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Sparse reconstruction inspired by compressed sensing has attracted considerable attention in fluorescence molecular tomography
(FMT). However, the columns of system matrix used for FMT reconstruction tend to be highly coherent, which means 𝐿1
minimization may not produce the sparsest solution. In this paper, we propose a novel reconstruction method by minimization of
the difference of 𝐿1 and 𝐿2 norms. To solve the nonconvex 𝐿1-2 minimization problem, an iterative method based on the difference
of convex algorithm (DCA) is presented. In each DCA iteration, the update of solution involves an 𝐿1 minimization subproblem,
which is solved by the alternating direction method of multipliers with an adaptive penalty. We investigated the performance of
the proposed method with both simulated data and in vivo experimental data. The results demonstrate that the DCA for 𝐿1-2
minimization outperforms the representative algorithms for 𝐿1, 𝐿2, 𝐿1/2, and 𝐿0 when the system matrix is highly coherent.

1. Introduction

Fluorescence molecular tomography (FMT) has become a
promising molecular imaging modality since it has the
ability to provide localization and quantitative analysis of
the fluorescent probe for preclinical research [1, 2]. However,
FMT reconstruction suffers from high ill-posedness due to
the insufficiency of external measurements, which is caused
by high absorption and scattering in photon propagation
through biological tissues [3].

To alleviate the ill-posedness of FMT, some a priori
information, such as anatomical information, optical prop-
erties, permissible region, and sparsity of target distribution,
has been successfully incorporated in FMT reconstruction
[4–7]. In addition, many regularization techniques have
also been devoted to get an accurate and stable solution.
Conventionally, 𝐿2 norm regularizer is a common penalty
term in spite of its over-smoothness and results with lower
resolution [8]. Another common regularizer is 𝐿0 norm,
which is nondeterministic polynomial (NP) hard and can be
solved by a greedy approach such as the orthogonal matching
pursuit (OMP) [9]. Inspired by compressive sensing (CS)
theory, the 𝐿1 norm regularizer as the convex relaxation of

𝐿0 has become a widely used sparsity-inducing norm for
FMT reconstruction [10–13]. However, 𝐿1 norm regularizer
is not always providing the sparsest solution for the inverse
problem of FMT [14]. This gives way to nonconvex 𝐿𝑝 (0 <𝑝 < 1) norm regularizer, which has been applied to optical
tomography and was found to have better results than 𝐿1
does [15]. Some comparative studies show that nonconvex 𝐿𝑝
(0 < 𝑝 < 1) norm regularizer with 𝑝 near 1/2 performs the
best result among regularizers of 𝐿𝑝 (0 < 𝑝 < 1) norm [16].

Recently, a new nonconvex regularizer named 𝐿1-2 has
been proposed and produced better solution than 𝐿𝑝 (𝑝 =
1/2) norm regularizer when the sensing matrix was large and
highly coherent [17, 18]. The Magnetic Resonance Imaging
(MRI) image recovery tests have also indicated that𝐿1-2 norm
regularizer outperforms 𝐿1/2 and 𝐿1 for highly coherent
matrix [17]. Meanwhile, the columns of system matrix used
for FMT reconstruction are also highly coherent with the
finite element computing framework [19].

In this paper, new 𝐿1-2 norm regularization was proposed
to improve the FMT imaging. In our method, a difference of
convex algorithm (DCA) was presented to solve the noncon-
vex𝐿1-2minimization problem.And the alternating direction
method ofmultipliers (ADMM)with an adaptive penalty was
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used to solve the subproblem with fast convergence for each
DCA iteration.The performance of the proposedmethodwas
validated with simulated data and in vivo experimental data.

The outline of this paper is as follows. Section 2 elaborates
the forward model and 𝐿1-2 norm regularization algorithm.
Section 3 demonstrates the feasibility and effectiveness of the
method with both simulated data and in vivo experimental
data. Finally, we conclude the paper and discuss relevant
issues in Section 4.

