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1 Department of Neonatology, Charité – Universitätsmedizin Berlin, Berlin, Germany, 2 Department of

Anesthesiology and Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Berlin, Germany
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Abstract

Dexmedetomidine (DEX) is a highly selective agonist of α2-receptors with sedative, anxio-

lytic, and analgesic properties. Neuroprotective effects of dexmedetomidine have been

reported in various brain injury models. In the present study, we investigated the effects of

dexmedetomidine on hippocampal neurogenesis, specifically the proliferation capacity and

maturation of neurons and neuronal plasticity following the induction of hyperoxia in neona-

tal rats. Six-day old sex-matched Wistar rats were exposed to 80% oxygen or room air for

24 h and treated with 1, 5 or 10 μg/kg of dexmedetomidine or normal saline. A single pre-

treatment with DEX attenuated the hyperoxia-induced injury in terms of neurogenesis and

plasticity. In detail, both the proliferation capacity (PCNA+ cells) as well as the expression of

neuronal markers (Nestin+, PSA-NCAM+, NeuN+ cells) and transcription factors (SOX2,

Tbr1/2, Prox1) were significantly reduced under hyperoxia compared to control. Further-

more, regulators of neuronal plasticity (Nrp1, Nrg1, Syp, and Sema3a/f) were also drasti-

cally decreased. A single administration of dexmedetomidine prior to oxygen exposure

resulted in a significant up-regulation of expression-profiles compared to hyperoxia. Our

results suggest that dexmedetomidine may have neuroprotective effects in an acute hyper-

oxic model of the neonatal rat.

Introduction

Improving advances in neonatal intensive care survival rates of preterm children continues,

but extremely preterm children still have high rates of morbidity [1,2]. External factors such as

oxidative stress, intensified by additional mechanical ventilation, and the need for the adminis-

tration of medications or surgical interventions lead to additional burdens for the immature

organism. Oxidative stress promotes the development and pathogenesis of complications in

premature infants [3–9], because the antioxidant defense system is poorly developed [10].

The inadvertent oxygen oversupply secondary to change from the intra- to extra-uterine

environment is aggravated by additional oxygen supplementation during neonatal intensive
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care. This triggers the formation of reactive oxygen radicals that contribute to oxidative

changes in proteins, lipids and nucleic acids [11] and negatively impacts on survival of neuro-

nal cells during development [12]. Hyperoxia leads to an increased expression of pro-inflam-

matory cytokines in the immature rat brain [13,14], which is associated with neuronal

degradation [15]. Further studies show that hyperoxic conditions promote the risk for neuro-

behavioral cognitive delayed effects as well as the development of cerebral palsy in preterm

infants [16,17]. The use of anesthetics and sedatives for intensive medical treatments in pre-

term infants is often imperative, therefore the correct balance between good oxygen saturation

and the use of potentially neurodegenerative sedatives is an important aspect [18,19]. Further-

more, the use of narcotics and sedatives in neonatology leads to impairments of the developing

brain and thus to a higher incidence of intraventricular hemorrhage (IVH) and periventricular

leukomalacia (PVL) [19,20]. Brain injury associated with IVH, PVL, seizures, or sepsis, can

trigger cognitive developmental delays, motor impairments and behavioral disorders [21].

Neurogenesis, synaptogenesis, and connectivity are important processes that occur in the

developing brain, mainly in the hippocampus for learning and memory, during the neonatal

period in humans and rodents [22]. It is known that the hippocampal structures are particu-

larly vulnerable to many stressors and medical complications, such as infection and oxidative

stress [15,23–25]. Consequences include reduction in grey matter [25], impairment of neuro-

nal migration and plasticity [15,26,27], and neuronal damage [28].

The highly selective α2 agonist dexmedetomidine (DEX) exerts its effect through sym-

patholysis and displays sedative, analgesic, and anxiolytic properties, but also side effects such

as hypotension or bradycardia [29,30]. DEX has positive effects in comparison to other seda-

tives, including reduction in respiratory depression and hypotension, delirium diminution,

decrease of lung and kidney damage, and reduction of neural apoptosis [31–33]. A medication

strategy with DEX for preterm infants provides effective sedation, shorter ventilation duration,

and a reduction in the incidence of sepsis [34–36]. Taking into account the damaging effects of

oxidative stress, the possible neuroprotection afforded by DEX as a sedative in pediatrics war-

rants further investigation [33,37–42].

To date, little is known about the impact of dexmedetomidine on the developing brain.

Therefore, this study aims to investigate the effect of dexmedetomidine on neurogenesis in the

dentate gyrus in terms of proliferation capacity, neuronal maturation, and neuronal plasticity

in a hyperoxia-mediated brain injury model of the neonatal rat.

Materials and methods

Animals and drug administration

All procedures were approved by the state animal welfare authorities (LAGeSo G-0145/13)

and followed institutional guidelines. Six-day old Wistar rats from time-pregnant dams were

obtained from Charité-Universitätsmedizin Berlin (Germany) and randomly assigned to cages

and treatment.

The animal experiments were carried out as previously described [33]. Dexmedetomidine

(DEX; dexdor1, Orion Pharma, Espoo, Finland) was dissolved in phosphate buffered saline.

