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Here, we analyse the behaviour of the higher order standardised moments of financial time series when we 
truncate a large data set into smaller and smaller subsets, referred to below as time windows. We look at the 
effect of the economic environment on the behaviour of higher order moments in these time windows. We 
observe two different scaling relations of higher order moments when the data sub sets’ length decreases; one 
for longer time windows and another for the shorter time windows. These scaling relations drastically change 
when the time window encompasses a financial crisis. We also observe a qualitative change of higher order 
standardised moments compared to the gaussian values in response to a shrinking time window. Moreover, 
we model the observed scaling laws by analysing the hierarchy of rare events on higher order moments. We 
extend the analysis of the scaling relations to incorporate the effects these scaling relations have upon risk. We 
decompose the return series within these time windows and carry out a Value-at-Risk calculation. In doing so, 
we observe the manifestation of the scaling relations through the change in the Value-at-Risk level.
1. Introduction

In many financial settings, the behaviour of market data is analysed 
to better understand: the logarithmic price change, [1, 2, 3, 4], the his-

toric or implied volatility, [5, 6] or the actual price behaviour [7, 8, 
9]. Nevertheless, in [10], the higher order moments were used to study 
the applicability of certain Generalised AutoRegressive Conditional Het-

eroskedasticity (GARCH) models for mimicking price dynamics. The use 
of higher order moments within financial modelling is well established, 
[11]. By investigating the higher order moments we can get an insight 
to the distribution of price change and how it varies over time. By do-

ing this, we can evaluate the hypothesis that rare-events originate from 
huge volatility shocks, as such this phenomenon is likely seldom seen 
in short time windows and is much more likely in long time windows. 
This observation helps us to understand the behaviour of higher order 
central moments in different time windows.

The higher order moments are used in this investigation due to their 
ability to capture the general aspects of the distribution of price change, 
[12, 13, 14]. The higher order moments show the quantity of outliers 
within the distribution, [11]. If the fourth order standardised statistical 
moment (also called kurtosis) of empirical data sets is larger than 3, we 
have a leptokurtic distribution. This manifests itself in a higher prob-
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ability of getting an outcome that is much larger or smaller than the 
mean. Such a behaviour is also known as a rare-event. Therefore, we 
can study the properties of the time series without the need for many 
different metrics.

Higher order moments are used in various applications for analysis 
of financial assets and derivatives. As is well known, if all moments of a 
stochastic process are known, the probability distribution of a random 
variable can be reconstructed. Therefore, the more moments known, the 
better the estimation of the distribution we can obtain. In the case of 
option and derivative pricing, [15, 16, 17], the Gram-Charlier Type A 
expansion, which uses higher order moments, is used to recover the 
probability distribution of the process to enable accurate pricing of 
derivative instruments. Furthermore, in deducing an investor’s utility 
function within the Markowitz mean-variance portfolio theory, a Taylor 
expansion of the utility function is needed to gain accurate inferences 
of the risk an investor is willing to accept, [18]. To increase accuracy of 
such a task, the evaluation of higher order statistical moments is criti-

cally important. Additionally, higher order moments (third and fourth 
order standardised moments) have been used within the decomposition 
of financial time series to investigate the extent of interdependence be-

tween different assets. In some cases, for example [19], the dynamics 
of higher order moments is considered as a measure of the level of risk 
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Fig. 1. The truncation method for a time series within this paper. We take a long time series, labelled here as 100%. We start by taking 1% of its length and increment 
up by 0.1% to its original length, 100%. For the analysis we undertake here, the longest time series is 18-years. In this figure, we label the 1%, 10%, 50% and 75%
time lengths to show how the time series lengths increases.
being shared among asset classes. In [19], the price dynamics are con-

sidered to elucidate the dependence of the higher order moments of 
different assets for the carbon and energy markets within the EU ETS. 
As can be seen, to accurately represent complex phenomena within fi-

nancial settings, a proper description and understanding of the higher 
order moments can be instrumental.

It has been stated by many researchers, [20], that the number of 
rare-events is inextricably linked to the level of risk within a process. 
This indicates that we can use the higher order moment analysis as a 
tool to indicate changes of a financial asset’s risk. It has been shown 
that a very effective methodology for measuring risk is Value-at-Risk 
(VaR), [21]. Therefore, we will use VaR to look at the link between the 
higher order moments and the risk within the financial data series.

The paper is organised as follows; in section 2.1, we introduce the 
scaling relations in (Γ4, Γ6) space. In section 2.2, we consider the eco-

nomic periods we wish to analyse whilst presenting the results for the 
empirical data. In Section 2.3, we compare the higher order standard-

ised moments obtained from the empirical data with the corresponding 
moments for the gaussian distribution. Section 3 shows that scaling rela-

tions are linked to the hierarchy of rare events and the exponent of price 
power law distributions. In addition, we develop an approach linking 
the obtained scaling with stock risk management inspired by previous 
studies, [20, 21, 22, 23, 24, 25], where higher order moments were used 
for risk assessment. In section 5, we highlight that the change in the de-

pendence of the Value-at-Risk on the time window duration occurs at 
the same values when we observe changes of the scaling relations of 
higher order moments. Finally, section 6 concludes.