2. Methods

2.1. Light Propagation Model. As an approximation to Radia-
tive Transfer Equation (RTE), the Diffusion Approximation
associated with Robin boundary conditions has been widely
used for modeling the light transportation in biological
tissues [20, 21]. For steady-state FMT with point excitation
sources, the coupled diffusion equations can be presented as
follows:

∇ ⋅ (𝐷ex (𝑟) ∇Φex (𝑟)) − 𝜇𝑎,ex (𝑟)Φex = −Θ𝛿 (𝑟 − 𝑟𝑠)
∇ ⋅ (𝐷em (𝑟) ∇Φem (𝑟)) − 𝜇𝑎,em (𝑟)Φem

= −Φex (𝑟) 𝜂𝜇𝑎𝑓 (𝑟) ,
(1)

where subscript ex and em denote excitation light and
emission light, respectively. 𝑟 ∈ Ω is the domain under
consideration.𝐷ex = 1/3(𝜇𝑎,ex +𝜇𝑠,ex) and𝐷em = 1/3(𝜇𝑎,em +𝜇𝑠,em) are diffusion coefficients with 𝜇𝑎,ex, 𝜇𝑎,em as absorption
coefficients for excitation and emission wavelengths, 𝑔 is the
anisotropy parameter, and 𝜇𝑠,ex, 𝜇𝑠,em are the reduced scat-
tering coefficients. Φex and Φem denote the photon density.
𝜂𝜇𝑎𝑓 is the unknown fluorescent yield to be reconstructed.
Using the finite elements method (FEM), (1) can be linearly
discretized as follows:

𝐾exΦex = 𝑏ex
𝐾emΦem = 𝐹𝑋,

(2)

where𝐾ex and𝐾em denote the systemmatrix at excitation and
emission wavelengths, respectively. The symmetric matrix 𝐹
is obtained by discretizing the unknown fluorescent yield dis-
tribution.The final linear relationship between the unknown
fluorescence yield 𝑥 and the measured surface data 𝜙 can be
obtained as follows:

𝐴𝑥 = 𝜙, (3)

where 𝐴 is𝑀 × 𝑁 linear system matrix which is large-sized
and ill-posed.

2.2. Inverse Reconstruction of FMT by DCA-𝐿1-2 Algorithm.
The CS theory provides sufficient conditions for the exact
recovery of the sparse signals from limited number of
measurements. One commonly used concept is the mutual
coherence [17, 22] which is defined as

𝜇 (𝐴) = max
𝑖 ̸=𝑗

𝑎𝑇𝑝 ⋅ 𝑎𝑞𝑎𝑝2 ⋅
𝑎𝑞2

, (4)

where 𝑎𝑝 and 𝑎𝑞 are different columns of 𝐴. The mutual
coherence of system matrix 𝐴 derived by FEM method is
always as high as above 90% [19]. In the highly coherent
regime of CS, 𝐿𝑝 (𝑝 = 1/2) and 𝐿1-2 norm regularizers are
expected to yield the sparest solution that 𝐿1 regularization
always fails to [17, 18].

Recently, a DCA-𝐿1-2 algorithm was proposed and the-
oretical properties of 𝐿1-2 minimization have been proved
in papers [17, 23]. Considering the advantages of 𝐿1-2 min-
imization, we converted linear matrix equation (3) into the
following unconstrained optimization problem:

min
𝑥∈R𝑛

1
2
𝐴𝑥 − 𝜙22 + 𝜆 (‖𝑥‖1 − ‖𝑥‖2) , (5)

where 𝜆 > 0 is a regularization parameter which is
usually empirically selected and ‖𝑥‖1 − ‖𝑥‖2 denotes the 𝐿1-2
regularization operator.