Three doses of the drug (1, 5, and 10 μg/kg body weight) were used and all injections were

given intraperitoneally (i.p.) as a fixed proportion of body weight (100 μl/10 g). The rat pups

were divided into different experimental groups (description with the relevant experimental

abbreviations): (1) control group (CON; 21% O2, room air) with 0,9% saline, (2) verum group

(21% O2) with 1 μg/kg DEX (DEX1), (3) verum group with 5 μg/kg DEX (DEX5), (4) verum

group with 10 μg/kg DEX (DEX10), (5) hyperoxia group (HY; 80% O2, OxyCycler BioSpherix,

Lacona, NY, USA) with 0,9% saline, (6) hyperoxia with 1 μg/kg DEX (HYDEX1), (7) hyperoxia
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with 5 μg/kg DEX (HYDEX5), and (8) hyperoxia with 10 μg/kg DEX (HYDEX10). Of 10 rat

pups in each group with different gender, 5 were used for gene expression analysis (quantita-

tive realtime PCR and Western blot) and 5 for immunohistological assessments (in each sub-

group 2 males/ 3 females or 3 males/ 2 females). For hyperoxia or normoxia exposure, pups

were kept together with their dams. Saline or DEX were administrated once 15 min before the

start of oxygen exposure.

Tissue preparation

After 24 h (P7) of exposure, rats were transcardially perfused with phosphate buffered saline

(PBS, pH 7.4) under anesthesia (i.p.) with ketamine (50 mg/kg), xylazine (10 mg/kg), and ace-

promazine (2 mg/kg) then decapitated. The olfactory bulb and cerebellum were removed,

brain hemispheres were snap-frozen in liquid nitrogen, and stored at -80˚C. For immunohis-

tochemical analysis, animals were perfused with PBS followed by perfusion with 4% parafor-

maldehyde at pH 7.4, the brains were postfixed at 4˚C for 1 day, embedded in paraffin, and

processed for histological staining.

Tissue fixation

The sections (5 μm) of paraffin-embedded brains were mounted onto Super Frost plus-coated

slides (R. Langenbrinck, Emmendingen, Germany) and were deparaffinized in Roti-Histol

(Carl Roth, Karlsruhe, Germany) twice for 10 min each, then rehydrated in ethanol (100, 90,

80, and 70%), distilled water, and PBS for 3 min each at room temperature.

Immunostaining of neuronal and proliferation markers

Immunostaining was performed as previously described [33]. Briefly, sections were fixed in

citrate buffer (pH 6.0) at 600 W for 12 min in a microwave oven to increase cell membrane

permeability and thus, demasking intracellular epitopes. Afterward, sections were cooled and

washed three times with PBS. For the primary antibody PSA-NCAM, sections were addition-

ally incubated for 90 min in 50% formamide/ 2xSSC buffer (3 M sodium chloride, 300 mM

sodium citrate) at 65˚C. After two five minute washes in 2xSSC buffer for 30 min, the sections

were incubated at 37˚C in 2 M hydrochloric acid then 10 min in 0.1 M borate buffer at room

temperature. Finally, the sections were washed four times for 5 min in PBS.

The slices were blocked with blocking buffer (10% goat serum, 1% BSA, and 0.3% Triton X-

100 in PBS) for 2 h at room temperature. Sections were washed once with PBS and subse-

quently incubated overnight at 4˚C with either monoclonal mouse anti-rat nestin (1:200, Milli-

pore, Darmstadt, Germany), monoclonal mouse anti-rat NeuN (1:500, Millipore), or

monoclonal mouse anti-rat PSA-NCAM (1:200, Millipore) diluted in antibody diluent for

reducing background (DAKO Deutschland GmbH, Hamburg, Germany). Slices were washed

three times in PBS. The secondary Cy3-conjugated goat anti-mouse IgG (Millipore) was

applied at a dilution of 1:200 in the carrier solution of the primary antibody and incubated at

room temperature in the dark overnight. For double staining with the proliferation marker,

proliferating cell nuclear antigen (PCNA), the sections were washed once with PBS and incu-

bated with blocking buffer for 60 min in the dark. After washing with PBS, sections were incu-

bated with rabbit anti-rat PCNA (1:50, Abcam, Cambridge, UK) in antibody diluent (DAKO)

overnight at 4˚C. The secondary labeling with AlexaFluor 488-conjugated goat anti-rabbit IgG

(Invitrogen, Carlsbad, CA, USA) including 4,6-diamidino-2-phenylindole (DAPI, 10 ng/ml)

was incubated for 60 min in the dark. After three washes with PBS, slides were mounted with

mounting media (Vectashield HardSet Mounting Media, Vector Laboratories, Burlingame,

CA, USA).
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Sections of the hippocampus were viewed blinded under fluorescent light using a Keyence

BZ-9000 microscope (BIOREVO) equipped with a 200 x magnification objective and analyzed

with BZII-analyzer software (KEYENCE Deutschland GmbH, Neu-Isenburg, Germany).

Images for PCNA-labeled and nestin, PSA-NCAM, and NeuN/ PCNA double-labeled cells

within the granule cell layer (GCL, dentate gyrus) and the polymorphic layer (PL, hilus)

including the subgranular zone were counted in 4 separate sections per animal. We analyzed

labeled cell numbers using Adobe Photoshop C3 10.0 (Adobe Systems Incorporated, San Jose,

CA, USA).

RNA extraction and quantitative real-time PCR

The gene expression analysis was performed as previously described [15]. Total RNA was iso-

lated from snap-frozen tissue by acidic phenol/chloroform extraction (peqGOLD RNAPure™;

PEQLAB Biotechnologie, Erlangen, Germany) and 2 μg of RNA was reverse transcribed. The

PCR products of hypoxanthine-guanine phosphoribosyl-transferase (HPRT), neuregulin 1
(Nrg1), neuropilin 1 (Nrp1), paired box 6 (Pax6), prospero homeobox 1 (Prox1), semaphorin 3A
(Sema3a), semaphorin 3F (Sema3f), sex determining region Y-box 2 (SOX2), synaptophysin
(Syp), T-box brain gene 1 (Tbr1), and T-box brain gene 2 (Tbr2) were quantified in real time,

using dye-labeled fluorogenic reporter oligonucleotide probes with the sequences summarized

in Table 1. All probes were labeled at their 5´ ends with the reporter dye 6-carboxy-fluores-

ceine (FAM) and at their 3´ ends with the quencher dye 6-carboxy-tetramethylrhodamine

