Upstream Primer Sequence Downstream Primer Sequence

PLXNA4 5′-ATC TCC GTC TCT CAG TAC AA-3′ 5′-GTG ATA GGC TTG ATC ACC TC-3′

FMN1 5′-CCA TCA CCG TTT TCT TCT TC-3′ 5′-AGT TAC AGT GCC CTT GTA TG-3′

AREG 5′-TTC TAG TAG TGA ACC GTC CT-3′ 5′-AGA CAT AAA GGC AGC TAT GG-3′

STMN2 5′-CAG AGG GAA GGA GAG AAG CAA T-3′ 5′-TCA TTA GGC AAT GGT GGG TT-3′

SERPINI1 5′-AAA ACC TCT CGG GTG AAA G-3′ 5′-GCT GTC ATA TCC CAT TGA GT-3′

MAP2 5′-CTC AAC AGT TCT ATC TCT TCT TCA-3′ 5′-TCT TCT TGT TTA AAA TCC TAA CCT-3′

NFL 5′-CAA GAA CAT GCA GAA CGC TG-3′ 5′-GCC TTC CAA GAG TTT CCT GT-3′

NEUROD1 5′-ACA GTC ACC AGT GTG GTG GA-3′ 5′-CGT AGC CTC TGG AGA ACC TG-3′

GFAP 5′-TCATCGCTCAGGAGGTCCTT-3′ 5′-CTGTTGCCAGAGATGGAGGTT-3′

MBP 5′-CGG CAA CTA CGT GCT CTT CA-3′ 5′-GTG ACT TCA TCT CGT GGG CC-3′

SEMA3A 5′-TAA GGA GAA AGG AGG AGA GGT G-3′ 5′-GTG CTG GTT TGA ACT AGA GG-3′

SEMA6A 5′-TTA CAA CAC AGT GTA TGG GC-3′ 5′-CTT TGA GGT AAC TTT CCC GA-3′

SYN1 5′-GCT CAA CAA ATC CCA GTC TC-3′ 5′-GAG GAG TCA GGT TTC TCA AG-3′

Synaptophysin 5′-CCT ATA CCC TAG GTC TCC AC-3′ 5′-CCT GTC CTC CTT TTA GAT CC-3′

GAP43 5′-CCA TGC TGT GCT GTA TGA GAA G-3′ 5′-TAA GGA CTA GGT CGA ACT GC-3′

Cav2.1 5′-CCG TGT GAT AAG AAC TCT GG-3′ 5′-GAC ATG TGT CTC AGC ATC-3′

Cav2.2 5′-CCA TCT TCT ACG TGG TCT AC-3′ 5′-CAT CAG CTC GTA CTC ATA GG-3′

GAPDH 5′-ACC ACA GTC CAT GCC ATC AC-3′ 5′-TCC ACC ACC CTG TTG CTG TA-3′

Real-time qPCR was performed according to the SimpliAmp Thermal Cycler (Ap-
plied Biosystems, Foster City, CA, USA), which enables real-time quantitative detection
of PCR products based on SYBR green fluorescence due to the incorporation of SYBR
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green into double-stranded DNA. The results were analyzed by a comparative cycle thresh-
old (CT) method for the quantification of relative gene expression for the housekeeping
gene (GAPDH).

4.8. Western Blot Analysis

Cells were washed with phosphate-buffered saline (PBS) and scraped in radioim-
munoprecipitation assay (RIPA) buffer (Abcam, Cambridge, UK) containing protease and a
phosphatase inhibitor cocktail (Abcam, Cambridge, UK). Protein concentrations of total
lysates were determined using the bicinchoninic acid (BCA) protein assay (Pierce Biotech-
nology, Rockford, IL, USA). For Western blot analysis, 1 µg/µL of proteins was loaded on
10% polyacrylamide gels, and the blots were transferred to nitrocellulose membranes. To
prevent non-specific binding of the antibody to the membranes, the nitrocellulose mem-
branes were shaken with 5% skim milk in Tris-acetate-EDTA (TAE) buffer for 30 min,
followed by incubation with 1st antibodies such as anti-SERPINI1 (Santa Cruz Biotech-
nology Inc., Dallas, TX, USA), anti-PLXNA4 (R&D systems, Minneapolis, MN, USA),
anti-FMN1 (Abcam, Cambridge, UK), anti-AREG (Abcam, Cambridge, UK), anti-FYN (Cell
Signaling Technology, Boston, MA, USA), and β-actin (Sigma, St. Louis, MO, USA) at
the appropriate dilutions overnight at 4 ◦C. The 1st antibody was diluted using the TAE
buffer with 5% bovine serum albumin (Sigma-Aldrich, St. Louis, MO, USA). After three
washes, membranes were incubated with anti-mouse and anti-rabbit secondary antibodies
in 5% skim milk in the TAE buffer, then exposed to the SuperSignal West Femto Maximum
Sensitivity Substrate (Thermo Scientific, Rockford, IL, USA) and autoradiographically
imaged using the ChemiDoc XRS+ System (Bio-Rad, Hercules, CA, USA).

4.9. Immunofluorescence Imaging

In total, 5 × 103 hUC-MSCs were cultured in 12-well plates, and the recombinant
PLXNA4 protein was added 1 day later. After 5 days, cells were fixed with 4% paraformalde-
hyde solution for 10 min. Cells were shaken with a blocking solution (TAE buffer containing
1.5% bovine serum albumin) supplemented with 0.5% Triton X-100 for cell permeability,
then incubated with the primary antibody overnight at 4 ◦C, including the anti-MAP2,
anti-NEUROD1, anti-MBP, anti-MBP antibodies (Cell Signaling Technology, Boston, MA,
USA).After washing, the cells were incubated with human secondary antibodies conju-
gated with the Alexa Fluor 488 conjugate and Alexa Fluor 555 conjugate (Cell Signaling
Technology, Boston, MA, USA) for 1 h at room temperature. Glass coverslips were then
counterstained with the Vectashield Antifade mounting medium (Vector Laboratories,
Burlingame, CA, USA) and mounted onto microscope slides. Cells were examined using a
Ts2R-FL microscope (Nikon, Tokyo, Japan).

4.10. Fluorescence-Activated Cell Sorting (FACS) Analysis

Both PE-conjugated anti-CD73 and PE-conjugated anti-CD105 antibodies were pur-
chased from Abcam (Cambridge, UK). A total of 1 × 105 cells were re-suspended in 500 µL
ice-cold PBS with 3% bovine serum albumin (Sigma-Aldrich, St. Louis, MO, USA) and incu-
bated with antibodies for overnight at 4 ◦C. After washing, flow cytometry was performed
using the NovoCyte Flow Cytometer (Agilent Technologies, Santa Clara, CA, USA), and
the data were analyzed using Novoexpress software (Agilent Technologies, Santa Clara,
CA, USA).

4.11. Statistical Analysis

Data are shown as the mean ± SD of three independent experiments. An analysis of
variance followed by Tukey’s multiple comparisons test was performed using GraphPad
Prism (La Jolla, CA, USA). Mean differences are shown to be significant at * p < 0.05, and
** p < 0.01.
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