To resolve minimization problem (5), the difference of
convex algorithm (DCA) [24] which is a descent method
without line search was used. Equation (5) can be decom-
posed into DC decomposition as 𝐹(𝑥) = 𝐺(𝑥) −𝐻(𝑥), where

𝐺 (𝑥) = 12
𝐴𝑥 − 𝜙22 + 𝜆 ‖𝑥‖1 ,

𝐻 (𝑥) = 𝜆 ‖𝑥‖2 .
(6)

In (6), ‖𝑥‖2 is differentiable with gradient 𝑥/‖𝑥‖2. An
iterative scheme was used to solve 𝐹(𝑥) as follows:

𝑥𝑛+1 = argmin
𝑥∈R𝑛

1
2
𝐴𝑥 − 𝜙22 + 𝜆 ‖𝑥‖1

− ⟨𝑥 − 𝑥𝑛, 𝑥𝑛
‖𝑥𝑛‖2⟩ .

(7)

In each DCA iteration, there is a 𝐿1-regularized convex
subproblem that needs to be solved:

min
𝑥∈R𝑛

1
2𝑥
𝑇 (𝐴𝑇𝐴)𝑥 + (𝑥𝑇𝜙 + 𝜆 𝑥𝑛

‖𝑥𝑛‖2)
𝑇

𝑥 + 𝜆 ‖𝑥‖1 . (8)

Weuse the augmented Lagrangianmethod and transform
(8) into the following:

𝐿𝛿 (𝑥, 𝑦, 𝑢) = 12𝑥
𝑇 (𝐴𝑇𝐴)𝑥 + (𝐴𝑇𝜙 + 𝜆 𝑥𝑛

‖𝑥𝑛‖2)
𝑇

𝑥

+ 𝜆 𝑦1 + 𝑢𝑇 (𝑥 − 𝑦) + 𝛿2
𝑥 − 𝑦22 .

(9)

The subproblem is solved by minimizing 𝐿𝛿 with respect
to 𝑥, minimizing 𝐿𝛿 with respect to 𝑦, and updating 𝑢
successively. In order to solve (9) with a fast speed of
convergence, an ADMM strategy with an adaptive penalty
[25] was utilized as follows:

𝑥𝑘+1 = argmin
𝑥
𝐿𝛿𝑘 (𝑥, 𝑦𝑙, 𝑢𝑙) ,

𝑦𝑘+1 = argmin
𝑧
𝐿𝛿𝑘 (𝑥𝑙+1, 𝑦, 𝑢𝑙) ,

𝑢𝑘+1 = 𝑢𝑙 + 𝛿𝑘 (𝑥𝑙+1 − 𝑦𝑙+1) ,
𝛿𝑘+1 = min (𝛿max, 𝜌𝛿𝑘) .

(10)
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Initializion: set 𝑥0 = 0, 𝑥1 ̸= 0, 𝜀outer > 0, 𝜀inner > 0, and 𝑛 = 1
While 𝑥𝑛 − 𝑥𝑛−1 > 𝜀outer

set 𝑧 = 𝑥𝑛
‖𝑥𝑛‖2 , 𝑥0 = 0, 𝑥1 = 𝑥

𝑛, 𝑖 = 1, 𝑦𝑖 = 𝑥𝑖, 𝑢𝑖 = 0
While ‖𝑥𝑘 − 𝑥𝑘−1‖ > 𝜀inner𝑥𝑘+1 = (𝐴𝑇𝐴 + 𝛿𝑘𝐼)−1(𝛿𝑘𝑦𝑘 − 𝑧 − 𝑢𝑘)

𝑦𝑘+1 = shrink(𝑥𝑘+1 + 𝑢𝑘𝛿𝑘 ,
𝜆
𝛿𝑘 )𝑢𝑘+1 = 𝑢𝑘 + 𝛿𝑘(𝑥𝑘+1 − 𝑦𝑘+1)𝛿𝑘+1 = min(𝛿max, 𝜌𝛿𝑘)𝑘 = 𝑘 + 1

end
𝑛 = 𝑛 + 1
𝑥𝑛 = 𝑥𝑘

end

Algorithm 1: DCA-𝐿1-2 algorithm for FMT.