(TAMRA). PCR and detection were performed in triplicate and repeated two times for each

sample in 11 μl reaction mix, which contained 5 μl of 2× KAPA PROBE FAST qPCR Master-

mix (PEQLAB Biotechnologie), 2.5 μl of 1.25 μM oligonucleotide mix, 0.5 μl (0.5 μM) of probe

(BioTeZ, Berlin, Germany), and 3 to 25 ng of cDNA templates with HPRT used as an internal

reference. The PCR amplification was performed in 96-well optical reaction plates for 40 cycles

with each cycle at 94˚C for 15 s and 60˚C for 1 min. The expression of target genes was ana-

lyzed with the StepOnePlus real-time PCR system (Applied Biosystems, Life Technologies,

Carlsbad, CA, USA) according to the 2−ΔΔCT method [43].

Protein extraction

Protein was extracted as previously described [15,33]. Briefly, snap-frozen brain tissue was

homogenized in RIPA buffer solution for protein extraction. The homogenate was centrifuged

at 3000 g (4˚C) for 10 min, the microsomal fraction was subsequently centrifuged at 17000 g

(4˚C) for 20 min, and stored at -80˚C until further analysis. After collecting the supernatant,

protein concentrations were determined using the Pierce BCA kit (Pierce/Thermo Scientific,

Rockford, IL, USA) with 30 min incubation at 37˚C prior to spectrophotometry at 562 nm.

Immunoblotting

Western blotting was performed as previously described [15,33]. Briefly, protein extracts (25–

50 μg per sample) were denaturated in Laemmli sample loading buffer at 95˚C, size-fraction-

ated by 8–10% sodium dodecyl sulfate polyacrylamide gel electrophoresis, and electrotrans-

ferred in transfer buffer to a nitrocellulose membrane (0.2 μm pore, Bio-Rad, Munich,

Germany). Nonspecific protein binding was prevented by treating the membrane with 5%

nonfat dry milk in Tris-buffered saline /0.1% Tween 20 for 1 h at room temperature. Equal

loading and transfer of proteins were confirmed by staining the membranes with Ponceau S

solution (Fluka, Buchs, Switzerland). The membranes were incubated overnight at 4˚C with

mouse monoclonal anti-NRG1 (44 kDa; 1:500; Santa Cruz, Heidelberg, Germany), goat poly-

clonal anti-NRP1 (120 kDa; 1:1.000; R&D Systems, Minneapolis, MN, USA), rabbit polyclonal
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anti-SEMA3A (89 kDa; 1:1.000; Abcam, Cambridge, UK), rabbit polyclonal anti-SEMA3F (88

kDa; 1:1.000; Abcam) or rabbit monoclonal anti-SYP (34 kDa; 1:1.000; Abcam), respectively.

Secondary incubations were performed with horseradish peroxidase-linked anti-mouse

(1:2000; Dako, Glostrup, Denmark), anti-goat (1:2000; Vector Laboratories) or anti-rabbit

(1:2000; Dako) antibody. Positive signals were visualized using the SuperSignal™ West Pico kit

(Pierce) according to manufacturer´s directions and quantified using a ChemiDoc™ XRS+ sys-

tem and Image Lab™ software (Bio-Rad). Membranes were stripped, washed, blocked, and re-

probed overnight at 4˚C with mouse anti-β-actin monoclonal antibody (42 kDa; 1:10.000;

Sigma-Aldrich, Munich, Germany). Each experiment was repeated three times.

Table 1. Sequences of oligonucleotides and gene locus.

Gene Oligonucleotide sequences 5´- 3´

HPRT forward GGAAAGAACGTCTTGATTGTTGAA NM_012583.2

reverse CCAACACTTCGAGAGGTCCTTTT

probe CTTTCCTTGGTCAAGCAGTACAGCCCC

Nrg1 forward GGGACCAGCCATCTCATAAA NM_001271118

reverse ATCTTGACGGGTTTGACAGG

probe ACTTTCTGTGTGAATGGGGG

Nrp1 forward TGAGCCCTGTGGTCTATTCC NM_145098

reverse CCTCTGGCTTCTGGTAGTGC

probe TGTGGGTACACTGAGGGTCA

Pax6 forward TCCCTATCAGCAGCAGTTTCAGT NM_013001.2

reverse GTCTGTGCGGCCCAACAT

probe CTCCTCCTTTACATCGGGTT

Prox1 forward TGCCTTTTCCAGGAGCAACTAT NM_001107201

reverse CCGCTGGCTTGGAAACTG

probe ACATGAACAAAAACGGTGGC

Sema3a forward GAAAACGGTCGTGGGAAGAG NM_017310

reverse AGCAAAGTCTCGTCCCATGA

probe GACCCCAAACTTCTGACTGC

Sema3f forward CCATGCGCACAGATCAGTAC NM_001108185

reverse AGTTTATCGTCGTTGCGCTC

probe CGGTGGCTCAATGATCCTTC

SOX2 forward ACAGATGCAGCCGATGCA NM_001109181

reverse GGTGCCCTGCTGCGAGTA

probe CAGTACAACTCCATGACCAG

Syp forward TTCAGGCTGCACCAAGTGTA NM_012664

reverse TTCAGCCGACGAGGAGTAGT

probe AGGGGGCACTACCAAGATCT

Tbr1 forward TCCCAATCACTGGAGGTTTCA NM_0011911070

reverse GGATGCATATAGACCCGGTTTC

probe AAATGGGTTCCTTGTGGCAA

Tbr2 forward ACGCAGATGATAGTGTTGCAGTCT XM_001061749.2

reverse ATTCAAGTCCTCCACACCATCCT

probe CACAAATACCAACCTCGACT

HPRT: hypoxanthine-guanine phosphoribosyl-transferase; Nrg1: neuregulin 1; Nrp1: neuropilin 1; Pax6: paired box 6; Prox1: prospero homeobox 1;

Sema3a: semaphorin 3A; Sema3f: semaphorin 3F; SOX2: sex determining region Y-box 2; Syp: synaptophysin; Tbr1/2: T-box brain gene 1/2.

doi:10.1371/journal.pone.0171498.t001
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Statistical analyses

All data are expressed as the mean ± standard error of the mean (SEM). Groups were com-

pared using a one-way analysis of variance (ANOVA), and significance was determined using

Bonferroni’s correction for multiple comparisons with independent sample t test. A two-sided

p value of<0.05 was considered significant. All graphics and statistical analyses were per-

formed using the GraphPad Prism 5.0 software (GraphPad Software, La Jolla, CA, USA).

