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Background. Although Henoch-Schönlein purpura nephritis (HSPN) is characterized by glomerular deposition of aberrantly
glycosylated immunoglobulin A1 (IgA1), the underlying mechanism of HSPN progression has not yet been completely
elucidated. In this study, we integrated transcriptomic and proteomic analyses to explore the underlying mechanism of HSPN
progression. Methods. RNA sequencing and tandem mass tag- (TMT-) based quantitative proteomics were used to gain serum
transcriptomic and proteomic profiles of patients with different types of HSPN (3 × type 1, 3 × type 2, and 3 × type 3). Student’s
t-tests were performed to obtain the significance of the differential gene expression. The clusterProfiler package was used to
conduct the functional annotation of the DEGs for both Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes
pathways. Results. A total of 2315 mRNAs and 30 proteins were differentially expressed between the different types of HSPN. 58
mRNAs and one protein changed continuously during HSPN development and are potential biomarkers for HSPN progression.
The validation cohort (another 9 patients) confirmed the high-throughput results of the transcriptomic and proteomic analyses.
A total of 385 significant pathways were related to HSPN progression, and four of them were closely related to clinical
biochemical indicators and may play an important role in the progression of HSPN. Those pathways reveal that HSPN
progression may be related to the inhibition of inflammation, promotion of apoptosis, and repair of renal injury. Conclusions.
Four pathways were found to be closely related to HSPN progression, and it seems that HSPN progression is mainly due to the
inhibition of inflammation, promotion of apoptosis, and repair of renal injury.

1. Introduction

Henoch-Schönlein purpura nephritis (HSPN) is the most
serious complication of Henoch-Schönlein purpura (HSP)
and occurs in approximately 30% of HSP pediatric patients
within 4-6 weeks of the initial presentation [1–3]. According
to the International Study of Kidney Disease in Children
(ISKDC), HSPN can be divided into six subtypes (type 1 to
type 6), with the first three being the most common in the
clinic [4]. The prognosis of HSPN is closely related to its pro-
gression, with patients having possible decreased renal func-
tion, hypertension, hypoalbuminemia, and long-term renal
sequelae in the later stages of HSPN [2]. In the clinic, there

are targeted treatments for different HSPN types [4]. Explor-
ing the mechanisms of HSPN progression may aid in finding
effective diagnostic biomarkers and novel therapeutic targets
[5]. Despite HSPN being mainly characterized by glomerular
deposition of aberrantly glycosylated immunoglobulin A1
(IgA1), the underlying molecular mechanism of HSPN pro-
gression has not yet been completely elucidated [2, 6].

“Omics” have already been widely used in exploring
complex diseases and have gathered further insight into the
underlying mechanisms of disease development [7, 8].
Recently, there have been several HSP-related researches
using genome-wide methods, including a thorough review
published in Autoimmunity Reviews summarizing the
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genetic component associated with the pathogenesis of HSP
[9]. Researchers in China have reported on the proteomic
alterations between HSP and HSPN patients in the Chinese
population using comparative proteomic analysis [10]. Addi-
tionally, we previously published a study that revealed three
potential biomarkers associated with the progression of
HSP to HSPN [11]. A single “omics” study however is only
able to reveal the disease mechanism from one level. Disease
progression is normally found to be closely related to differ-
ential gene expression, including mRNA and protein levels,
and numerous studies have found significant correlations
among different levels [12, 13]. Integration of different
“omics” techniques facilitates the investigation of the possible
mechanism from a systems biology point of view, providing a
deeper understanding than any single “omics” study could do
alone [14]. Previously, a study from China reported differ-
ential expression of long noncoding RNAs and mRNAs
between children with HSPN and healthy children [15]; how-
ever, this study lacked proteomic data. Protein aggregation is
known to be fundamental to HSPN pathogenesis, and the
roles of abnormal proteins in HSPN are widely discussed
[1–3]. To date, no study has explored HSPN with an inte-
grated approach combining proteomic profiling and tran-
scriptomics. Moreover, no previous studies have taken
HSPN classification into consideration.