In the above iterations, the update of 𝑦 is based on the
soft-thresholding operator, where

(𝑆 (𝑥, 𝑟))𝑖 = sgn (𝑥𝑖)max {𝑥𝑖 − 𝑟, 0} . (11)

Meanwhile, the penalty 𝛿 was updated as an adaptive
form as follows:

𝛿𝑘+1 = min (𝛿max, 𝜌𝛿𝑘) , (12)

where 𝛿max is an upper bound of {𝛿𝑘} and 𝜌 is defined as
follows:

𝜌 = {{{{{
𝜌0, if

𝛿 𝑦𝑘+1 − 𝑦𝑘
𝑥𝑘+1 < 𝜀

1, otherwise,
(13)

where 𝜌0 ≥ 1 is a constant.
Algorithm 1 presents the iterative process of DCA-𝐿1-2

algorithm for FMT reconstruction. To begin with the itera-
tion, the initial value 𝑥1 was set as 𝐿1 subproblem.

3. Experiments and Results

In this section, the simulations both on 3D digital mouse
model and in vivo experiments were used to demonstrate the
potential and feasibility of the DCA-𝐿1-2 algorithm for FMT
reconstruction. To investigate the performance of DCA-𝐿1-2
algorithm, four representative regularizers, including 𝐿1/2,𝐿1, 𝐿2, and 𝐿0, were used for a systematical comparison.
More specifically, iterative reweighted least squares algorithm
(IRLS-𝐿1/2) [26], incomplete variables truncated conjugate
gradient algorithm (IVTCG-𝐿1) [27], Tikhonov regulariza-
tion algorithm (Tikhonov-𝐿2) [28], and OMP algorithm [29]
were compared with the DCA-𝐿1-2 algorithm, respectively, as
the corresponding method for the above regularizers.

The qualities of reconstruction results are quantitatively
evaluated in terms of the absolute location error (LE) [3],
reconstructed fluorescent yield (Recon. FY) [3], normalized
root mean square error (NRMSE) [16], the percentage of

Table 1: Optical parameters for the heterogeneous model.

Organs 𝜇𝑎,ex (mm−1) 𝜇𝑠,ex (mm−1) 𝜇𝑎,em (mm−1) 𝜇𝑠,em (mm−1)
Muscle 0.0052 1.08 0.0068 1.03
Heart 0.0083 1.01 0.0104 0.99
Lungs 0.0133 1.97 0.0203 1.95
Liver 0.0329 0.70 0.0176 0.65
Kidneys 0.0660 2.25 0.0380 2.02
Stomach 0.0114 1.74 0.0070 1.36

nonzero coefficient (PNZ) [16], and time cost. The experi-
ment codes were written in MATLAB and were performed
on a desktop computer with 3.40GHz Intel�Xeon�Processor
E3-1231 and 12GRAM.

3.1. Numerical Simulation Experiments. A 33mm height
torso extracted from a 3Dmouse atlas was utilized to simulate
the heterogeneity of biological tissues [30]. Figure 1(a) shows
the mouse model with six organs. Table 1 lists the specific
optical parameters. A cylinder with a radius of 0.8mm and
a height of 1.6mm was positioned at 17.8, 6.6, and 16.4mm
to mimic the fluorescent target. The actual fluorescent yield
was set to be 0.05mm−1. For excitation, we used 18 excitation
sources being located on the plane of 𝑍 = 16.4mm as
shown in Figure 2(a). The surface data on the opposite side
with a 120∘ field of view (FOV) were measured for each
excitation source. A total of 18 datasets were assembled for
the subsequent reconstruction process.

The forward FEMmesh was discretized into 24231 nodes
and 128300 tetrahedral elements. Meanwhile, the FEM mesh
for inverse reconstruction was discretized into 2601 nodes
and 12752 tetrahedral elements. The mutual coherence of the
system matrix for inverse reconstruction was 99.96%.