Results

Neuronal differentiation and proliferation

The dentate gyrus is one of the brain structures where neurogenesis occurs during fetal brain

development and in the adult brain (Deng et al., 2010). The proliferation capacity of neural

cells is a critical factor for physiological development, and numerous environmental agents

and physiological mediators can modify neural proliferation (reviewed in [44,45]).

To investigate the impact of DEX at different concentrations (1 μg/kg DEX1; 5 μg/kg

DEX5; 10 μg/kg DEX10) on the effects caused by oxygen toxicity, proliferation capacity was

analyzed by the proliferation marker PCNA (Fig 1A and 1B), an auxiliary protein of DNA

polymerase δ which peaks at the G1/S interface of the cell cycle [46]. We analyzed PCNA posi-

tive cells in sum of granule cell layer and polymorphic layer (Fig 2A) and observed a drastic

reduction of proliferating cells after hyperoxia exposure compared to normoxia control (Fig

1A and 1B). The application of DEX1 (Fig 1A1) and DEX5 (Fig 1A2) under normoxic condi-

tions showed a significant increase in PCNA positive cell counts and a reduction by DEX10

(Fig 1A3). DEX5 significantly improved the reduced proliferation rate under hyperoxia (Fig

1B2).

Dexmedetomidine improves the hyperoxia-induced delayed maturation

Hippocampal neurogenesis occurs in the dentate gyrus through the emergence of new neurons

from neural progenitor cells. The formation of new dentate granule neurons is a multifaceted-

regulated process [47] and the steps of differentiation and maturation are characterized by spe-

cific neuronal markers [47,48].

A neural progenitor marker expressed during development of CNS is nestin, a class VI

intermediate filament protein [49]. Hyperoxic conditions led to a significant reduction in nes-

tin-positive cell counts in the dentate gyrus (Fig 2B) and nestin expression (Fig 1C and 1D).

DEX1 (Fig 1D1), DEX5 (Fig 1D2), and DEX10 (Fig 1D3) enhanced nestin expression under

hyperoxic conditions and DEX5 treatment under normoxia showed an increase (Fig 1C1, 1C2

and 1C3).

A neuronal marker associated with differentiation and migration is polysialylated neuronal

cell adhesion molecule (PSA-NCAM), expressed in mitotically-maturing neurons [50].

PSA-NCAM expression after 24 hours exposure to 80% oxygen was reduced (Figs 1E, 1F and

2C). The application of DEX1 and DEX5 increased the cell number of PSA-NCAM-expressing

cells in the DG (Figs 1F1 and 2) under hyperoxic exposure. An enhanced PSA-NCAM cell

count was also confirmed under normoxic conditions for DEX1 (Fig 1E1) and DEX5 (Fig

1E2).

An excellent marker for postmitotic mature neurons is the neuron-specific nuclear protein

neuronal nuclei (NeuN) [51]. The number of NeuN-positive mature neurons (Fig 1G and 1H)

and NeuN cell counts (Fig 2D) were significantly reduced by hyperoxia. At this stage of neuro-

nal maturation DEX5 showed protective effects (Fig 1H2). DEX10 enhanced the hyperoxia-

reduced differentiation (Fig 1H3). Under normoxic conditions DEX1 (Fig 1G1) and DEX5

Dexmedetomidine and hyperoxia
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Fig 1. Paraffin sections of the hippocampus at postnatal day (P)7 of Wistar rats stained with A/B)

proliferating cell nuclear antigen (PCNA)/DAPI; double immunofluorescence staining with C/D)

Nestin/PCNA/DAPI; E/F) polysialylated neuronal cell adhesion molecule (PSA-NCAM)/PCNA/DAPI; G/

H) neuronal nuclei (NeuN)/PCNA/DAPI. Hyperoxia in neonatal rats decreased the proliferation positive cells

(PCNA+, green, A/B) and the expression of neuronal marker for neuronal progenitor cells (Nestin+, red, C/D),

immature neurons (PSA-NCAM+, red, E/F), and mature postmitotic neurons (NeuN+, red, G/H). Application

of DEX1 and/or DEX5 under hyperoxic exposure resulted in improved expression of neuronal markers and

increase of proliferation in granular cell layer and polymorphic layer of DG. DEX10 led to a reduction of cell

counts of NeuN in hyperoxic animals. Under normoxic conditions DEX1 and/or DEX5 upregulated PCNA and

the differentiation marker and DEX10 showed negative effects on PNCA and NeuN expression. All images

were taken at identical magnification (original magnification 200 x).

doi:10.1371/journal.pone.0171498.g001
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(Fig 1G2) increased the number of the NeuN-positive cells. The inhibitory effects of DEX10

could be detected even under normoxia (Fig 1G3).