In this study, a comprehensive transcriptomic and pro-
teomic analysis of HSPN patients’ serums using RNA
sequencing (RNA-seq) and tandem mass tag- (TMT-) based
quantitative proteomics was performed. We aimed to iden-
tify mRNAs and proteins differentially expressed between
different types of HSPN. Pathway enrichment analysis con-
ducted on those differentially expressed mRNAs and proteins
(DEGs) revealed pathways associated specifically with HSPN
progression. These pathways offer a foundation for further
study into the mechanism behind HSPN progression.

2. Materials and Methods

2.1. Study Participants. All children were enrolled from the
Pediatric Inpatient Department of the Affiliated Hospital,
Harbin Medical University, from February 2013 to January
2017. HSP was diagnosed according to the criteria defined
by the European League against Rheumatism/Paediatric
Rheumatology International Trials Organization/Paediatric
Rheumatology European Society (EULAR/PRINTO/PRES)
[6]. HSPN was diagnosed with the presence of renal pathol-
ogy during the first 6 months of HSP, manifesting as either
hematuria and/or proteinuria [11]. The pathology grades of
HSPN patients were obtained by renal biopsy. Under light
microscopy, obvious differences were observed in the renal
pathological sections from HSPN type 1 to type 3 (Supple-
mentary Figure S1). Children with regular treatment for a
chronic disease and those with urinary tract infections were
excluded from this study. Collectively, this study included
nine HSPN (3 × type 1, 3 × type 2, and 3 × type 3) as well
as nine HSP patients that were age- and sex-matched
(Table 1). The characteristics of study participants were col-
lected from medical records. Additionally, another 9 patients
(3 × type 1, 3 × type 2, and 3 × type 3) were included for vali-

dation purposes. All subjects provided written informed con-
sent to participate in this study. This project was approved by
Harbin Medical University’s Ethical Review Committee. All
methods were performed in accordance with the relevant
guidelines and regulations.

2.2. Sample Collection. Plasma samples were collected from
all participants before they received treatment. Whole blood
samples (5ml) were collected after 12 hours of fasting into
an EDTA tube. It was then immediately centrifuged at
4000× g for 10min, and the supernatant was stored at
-80°C until further analysis.

2.3. TMT-Based Proteomic Analysis. Each sample of serum
(200μl) had highly abundant proteins removed by Bio-Rad
ProteoMiner protein enrichment kits, and the total protein
content for each sample was then quantified using a bicinch-
oninic acid (BCA) protein assay. This was followed by the
reduction and alkylation, as well as the acetone precipitation
of the sample, which was then resolved, tryptic digested, and
labelled by tandem mass tag (TMT). Finally, the sample had
SDC (sodium deoxycholate) removed and the peptides were
desalinated. Reverse-phase high-performance liquid chro-
matography (RP-HPLC) was then performed. Peptides in
each sample were separated by a nano-HPLC system,
EASY-nLC1200, and were then detected using an online Q
Exactive mass spectrometer (Thermo Finnigan). Separation
of the sample was executed with a 90min gradient at
300 nl/min flow rate. Gradient B is 5% for 3min, 8-35% for
70min, 35-45% for 15min, 45-100% for 1min, 100% for
2min, 100-2% for 1min, and 2% for 1min. The original data
obtained by liquid chromatography-tandem mass spectrom-
etry (LC-MS/MS) were searched and quantified by Max-
Quant (version 1.5.6.0). The protein database utilized was
UNIPROT_HUMAN_2016_09, and the quantitative method
employed was secondary reporter quantification with 10-
labeled TMT, with labeled N-terminal polypeptide and Lys
(K) sites. The product ion filter (PIF) was set to 0.75. The
false discovery rate (FDR) was controlled at 0.01, and the
proteins used in the quantitative analysis only included
unmodified unique peptides. Simultaneously, an intensity-
based absolute quantification (iBAQ) label-free quantitative
approach was also carried out on the samples.