Figures 1(b)–1(f) present a comparison of reconstruction
results with 3D views for single fluorescent target. The
corresponding 2D section-views on the excitation plane
are demonstrated in Figures 2(b)–2(f). Table 2 gives the
quantitative results of the five regularization methods.
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Figure 1: The mouse model and the 3D views of the reconstructed results. (a)The mouse model with single target. (b–f)The 3D views of the
reconstructed results where the red cylinder is the real fluorescent target.
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Figure 2: The plane of 18 excitation sources and the 2D views (𝑍 = 16.4mm) of the reconstructed results. (a) The plane of 18 excitation
sources with 120∘ FOV. (b–f) The 2D views (𝑍 = 16.4mm) of the reconstructed results by six comparative methods. The black circle denotes
real position of fluorescent target.



6 BioMed Research International

Table 2: Quantitative results in single target reconstruction experiment.

Methods LE (mm) Recon. FY (mm−1) NRMSE (%) PNZ (%) Time (s)
DCA-𝐿1-2 0.436 0.039 19 1.15 1.32
IRLS-𝐿1/2 0.668 0.032 29 1.86 1.67
IVTCG-𝐿1 1.279 0.005 67 2.47 31.74
Tikhonov-𝐿2 2.169 0.004 79 11.96 21.96
OMP 1.135 0.004 63 9.83 1.21

Table 3: The results of DCA-𝐿1-2 with different excitation sources.

The number of excitation sources LE (mm) Recon. FY (mm−1) NRMSE (%) PNZ (%) Time (s)
18 0.436 0.039 19 1.15 1.67
12 0.497 0.034 21 1.28 1.32
8 0.518 0.029 23 2.34 1.23
4 0.614 0.014 36 3.73 0.89

Table 4: Impact of Gaussian noise on DCA-𝐿1-2.
Noise level (%) LE (mm) Recon. FY (mm−1) NRMSE (%) PNZ (%) Time (s)
5 0.436 0.039 19 1.15 1.67
15 0.437 0.039 19 1.15 1.67
25 0.437 0.038 19 1.15 1.72
35 0.514 0.038 20 1.33 1.78

As shown in Figures 1(b)–1(f), Figures 2(b)–2(f), and
Table 2, reconstruction results of 𝐿1-2 and 𝐿1/2 were remark-
able. Compared to the other three methods, results of DCA-
𝐿1-2 and IRLS-𝐿1/2 have fewer artifacts, lower LE, lower
NRMSE, and lower PNZ.Meanwhile, the Recon. FY byDCA-
𝐿1-2 and IRLS-𝐿1/2 were closer to 0.05mm−1. The proposed
DCA-𝐿1-2 completely outperforms the othermethods, except
for a slightly larger time consumption compared to OMP.

Generally speaking, the quality of FMT reconstruction
is influenced by the number of excitation sources. To test
the stability of the algorithm, different numbers of excitation
sources were used for reconstruction. Table 3 gives the
corresponding reconstructed results with 18, 12, 8, and 4.
Obviously, the decreased number of excitation sources leads
to significant reduction of measurements. Nevertheless, the
results of DCA-𝐿1-2 are generally satisfactory even in the case
of 4 excitation sources.

The quality of reconstructed results is sensitive to mea-
surement noise because of the severe ill-condition of system
matrix. For stability test, four different levels of Gaussian
noise (5%, 15%, 25%, and 35%) were added to the synthetic
measurements. Table 4 shows the reconstruction results
under 4 different noise levels. It shows that the DCA-𝐿1-2
algorithm is quite resilient with Gaussian noise.

3.2. In Vivo Evaluation with Implanted Fluorophore. The
performance of DCA-𝐿1-2 and IRLS-𝐿1/2 was remarkably
compared to the other threemethods in the simulation exper-
iments. In this section, we further evaluated the performance
of the proposed algorithmwith in vivo experimental data [8].

Table 5: Optical parameters of the mouse model at 670 nm and
710 nm.