Dexmedetomidine modulates neuronal transcriptional network

Hippocampal neurogenesis in the developing brain is a multistep-regulated process with

sequential expressed transcription factors (TF). The transcriptional network is arranged in

series that overlap and specific TF can be used to identify differentiation stages. An early TF of

proliferative neural progenitors is Pax6, a paired domain and homeodomain-containing tran-

scription factor. SOX2, a member of the SOXB1 subgroup (SOX 1–3) that is strongly expressed

in dividing cells and is located at the junction of the precursor cells to immature neurons. The

expression overlaps with up-regulation of Tbr2, a T-box transcription factor and a TF of mitot-

ically intermediate neurons. Postmitotic neurons are characterized by the expression of Tbr1

and Prox1, a homeobox transcription factor homologous to the Drosophila melanogaster gene

prospero, expressed in mature neurons (reviewed in [52]).

The early TF Pax6 is not affected by high concentrations of oxygen or by different DEX

concentrations (Fig 3A). Hyperoxia reduced the expression of SOX2 (Fig 3B). DEX1 and

DEX5 improved this effect on normoxic level, and DEX10 significantly enhanced the expres-

sion of SOX2 beyond. Under normoxic conditions both DEX1 and DEX10 led to an increased

expression of SOX2. The TF Tbr2 expression was also reduced by exposure to hyperoxia (Fig

3C) and here, only DEX5 significantly reversed this reduction. Under normoxia, there were no

changes in Tbr2 expression by DEX. No change in Tbr1 expression was observed under hyper-

oxia, but DEX5 (Fig 3D) and DEX10 still led to a significant increase. Dex10 induced this

increase even under normoxic conditions. Interestingly, Prox1 was changed by both, hyper-

oxia alone (Fig 3E) but DEX1 and DEX5 showed no improving effect on Prox1 expression.

DEX10 solely abolished this reduction. No changes were detected with DEX treatment during

normoxia. Gender-dependent differences were not determined.

Fig 2. Quantitation of A) PCNA+, B) Nestin+, C) PSA-NCAM+, and D) NeuN+ cell counts in sum of the

granular cell layer and polymorphic layer with DEX (1, 5, and 10 μg/kg) under hyperoxia (hatched grey

bars), hyperoxia alone (black bars), DEX under normoxic conditions (plain grey bars), and in

comparison to normoxia control group (100%, white bars). Data are expressed relative to the normoxia-

exposed control group as mean ± SEM of n = 5. The 100% values are for PCNA 258.9, for Nestin 354.1, for

PSA-NCAM 209.3, and for NeuN 333.3. * p<0.05, ** p<0.01, and *** p<0.001 versus control; ### p<0.001

versus hyperoxia (t-test, Bonferroni post hoc test after one-way ANOVA).

doi:10.1371/journal.pone.0171498.g002
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Dexmedetomidine improves neuronal plasticity under hyperoxia

Brain development is characterized by a succession of stages which are mediated through neu-

rogenesis, the processing of neuronal migration, maturation, synaptogenesis, and myelination.

A variety of internal and external factors can influence and regulate this process before the

neurons reach their correct site of action (reviewed in [53]). In this study, we examined various

plasticity factors on the mRNA level, which was confirmed at the protein level without excep-

tion (see Table 2). The transmembrane and adhesions protein neuropilin 1 (NRP1) can modu-

late the migration of neuronal progenitor cells [54,55]. Exposure to hyperoxia reduced

neuropilin 1 (Fig 4A and 4B) expression widely and was not improved by the administration

of DEX1. DEX5 and DEX10, however, significantly reversed this downregulation. NRP1 can

also act as the ligand binding subunit of the class 3 semaphorin proteins in neurons [55], with

SEMA3A and SEMA3F being the best studied semaphorins [56]. Exposure to hyperoxia

resulted in the reduced expressions of both semaphorin 3a (Fig 4G and 4H) and 3f (Fig 4I and

4J), which were increased by a single dose of DEX5 and DEX10. DEX1 revealed no protective

effect. Synaptophysin (SYP) is an integral membrane and pre-synaptic protein that is widely

Fig 3. Expression of mediators of transcriptional network is decreased in neonatal rats after

hyperoxic injury and upregulated with DEX. The relative mRNA expressions of transcription factors were

measured in rat brain homogenates with DEX (1, 5, and 10 μg/kg) under hyperoxia (hatched grey bars),

hyperoxia alone (black bars), DEX under normoxic conditions (plain grey bars), and in comparison to

normoxia control group (100%, white bars) by quantitative realtime PCR. A) There are no changes under

normoxia/hyperoxia with or without DEX for Pax6. B) Note the significant reduction of SOX2 under hyperoxia

and the increase with a single dose of DEX. Under normoxic conditions with DEX1 and DEX10 the mRNA

expression of SOX2 was increased significantly. C) Tbr2 mRNA expression was reduced under hyperoxia

and upregulated at DEX5. D) Hyperoxia has no influence on the mRNA expression of Tbr1, but DEX5 and

DEX10 triggered the expression above the normoxia level. The same effect was detected for DEX10 under

normoxia. E) There was a significant decrease for Prox1 mRNA expression under hyperoxia alone and with

DEX1 and DEX5, but also a significant up-regulation with DEX10. Data shown as mean ± SEM, n = 5 per

group. * p<0.05, ** p<0.01, and *** p<0.001 versus control; ## p<0.01 and ### p<0.001 versus hyperoxia (t-

test, Bonferroni post hoc test after one-way ANOVA).

doi:10.1371/journal.pone.0171498.g003
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used as a marker for synaptic density [57]. The negative effects of hyperoxia were also demon-

strated in SYP expression (Fig 4E and 4F). Again, only DEX5 and DEX10 had a protective

effect, while DEX1 had no effect on synaptophysin expression. Neuregulin 1 (NRG1) is a cell-

cell signaling protein involved in various stages of neural development [58,59] that showed

similar expression patterns (Fig 4C and 4D). Hyperoxia reduced the NRG1 expression, DEX5

and DEX10 prevented this reduction while DEX1 had no effect. No influence of DEX was

observed on the expression plasticity factors under normoxia.