2.4. RNA-seq Analysis. Add 750μl TRIzol LS Reagent to
250μl plasma samples, homogenize, and incubate for 5
minutes. Add 0.2ml of chloroform, and shake tubes vigor-
ously and incubate them at 15-30°C for 2-3 minutes. Cen-
trifuge the samples at 12,000× g for 15 minutes at 4°C; the
mixture was separated into three phases. RNA remained in
the upper aqueous phase. Transfer the aqueous phase to a
fresh tube and then add 0.5ml of isopropyl alcohol, incu-
bate samples at 15-30°C for 10 minutes, and centrifuge at
12,000× g for 10 minutes at 4°C. Remove the supernatant and
wash the RNA pellet once with 1ml of 75% ethanol. Remove
the supernatant and air-dry the RNA pellet for 5-10 minutes.
Dissolve RNA in 85μl or less RNase-free water. Total RNA
from each sample was quantified using the NanoDrop ND-
1000 (Thermo Fisher Scientific, USA). 1-2μg total RNA
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was used to prepare the sequencing library in the following
steps: firstly, total RNA was enriched by removing rRNA;
secondly, RNA-seq library preparation used the KAPA
Stranded RNA-Seq Library Prep Kit (Illumina, San Diego,
USA), which incorporated dUTP into the second cDNA
strand and rendered the RNA-seq library strand-specific.
The completed libraries were qualified with Agilent 2100
Bioanalyzer (Agilent Technologies, USA) and quantified by
the absolute quantification qPCR method. To sequence the
libraries on Illumina HiSeq 4000, the barcoded libraries were
mixed, denatured to single-stranded DNA in NaOH, cap-
tured on the Illumina flow cell, amplified in situ, and subse-
quently sequenced for 150 cycles for both ends on the
Illumina HiSeq instrument.

2.5. Validation of the Transcriptomic and Quantitative
Proteomic Data. In order to validate the high-throughput
results of the transcriptomic and proteomic analyses, a total
of 10 mRNAs and 10 proteins found to be differential
expressed between different comparison groups were chosen
for validation. Their expression levels were measured by
either quantitative reverse transcription polymerase chain
reaction (qRT-PCR) (mRNAs) or Parallel Reaction Monitor-
ing (PRM) (proteins) [16]. The detailed experimental proce-
dure of PRM was introduced in Supplementary Materials.
The validation cohort included an additional nine HSPN
(3 × type 1, 3 × type 2, and 3 × type 3) patients from which
new serum samples were taken and assayed.

2.6. Bioinformatics and Statistical Analysis. After data nor-
malization, Student’s t-tests were performed to obtain the
significance of the differential gene expression. The mRNAs

and proteins were regarded as differentially expressed when
found with a P value < 0.05 and a fold change greater than
1.5-fold (ratio A/B > 1:5 or ratio A/B < 2/3). Principal com-
ponent analysis (PCA) was performed to visualize the separa-
tion among the different tested groups. A correlation analysis
of the differentially expressed mRNAs and proteins (DEGs)
was conducted using the mixOmics package in R [17].
The clusterProfiler package was used to conduct the func-
tional annotation of the DEGs for both Gene Ontology
(GO) terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways [18]. Benjamini-Hochberg-adjusted P <
0:05 (FDR) was used as the threshold to determine the signif-
icance of each of the pathways identified. All statistical anal-
yses were performed in the R platform (version 3.4.3). Heat
maps were generated in GraphPad Prism (version 7.0). A
two-sided P < 0:05 was established as the level of statistical
significance for all tests.

3. Results

3.1. Differential Transcriptomic and Proteomic Profile

3.1.1. Differentially Expressed mRNAs and Proteins. A total of
24,493 mRNAs (13,327 genes) and 592 proteins (4793 pep-
tides) were quantitated (Supplementary Table S1). Based on
the criteria, a total of 2315 mRNAs were found to be differen-
tially expressed between different types of HSPN, with 2094
upregulated and 221 downregulated (Supplementary Table
S2). Furthermore, 30 proteins were differentially expressed
between the different types of HSPN, with 19 upregulated
and 11 downregulated (Supplementary Table S3). The DEGs,
mRNAs and proteins, between the contrasting groups can be

Table 1: The demographic and clinical characteristics of patients in this study.