Organs 670 nm 710 nm
𝜇𝑎,ex (mm−1) 𝜇𝑠,ex (mm−1) 𝜇𝑎,em (mm−1) 𝜇𝑠,em (mm−1)

Muscle 0.075 0.412 0.043 0.350
Heart 0.051 0.944 0.030 0.870
Lungs 0.170 2.157 0.097 2.093
Liver 0.304 0.668 0.176 0.629
Kidneys 0.058 2.204 0.034 2.021

In this experiment, an adult BALB/C mouse with a glass
tube implanted into its abdomen was used.The experimental
data was acquired by a hybrid FMT/Micro-CT system [8].
The glass tube (0.6mm and the height of 2.8mm) was filled
with Cy5.5 solution (with the extinction coefficient of about
0.019mm−1 𝜇𝑀−1 and quantum efficiency of 0.23 at the peak
excitation wavelength of 671 nm) [31].The center of the target
was determined at 21.1, 27.8, and 7.4mm by the Micro-CT.
The fluorescent yield of Cy5.5 was 0.0402mm−1 [32]. For
reconstruction, the CT data was segmented into five major
anatomical components, includingmuscle, heart, lungs, liver,
and kidneys. Table 5 shows the optical properties of different
organs [33].

For inverse reconstruction, the segmented mouse torso
data was discretized into a mesh with 3049 nodes and 14932
tetrahedral elements. Mutual coherence of the system matrix
for inverse reconstruction was 99.87%. Comparison results
between DCA-𝐿1-2 and IRLS-𝐿1/2 are shown in Table 6 and
Figure 3. The 3D views of reconstructed results for in vivo
experiments via DCA-𝐿1-2 are shown in Figure 4.
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Table 6: Quantitative results of in vivo experiments.

Method LE (mm) Recon. FY (mm−1) NRMSE (%) PNZ (%) Time (s)
DCA-𝐿1-2 1.426 0.034 27 0.13 0.53
IRLS-𝐿1/2 1.705 0.019 45 0.26 1.90
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Figure 3: Reconstructed results in vivo experiment on adult BALB/C mouse. (a) The 3D view of the reconstructed results in which the red
glass tube is the implanted fluorescent target and the green target denotes reconstructed results. (b) The 2D views (𝑍 = 7.4mm) of the
reconstructed results. The black circle denotes the real positions of fluorescent target.

4. Discussion and Conclusion

In this paper, novel 𝐿1-2 norm regularization was proposed
to solve the inverse problem of FMT with highly coherent
system matrix. To accurately recover the small fluorescent
target, an iterative method based on DCA algorithm was
presented to solve the nonconvex𝐿1-2minimization problem.

And the ADMM method with an adaptive penalty was used
to get fast convergence for the subproblem.

Simulated data on a 3D heterogeneous mouse model and
in vivo experimental data acquired by a hybrid FMT/Micro-
CT system were used to demonstrate the feasibility of the
DCA-𝐿1-2 algorithm for FMT. The comparative results of
single target show that the DCA-𝐿1-2 algorithm has better
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(a)

(b)
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(d)
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(f)

Figure 4: The reconstructed results of in vivo experiments via DCA-𝐿1-2. (a) 3D rendering of the mouse. (b) The reconstructed result
in 3D view. (c) The photon density distribution of the reconstructed result in 3D view. (d–f) The 2D views of the overlapped result with
corresponding CT slices.

performance compared to other typical algorithms based on
𝐿1/2, 𝐿1, 𝐿2, and 𝐿0 norm regularizer. The robustness tests
further illustrate that the DCA-𝐿1-2 algorithm is stable and
robust to measurement noise. In addition, decreasing the
number of excitation sources from 18 to 4, DCA-𝐿1-2 still
yields satisfactory results.

However, the reconstructed fluorescent yield of the pro-
posed method was still smaller than the true value. So new
strategies that may further improve fluorescent yield will be
our future research focuses. Moreover, we will also focus on
investigating the multitargets resolution and new application
of 𝐿1-2 norm regularizer in other imaging modalities in the
near future.

In conclusion, both numerical experiments and in vivo
experiments validated the good performance of 𝐿1-2 regu-
larizer for FMT.Moreover, comparative experiments indicate
that 𝐿1-2 outperforms the iterative reweighted strategies for 𝑙𝑝
with 𝑝 = 1/2 when system matrix is highly coherent.
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