Hyperoxia affects proliferation, maturation and plasticity

Neurogenesis is processed in sequential, overlapping stages (Fig 5A): proliferation, fate specifi-

cation, neuronal differentiation and migration, and synaptic integration [60]. The neuronal

progression is controlled by specific transcription factors [61] and characterized by the expres-

sion of neuronal markers [47].

Exposure to high concentrations of oxygen negatively affected the gene expression of these

relevant neuronal mediators and proteins as well as essential factors of neuronal plasticity (Fig

5B). The combined results show a significant negative regulation on the expression of neuronal

markers and cellular mediators of transcriptional network and neuronal plasticity after hyper-

oxic exposure compared to normoxic conditions. Dexmedetomidine improved these impair-

ments substantially and thus, DEX appears to be an adequate sedative with neuroprotective

effects during the phase of rapid brain growth.

Discussion

The present study demonstrates the neuroprotective properties of the α2-adrenoreceptor ago-

nist, dexmedetomidine, on neurogenesis and neuronal plasticity, as measured by differentia-

tion and proliferation of neuronal precursors in the dentate gyrus, in a rat model of neonatal

oxidative stress induced brain injury.

Neural stem cells (NSC) NSCs are the origin of neurons and glia during embryogenesis and

adult neurogenesis throughout life with the plasticity to give rise to new neurons, astrocytes,

and oligodendrocytes [44,62–64]. The developmental stages of neurons are well orchestrated

through a multistep process and characterized by specific neuronal markers and transcription

factors (see Fig 5A). Neuronal progenitor cells are born with a high proliferative capacity for

self-renewal and generation of new migrating neurons [47,48], and the developing rat brain,

around postnatal day six, mirror those dynamic process of human neurogenesis [62].

Table 2. Expression profile of plasticity factors in the acute hyperoxia model with dexmedetomidine.

hyperoxia - + + + + - + + + +

dexmedetomidine - - 1 μg/kg 5 μg/kg 10 μg/kg - - 1 μg/kg 5 μg/kg 10 μg/kg

mRNA protein

Nrp1 100±13.3 b27±5.3 a32±6.0 e106±10.7 d83±12.1 NRP1 100±6.1 b35±3.1 b36±2.5 e88±6.8 e81±6.9

Nrg1 100±8.4 b23±4.2 b32±4.0 d91±15.6 e91±11.1 NRG1 100±6.6 b35±3.7 b33±2.4 e85±9.1 e94±6.9

Syp 100±9.6 b23±3.9 a34±10.5 d85±12.2 e80±9.3 SYP 100±8.0 b25±1.8 b29±2.9 e107±7.8 e95±6.5

Sema3a 100±9.2 b29±1.5 b35±3.8 d87±12.6 d83±12.6 SEMA3A 100±5.7 b32±4.7 b39±3.2 e91±6.1 e88±4.3

Sema3f 100±4.7 b37±7.0 b37±3.7 d85±12.3 c81±11.6 SEMA3F 100±11.5 b40±4.9 b44±3.6 e92±5.6 e93±5.1

Data are expressed as % of control (CON) as mean ± SEM for mRNA and protein expression. n = 5/group, analyzed in identical animals.
a p < 0.01, and b p < 0.001 vs. normoxia; and c p < 0.05, d p < 0.01, e p < 0.001 vs. hyperoxia (Bonferroni post-hoc test after one-way ANOVA).

Nrg1/NRG1: neuregulin 1; Nrp1/NRP1: neuropilin 1; Sema3a/SEMA3A: semaphorin 3A; Sema3f/SEMA3F: semaphorin 3F; Syp/SYP: synaptophysin.

doi:10.1371/journal.pone.0171498.t002
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Fig 4. High oxygen concentration resulted in drastically reduced mRNA und protein expression of

factors for neurodevelopment and plasticity, and DEX administration reversed these effects. The

relative protein and mRNA expression of plasticity factors (Nrp1/NRP1, Nrg1/NRG1, Syp/SYP, Sema3a/

SEMA3A, and Sema3f/SEMA3F) were measured in brain homogenates with DEX application (1, 5, and

10 μg/kg) under hyperoxia (hatched grey bars), hyperoxia alone (black bars), DEX under normoxic conditions

(plain grey bars), and in comparison to the normoxia control group (100%, white bars) by quantitative realtime

PCR and Western blot. We detected in all plasticity factors a significant decrease under hyperoxic conditions

for A-E) mRNA expression and F-J) protein expression. The application of DEX5 and DEX10 under hyperoxia

resulted in a significant increase of expression. No changes were measured under normoxia with DEX. Data

shown as mean ± SEM, n = 5 per group. ** p<0.01, and *** p<0.001 versus control; # p<0.05, ## p<0.01 and
### p<0.001 versus hyperoxia (t-test, Bonferroni post hoc test after one-way ANOVA).

doi:10.1371/journal.pone.0171498.g004
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The neurotoxic effects of high oxygen concentrations on the development and survival of

neuronal cells in the immature rat brain has already been demonstrated in previous studies

[12,15,33]. We found a drastic reduction of proliferation capacity in the dentate gyrus of 6-day

old rats exposed to high oxygen but not reduction in the number of DAPI positive cells

[15,33].