HSP HSPN (type 1) HSPN (type 2) HSPN (type 3)

Pathological type — — — — — — — — — Ia Ib Ib IIb IIa IIb IIIa IIIa IIIb

Patient ID 1 2 3 4 5 6 7 8 9 1 2 3 1 2 3 1 2 3

Sex 1a 2 2 1 1 2 1 1 2 1 1 2 2 1 1 1 1 2

Man/woman 5/4 6/3

Age 7 15 13 6 13 11 10 7 6 11 10 5 9 10 16 8 9 10

Mean age 9.78 9.78

Arthralgias and/or arthritisb 1 0 2 0 1 1 0 1 0 1 1 0 2 0 0 1 1 1

Bowel angina and/or
gastrointestinal bleeding

2 0 0 0 1 2 0 0 1 1 0 1 1 0 1 1 2 1

Proteinuria/hematuria 0 1 0 0 0 0 1 0 0 2 2 2 3 2 3 3 3 3

IgA (g/l) 2.53 1.67 2.54 1.65 2.18 1.21 1.98 1.94 1.96 1.02 1.19 2.45 1.72 3.35 4.48 2.65 3.00 7.16

Mean IgA 1.96 1.55 3.18 4.27

CRP (mg/l) 1.51 2.58 1.89 0.73 0.79 3.14 1.77 1.98 1.56 1.67 1.87 1.43 6.32 8.38 8.42 11.45 15.05 20.80

Mean CRP 1.77 1.66 7.71 15.77

C3 (g/l) 1.01 0.86 0.79 1.03 0.96 0.86 0.92 1.12 0.72 0.95 1.12 1.08 1.14 1.16 1.12 1.04 1.46 1.16

Mean C3 0.92 1.05 1.14 1.22

C4 (g/l) 0.15 0.22 0.19 0.12 0.22 0.35 0.23 0.21 0.20 0.12 0.27 0.26 0.33 0.19 0.23 0.22 0.26 0.19

Mean C4 0.21 0.22 0.25 0.22
a1 and 2 denote boy and girl, respectively. bJoint: 0 = no symptoms; 1 = pain and/or slight swelling; 2 = pain and/or moderate swelling; 3 = pain and/or severe
swelling; GI: 0 = no symptom; 1 = slight pain and/or occult stool blood (OSB) (+); 2 =moderate pain and/or OSB (+2, +3); 3 = severe and/or melena; kidney:
0 = no proteinuria; 1 = proteinuria (+) and/or hematuria (+); 2 = proteinuria (2+, 3+) and/or hematuria (2+, 3+); 3 = proteinuria (>3+) and/or hematuria (>3+).
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seen in Figures 1 and 2, respectively. As seen in Supplemen-
tary Figure S2, an obvious separation between type 1 and type
2, as well as type 1 and type 3, is noted.

3.1.2. The Patterns of DEGs Change from Type 1 to Type 3.
Further 58 mRNAs and one protein were identified to be
concurrently differentially expressed between type 1 and type

2, as well as type 2 and type 3. Among them, most of the
DEGs (51) were found to first be significantly downregulated
in early HSPN (type 1 to type 2) and then significantly upreg-
ulated in the later stages of HSPN (type 2 to type 3). How-
ever, only seven DEGs were found to first be significantly
upregulated in early HSPN and significantly downregulated
in the later stages. Furthermore, it is worth noting that
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Figure 1: The volcano plots of the differentially expressed mRNAs identified between different groups. (a) Type 1 vs. type 2. (b) Type 1 vs.
type 3. (c) Type 2 vs. type 3. Downregulated (khaki) and upregulated (orange red) mRNAs are indicated. mRNAs found to be not significantly
altered between the groups are displayed in gray. FC: fold change. The top 10 mRNAs according to their P value ranking are listed. The circle
size is proportional to the P value.
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Figure 2: The volcano plots of the differentially expressed proteins between different groups. (a) Type 1 vs. type 2. (b) Type 1 vs. type 3. (c)
Type 2 vs. type 3. Downregulated (khaki) and upregulated (orange red) proteins are indicated. Proteins found to be not significantly altered
between the groups are displayed in gray. FC: fold change. The top 10 proteins according to their P value ranking are listed. The circle size is
proportional to the P value.

4 BioMed Research International



RPS17-201 was found to be continuously downregulated
throughout HSPN progression (type 1 to type 3) (Supple-
mentary Table S4).

3.2. Correlation Analysis of Transcriptomic and Proteomic
Data. A correlation analysis of DEGs between different types
of HSPN was performed. The sample scatterplot seen in
Supplementary Figure S3A shows that the first latent compo-
nents of each of the “omics” data sets were highly correlated
between each other (r = 0:96) and that these components
were able to discriminate between type 1 and type 2, as well
as type 1 and type 3 patients. A signature was noted for the
first two components of the two “omics” data sets, with 20
and 10 mRNAs and 10 and three proteins, respectively. Cor-
relation circle plots, as seen in Supplementary Figure S3B,
further highlighted correlations between each selected feature
and its associated latent component. A circosPlot displays the
different types of selected features (30 mRNAs and 13 pro-
teins) on a circle. The links between or within two “omics”
data sets indicate a strong positive or negative correlation,
and as can be seen in Supplementary Figure S3C, there was a
strong correlation between the mRNA and protein observed.

3.3. Pathway EnrichmentAnalysis. A total of 309 significant
pathways were enriched with the upregulated DEGs found
between the different types of HSPN, including 219 biological
process terms, eight molecular function terms, 76 cellular
component terms, and six KEGG pathways (Supplementary
Table S5). They were mainly classified into inflammation
and immunity, cell apoptosis, platelet activation and blood

coagulation, epidermal growth factor (EGF), pathways
related to the repair of renal injury, and cytokines associated
with tumors, apoptosis, inflammation, and kinases. A total of
76 significant pathways were enriched with the downregu-
lated DEGs identified between the different types of HSPN,
including 28 biological process terms, five molecular function
terms, 39 cellular component terms, and four KEGG path-
ways (Supplementary Table S5). They were mainly classified
into inflammation and immunity and platelet activation and
blood coagulation.

We further identified pathways which were only related
to HSPN progression; the identification steps were as follows:
Firstly, pathways which were enriched with DEGs between
the different types of HSPN were identified. Secondly, those
pathways which were enriched with DEGs between HSP
and HSPN were excluded (Supplementary Table S8 and Sup-
plementary Table S9). Thirdly, those pathways in which most
differentially expressed genes were closely related to clinical
biochemical indicators from the remaining pathways were
identified. Ultimately, four pathways (negative regulation of
the JAK-STAT cascade, the mTOR signaling pathway, the
SWI/SNF superfamily-type complex, and the Wnt signaling
pathway) were identified. The basic information of differen-
tially expressed genes in four pathways is shown in Supple-
mentary Table S10. Most differentially expressed genes in
four pathways were closely related to clinical biochemical
indicators (Figure 3); their detailed correlation coefficients
are shown in Supplementary Table S6. The results indicated
that these four pathways may play an important role in the
progression of HSPN.
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3.4. Validation of the Transcriptomic and Proteomic Data.
Based on the fold changes of the DEGs, a total of 10 mRNAs
and 10 proteins which were found to be differentially
expressed between the various comparison groups were cho-
sen (Supplementary Table S7). Their expression levels were
measured and validated by qRT-PCR (mRNAs) and PRM
(proteins) methods, respectively. As shown in Figure 4(a),
qRT-PCR results for six of the 10 selected mRNAs identified
in the differential analysis were found to be consistent with
the transcriptomic results. Of the 10 selected proteins identi-
fied in the differential analysis, six were successfully validated
and found to be consistent with the quantitative proteomic
data (Figure 4(b)). Taken together, these results demonstrate
the reliability of the “omics” data generated in this study.