Furthermore, oxidative stress resulted in a strong reduction of the expression of the neural

progenitor marker, nestin [49], of PSA-NCAM, expressed in mitotically-maturing neurons

[50], and NeuN, a marker for postmitotic mature neurons [51], pointing to a severe delay in

hippocampal neuronal maturation. Changes in the expression of proteins involved in neuronal

migration, axon growth and guidance after oxidative stress are well documented by Kaindl

and colleagues [65]. The oxgen-mediated impairment of neuronal proliferation and matura-

tion was largely inhibited by a single administration of DEX at low or intermediate concentra-

tions (1 and 5 μg/kg). In contrast, high-dose DEX (10 μg/kg) did not enhance proliferation

(PCNA+) or differentiation (PSA-NCAM+, NeuN+) after hyperoxic exposure. High-dose

DEX appeared to be toxic for mature (NeuN+) neurons in room air, while being protective for

nestin-positive progenitor cells under hyperoxic conditions. Nestin marks a niche of stem/

Fig 5. Generation of new hippocampal neurons in the developing brain and modulation with hyperoxia and

dexmedetomidine. A) Radialglia-like stem cells undergo different stages of processing with proliferation and generation of

neural progenitors that can further differentiate into mitotic and postmitotic neurons and finally into mature neurons. These

well-orchestrated processes are modulated through different intrinsic factors and it also characterized something like

transcription factors and neuronal markers. B) The results of our experimental animal study demonstrated impressively the

downregulation of neurogenesis- and plasticity-related factors by acute hyperoxia (red square) of the six-day old rat pups

compared to normoxia exposure (green rhombus). The α2 agonist dexmedetomidine at concentrations of 5 μg/kg (light blue

triangle) and 10 μg/kg (blue triangle) was significantly protective against oxidative stress in the process of neurogenesis and

neuroplasticity. GCL, granule cell layer; ML, molecular layer; NeuN, neuronal nuclei; Nrg1, neuregulin 1; Nrp1, neuropilin 1;

Pax6, paired box 6; PCNA, proliferating cell nuclear antigen; PL, polymorphic layer; Prox1, prospero homeobox 1;

PSA-NCAM, polysialylated neuronal cell adhesion molecule; Sema3a/f, semaphorin3a/f; SOX2, sex determining region Y-

box 2; SGZ, subgranular zone; Syp, synaptophysin; Tbr1/2, T-box brain gene 1/2.

doi:10.1371/journal.pone.0171498.g005

Dexmedetomidine and hyperoxia

PLOS ONE | DOI:10.1371/journal.pone.0171498 February 3, 2017 12 / 20



progenitor cells with the capacity for proliferation and differentiation [66], being expressed in

cells with early neural crest lineage that can differentiate into neurons or glia cells [67]. Thus,

high-dose DEX appears to be protective in immature cells (Nestin+) but not in intermediate

(PSA-NCAM+) and mature neurons (NeuN+).

Following various CNS injuries, a subpopulation of reactive astrocytes express several stem

cell-associated proteins, such as SOX2 and nestin [68]. SOX2 is thought to be critical for NSCs

proliferation and differentiation and SOX2-positive cells generate a subpopulation of undiffer-

entiated, dividing cells in the subgranular zone of adult dentate gyrus with multipotent proper-

ties [69]. The administration of DEX (10 μg/kg) under hyperoxia resulted in highly increased

RNA expression of the transcription factor SOX2, which could contradict the hypothesis that

only neuronal differentiation is affected by high dexmedetomidine concentrations. This is

accompanied by the observation that at this concentration no protective effect was observed

for the intermediate (PSA-NCAM+) and mature neurons (NeuN+).

The development of granule cells in the hippocampus are controlled and regulated by spe-

cific transcription factors at different stages of neuronal differentiation [62]. The sequential

overlapping expression of transcription factors Pax6, SOX2, Tbr2, Tbr1, and Prox1 correlates

with the stage-specific expression of differentiation neuronal markers nestin, PSA-NCAM,

and NeuN [52]. It appears that Pax6 and Tbr1, transcription factors from radialglia-like/pro-

genitor cells and the immature postmitotic neurons, were not influenced by hyperoxia. How-

ever, SOX2 and Tbr2, transcription factors from undiffentiated and mitotic immature

neurons, as well as Prox1, a transcription factor from mature neurons, were reduced under

hyperoxia. The delayed neuronal maturation is probably mediated by the reduced expression

of these transcription factors [52]. Similar to the neuronal markers, treatment with DEX in

hyperoxia-exposed rats rescued the expression of the transcription factors studied.

Levels of neurogenesis can be modulated by various factors, such as environmental enrich-

ment as a positive regulator or diversity of stress as a negative regulator [15,70]. The essential

neurogenic zone is located in the region below the granule cell layer in the dentate gyrus of the

hippocampus, constituting a life-long supply of new neural progenitor cells that differentiate

to mature neurons and glia [47]. These cells, both morphologically and physiologically similar,

migrate to the granule cell layer and are functionally integrated with the resident neurons in

the existing networks [71]. The newly formed progenitor cells have a high plasticity potential

and may switch between a glial and neuronal phenotype [72,73].

In addition to changes in neuronal markers and transcription factors, our experimental

hyperoxic conditions significantly altered the investigated plasticity-associated genes expres-

sion at both the RNA and protein levels. Specifically, rat pups that experienced high oxygen

exposure expressed significantly less Nrg1, a pleiotropic growth and differentiation factor [58],

class III semaphorins a/f, with essential functions in patterning of neuronal projections [74],

NRP1, a receptor of semaphorin 3a [75], and SYP, a pre-synaptic membrane protein essential

for neurotransmission in hippocampal neurons [76], compared to normoxic conditions. In

fact, administration of DEX (5 μg/kg and 10 μg/kg) rescued expression of plasticity-associated

genes in hyperoxic animals while DEX treatment in controls had no effect. Few changes in

overall brain structure or function have been exhibited in Syp knockout mice and major

changes in the regulation of neurotransmitter release have been displayed in synaptogyrin/Syp

double knockout mice. In particular, short-term and long-term synaptic plasticity was

impaired [77]. In a rat traumatic brain injury model, associated with delayed neuronal dys-

function, expression of synaptic proteins was downregulated and reserved by resveratrol treat-

ment. Feng et al. postulated that this protection could be associated with the up-regulation of

Syp and the suppression of neural autophagy [78]. An oxidative stress-associated diabetic

model showed a reduced Syp protein level [79] and this deficiency in Syp induced a decrease

Dexmedetomidine and hyperoxia
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in synaptic vesicle, which interfered with the release of neurotransmitters and the synaptic net-

work [80]. Neuroregulins acted as ligands for the epidermal growth factor receptors [81]. An

activation of these receptors by NRG1 led to regulation of cell proliferation, migration, and dif-

ferentiation in different neural systems and promotion of neuron-primed elongation of radial-

glia and neuronal migration during development [81]. NRG1 deficiency led to disrupted

hippocampal plasticity and imbalanced excitatory and inhibitory neurotransmission [82].