4. Discussion

In this study, a multiple genome-wide approach, including
transcriptomics and proteomics, was integrated together to
identify significant novel pathways for HSPN progression.
It was found that a total of 2315 mRNAs and 30 proteins
were differentially expressed between different types of
HSPN (Supplementary Table S2 and Supplementary Table
S3). In particular, these mRNAs and proteins were ranked
according to their P values (in ascending order), and the
functions of the top 10 mRNAs and proteins were searched
in GeneCards and UniProt databases. They mainly were
found to be involved in immunity, apoptosis, platelet and
coagulation, and tumor necrosis, consistent with the pathway
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Figure 4: Validation of transcriptomic and proteomic data. ∗P < 0:05, ∗∗P < 0:01: (a) mRNA; (b) protein.
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enrichment results, and those functions were related to
nephritis and renal injury [10, 15, 19]. It is worth noting that
most proteins were differentially expressed between different
types of HSPN while their corresponding mRNAs were not
differentially expressed between those groups (Supplemen-
tary Table S2 and Supplementary Table S3). Our results
found that there existed the mechanisms of the posttran-
scriptional regulation of gene expression in HSPN progres-
sion. Gan et al. also revealed multiple posttranscriptional
regulatory mechanisms of mouse spermatogenesis by inte-
grating proteomic and transcriptomic analyses [20].

We further identified 58 mRNAs and one protein con-
currently differentially expressed between type 1 and type 2
and type 2 and type 3 HSPN patients. The DEGs found to
be active throughout HSPN progression may be potential
biomarker candidates for HSPN classification. Of these,
RPS17-201 is of most promise with it being found to be con-
tinuously downregulated throughout HSPN disease. RPS17
encodes a ribosomal protein, involved in the generation of
serum IgA [15]. Furthermore, it was found that most DEGs
were only differentially expressed in either early HSPN or late
HSPN (Supplementary Table S2 and Supplementary Table
S3, respectively). This implies that these genes and proteins
are only active during a single stage of HSPN and are then
relatively silent during another stage. This investigation of
the patterns of DEG changes from type 1 to type 3 indicates
that HSPN progression undergoes various stages wherein
different genes and proteins play various roles in various
and specific periods of the disease. This finding is consistent
with previous studies [2, 3].

A total of 385 significant pathways were found to be
enriched with DEGs between the different types of HSPN,
and they were mainly classified into inflammation and
immunity, cell apoptosis, platelet activation and blood coag-
ulation, EGF, pathways related to the repair of renal injury,
and cytokines associated with tumors, apoptosis, inflamma-
tion, and kinases. Four pathways—negative regulation of
the JAK-STAT cascade, the mTOR signaling pathway, the
SWI/SNF superfamily-type complex, and the Wnt signaling
pathway—were closely related to clinical biochemical indica-
tors, which indicated that they may play an important role in
the progression of HSPN.

Many proinflammatory and proapoptotic cytokines
transmit signals through the JAK-STAT signaling pathway,
and these include interleukins, granulocyte/macrophage
colony-stimulating factors, and TNF-α [21, 22]. HSPN is a
small-vessel form of the autoimmune vasculitis caused by
IgA1-mediated inflammation [4], and its progression is
closely related to the aggravation of the renal inflammatory
response [2]. Apoptosis is an important mechanism to regu-
late and prevent inflammatory injury [23]. This study is the
first to report that the JAK-STAT signaling pathway is active
during the progression of HSPN. Previously, the JAK/STAT
pathway has been shown to play an important role in the
development of obstructive nephropathy [24], diabetic
nephropathy [25], and acute kidney injury [26]. Another
pathway identified in this study, the Wnt signaling pathway,
has been noted to regulate many biological processes, includ-
ing proliferation, migration, invasion, and apoptosis [27].

Previously, He et al. have reported that the Wnt signaling
pathway may be involved in the modulation of HSPN patho-
genesis [10]. In this study, this pathway was found to be
active during the progression of HSPN from type 2 to type
3 (Supplementary Table S5), a period when renal injury can
be relatively serious. Kawakami et al. have previously indi-
cated that theWnt signaling pathway is involved in the repair
of the renal tubular epithelial cells after renal injury [28].
Therefore, due to the Wnt signaling pathway most likely
playing an important role in alleviating renal injury, it was
found to be active in the development of HSPN. Additionally,
this study showed that the mTOR signaling pathway is active
during the progression of HSPN from type 1 to type 2 (Sup-
plementary Table S5). The mTOR signaling pathway partic-
ipates in the regulation of many cellular functions,
including proliferation, growth, differentiation, and apopto-
sis [29]. Previously, Zhang et al. have reported that the
mTOR signaling pathway is involved in the proliferation of
mesangial cells due to IgA1 isolated from HSP patients, most
likely related to the mesangial injury of HSPN [30]. Further-
more, Xu et al. have shown that the mTOR signaling pathway
is activated in renal tissues of children with immunoglobulin
A nephropathy [31]. Another classification identified in this
study was the SWI/SNF superfamily-type complex, and it
was found to be active during the progression of HSPN from
type 1 to type 2 (Supplementary Table S5). It has been indi-
cated that the p53 protein-dependent apoptosis is suppressed
by the chromatin remodeling factor SMARCD1 [32]. Addi-
tionally, Hu et al. found that SWI/SNF-associated chromatin
remodeling was related to the inflammatory response in mac-
rophages [33]. As described above, HSPN progression is
closely related to the aggravation of renal inflammation and
also associated with apoptosis [4, 23]. This study is the first
to report that the SWI/SNF superfamily-type complex is
active in the progression of HSPN. In addition, this study
revealed that platelet activation and blood coagulation as well
as EGF were both active in the progression of HSPN. Of note,
inflammation is associated with platelet coagulation func-
tion, and proinflammatory cytokines are capable of activat-
ing the coagulation system [34]. Furthermore, EGF can
promote the proliferation and repair of renal tubular epithe-
lial cells when the kidney is injured [35].

The results of this study reveal that HSPN progression
may be related to the inhibition of inflammation, promotion
of apoptosis, and repair of renal injury. It is known that the
renal inflammatory response aggravates and activates the
coagulation system during the progression of HSPN [2]. Fur-
thermore, proapoptotic cytokines, such as TNF-α, can induce
apoptosis of inflammatory cells through the JAK-STAT sig-
naling pathway and limit the expansion of inflammation.
Apoptosis also occurred in the renal tubular cells and leads
to tubular cell loss and tubular dysfunction [36]. Addition-
ally, aggravated renal injury triggers the process of repairing
and remodeling of the damaged tubules and promotes their
return to normal structural and functional states [36]
through EGF and the Wnt and mTOR signaling pathways.
Therefore, we hypothesize that this is a possible underlying
molecular mechanism of HSPN progression, and as such this
study provides important clues for finding novel therapeutic
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targets in the future. Undoubtedly, further research is
required to confirm this hypothesis.

To note, there are limitations to this study. The major
limitation is the small sample size, but this is due to the
requirement of a renal biopsy for the diagnosis of HSPN clas-
sification in this study. The number of pediatric patients who
accepted to have a renal biopsy was rare, which resulted in
fewer samples. Furthermore, we did not include kidney tis-
sues of the patients tested or use an animal model to verify
our results in vivo.

In conclusion, an integrated transcriptomic and proteo-
mic analysis was performed to identify significant novel
pathways for HSPN progression. A total of 2315 mRNAs
and 30 proteins were differentially expressed between differ-
ent types of HSPN. Additionally, 58 mRNAs and one protein
were found to continuously change during HSPN develop-
ment and therefore could be used as potential markers for
various stages of HSPN progression. A total of 385 signif-
icant pathways were enriched with DEGs found between
different types of HSPN. The negative regulation of the
JAK-STAT cascade, the mTOR signaling pathway, the
SWI/SNF superfamily-type complex, and the Wnt signaling
pathway were found to be closely related to HSPN progres-
sion. Therefore, it seems that HSPN progression is mainly
due to the inhibition of inflammation, promotion of apopto-
sis, and repair of renal injury. This is the first study to inte-
grate both transcriptomics and proteomics into a single
study to identify significant novel pathways for HSPN pro-
gression using samples from different stages of HSPN. The
“omics” data generated by this study may aid in continuing
the understanding of the molecular mechanisms of HSPN
progression and constitute a solid base for further research
in the future.
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