Agarwal et al. proposed that a balanced NRG1 level is required for synaptic neurotransmission

[83]. In vitro studies have shown that recombinant NRG1 stimulated neurite outgrowth in pri-

mary neurons [84] and neural cell lines [85], indicating that NRG1 is neurotrophic and neuro-

protective [86]. Semaphorins are linked to different cellular processes, including proliferation

and migration [87], and implicated in synaptic and structural plasticity, neurotransmission,

and neurological diseases [88–90]. NRP1 is represented as receptor of SEMA3A and presented

in all neuronal populations known to respond to SEMA3A [75]. Hippocampal accumulation

of SEMA3A in early stages of Alzheimer´s disease suggested a link to neurodegenerative pro-

cesses [91].

Very preterm infants have an increased risk for developmental problems including cognitive

deficits and behavior disorders [21] that may reflect altered neuronal plasticity. It is known

from age-related studies that oxidative stress resulted in cognitive decline [92] and can be

improved with neurotrophic factors [93]. Thus, it seems likely that neuroprotection with DEX

in an oxidative stress model of the neonatal rat is not only due to improvement of neuronal

maturation and differentiation, but apparently also to the preservation of neuronal plasticity. In

an isoflurane-induced injury model in 7-day old rats, DEX prevented the neurocognitive defi-

cits [94]. Treatment with DEX abolished the intracerebral hemorrhage-induced impairment of

short-term and spatial learning memory [95]. Qian et al. described an improvement in early

postoperative cognitive dysfunction in aged mice with DEX [96]. Tachibana and collegues

investigated the long-term neurological consequences of neonatal administration of DEX and

showed that DEX preserved hippocampal synaptic plasticity and synaptic transmission later in

life [97]. In our previous study, DEX provided against toxic oxygen induced inflammation and

cell death and showed anti-inflammatory, anti-apoptotic, and anti-oxidative properties [33].

Hippocampal development displays important differences between male and female sub-

jects (reviewed [98]). Males have also a higher incidence for prematurity-related mortality and,

neurodevelopmental disorders. [99]. Smith and colleagues demonstrated increased behavioral

impairment in male, as opposed to female rodents, in a neonatal hypoxia–ischemia model

[100], while histopathological damage did not differ by sex. Resilience to noxious conditions

may be mediated the presence or absence of sex hormones in the developing brain [101,102].

We failed to find any differences between male and female animals in this study, although it is

possible that the use of a larger sample size may have revealed some subtle differences.

In summary, DEX demonstrated neuroprotective properties in our oxidative stress injury

model in the developing rat brain, preserving postnatal neurogenesis and neuronal plasticity.

DEX increased proliferative capacity of mitotic cells, leading to ultimately higher cell counts of

mature neurons, without affecting apoptosis rate in control animals. In vivo investigations

demonstrated that postnatal DEX did not lead to persisting learning deficits, affected the devel-

oping brain, or impaired hippocampal synaptic plasticity [97,103]. Nevertheless, sedating DEX

concentrations in adult rats have been associated with altered hippocampal synaptic plasticity

[104]. Given the high degree of vulnerability of the developing brain, no potentially beneficial

drug can be expected to without side effects.

There are several limitations of this study pointing to areas of future investigations. First,

the injury model used is a model of acute oxygen toxicity. Preterm children usually require a

longer period of supraphysiological oxygen concentrations. Second, we studied primarily the
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situation of anti-inflammatory and neuronal neurogenesis and the plasticity-promoting effect

of DEX immediately after acute oxygen exposure. Continuing studies at later survival time

points would be important as well as functional/behavioral measurements and identifications

of morphological changes of neurons (3D reconstruction) in terms of plasticity-promoting

effect of DEX. Third, the tested concentrations of dexmedetomidine here are based on clinical

concentrations that have been used in children (1 μg/kg) [105] or shown to be mediate neuro-

protective effects in animal experiments (5 μg/kg, 10 μg/kg) [97,106] but DEX concentrations

in blood or brain tissue were not measured.

In ventilated sick preterm infants, the needs for supplemental oxygen and sedative drugs

often coincide. In this setting, DEX appears to be a promising candidate that warrants further

investigations.

Conclusion

The role of DEX has been an interesting topic of neonatological and pediatric anesthetic

research in the last years. To define the neuroprotective effects of DEX we investigated the

implications of DEX in an oxidative stress model of the developing rat brain with a focus on

hippocampal neurogenesis as well as neuronal plasticity. In conclusion, high oxygen and thus

oxidative stress caused a delayed differentiation and maturation of neuronal progenitors,

reduced proliferation capacity, and impaired neuronal plasticity during the vulnerable stage of

brain developing. This can be significantly attenuated by pre-treatment with DEX. DEX under

atmospheric conditions improved neurogenesis and enhanced neuronal transcription factor

expression. Clinical research into the benefits of DEX on brain development and neurodegen-

eration is warranted and should include long-term neurodevelopmental follow-up while

experimental work should attempt to elucidate the underlying mechanisms by which DEX

affects neuronal plasticity in detail.
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