2. Empirical data processing

2.1. Estimation of higher order moments from empirical data

Throughout the paper, we will consider time windows of 𝑁 trading 
days and analyse the logarithm of stock returns defined as:

𝑥𝑖 = ln
(

𝑦(𝑡0 + 𝑖𝛿𝑡)
𝑦(𝑡0 + (𝑖− 1)𝛿𝑡)

)
(1)

where 𝑡0 being the date of the first trading day within the studied win-

dow, 𝑦(𝑡0 + (𝑖 − 1)𝛿𝑡) is the closing price on the 𝑖th trading day with 
1 ≤ 𝑖 ≤𝑁 and 𝛿𝑡 referring to the time between trading days. Using the 
logarithm of stock returns, we estimate the nth order standardised mo-

ments:

Γ𝑛(𝑡0,𝑁) =
⟨(𝑥− 𝜇)𝑛⟩
⟨(𝑥− 𝜇)2⟩ 𝑛2 (2)

where,

⟨(𝑥− 𝜇)𝑛⟩ = 1
𝑁

𝑁∑
𝑖=1

(𝑥𝑖 − 𝜇)𝑛 (3)

and,
2

𝜇 = 1
𝑁

𝑁∑
𝑖=1

𝑥𝑖. (4)

We analyse the dependence of Γ𝑛(𝑡0, 𝑁) on both number of trading days 
𝑁 in the window and the absolute time 𝑡0 with a goal to observe and 
analyse empirical laws and their evolution during the economic crisis. 
In addition, we compare Γ𝑛(𝑡0, 𝑁) for different 𝑁 and 𝑛 = 2, 4, 6, 8, 10, 12
with the corresponding values of gaussian standardised moments.

To investigate the scaling relations of higher order standardised mo-

ments, we truncate an 18 year (6th October 2000 to 6th October 2018) 
time series. To do this, we take the long time series and segment it to 
a length of 1% of the original time window’s length. We then gradually 
increase the time window by 0.1% of the original time series’ length up 
to 100% of the whole time series (18 years). This corresponds to around 
4536 days. We therefore will gain 1000 time series out of the original 
18 year time series. The schematics of this truncation method can be 
seen in Fig. 1.

By calculating the 𝑋-th and 𝑌 -th order statistical moments of the 
empirical data in all 1000 windows (see the method described above), 
we are able to present the data in (Γ𝑋 , Γ𝑌 ) space. We will use different 
orders, 𝑋 and 𝑌 , of the standardised moments and search for empiri-

cal relationships between them. For example, for relations between the 
fourth and sixth order moments, we will use 𝑌 = 6 and 𝑋 = 4. To anal-

yse the behaviour of the market data in response to the truncation of 
the time series we propose to use scaling relations:

Γ𝑌 (𝑡0,𝑁) =𝐴Γ𝑋 [𝑡0,𝑁]𝐵 (5)

where A and B are constants. In logarithmic scale this reduces to a 
straight line:

ln(Γ𝑌 ) = 𝐵 ln(Γ𝑋 ) + ln(𝐴). (6)

Below, we will refer to the parameter 𝐵 as either the scaling exponent 
or the logarithmic gradient.

Fig. 2 uncovers two different scalings for four banking companies. 
The first relation, shown in red for all companies, is the scaling relations 
for the longer time windows. However, we discover a different scaling 
behaviour with different exponents 𝐵 for shorter time windows. Such 
a distinct two scaling behaviour has been observed for all companies 
studied. We also observe similar scaling relations for other standardised 
moments. For example, in Appendix B, we present the scaling relations 
for the fourth Γ4 and eighth Γ8, as well as the fourth, Γ4 and tenth Γ10. 
Since the odd moments can change sign, we can analyse if they still 
exhibit the proposed power law (5) dependence only within the interval 
where the odd order moments do not change sign and by calculating 
their absolute value if necessary. This significantly restricts the number 
of considered time windows. For example, in Appendix B we present our 
analysis for the odd order standardised moments, Γ3 and Γ5, but only 
for time windows greater than 2000 events. Extending such analysis to 
odd order moments, we also see the double scaling relations evident for 
the empirical data (see below).
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Fig. 2. Here, we show the data points on the (ln(Γ4), ln(Γ6)) phase space and the two scaling relations discussed in the text. The black line shows the scaling relation 
for the shorter time windows, whilst the red line shows the scaling relation for the longer time windows. In panel (a), we show Lloyds Bank, (b), Barclays Bank, (c), 
Bank of America and (d), HSBC.

Fig. 3. The timeline of time series used for the three periods of economic cycles and the truncation data, [10].
2.2. The impact of economic environments upon scaling relations

We now turn our attention to the effect of the economic environment 
on the scaling relations. To investigate this we use the economic periods 
set out in Fig. 3. Here, we have a pre-crisis period, 2005, before the 
financial crash, a crisis period, 2008 and then the post-crisis period, 
2011. For completeness, we investigate the succeeding years of 2014 
and 2017, to see the effect the financial crisis has upon the scaling 
relations over a prolonged period of time.

The scaling relations for these periods are worked out using the same 
method as described above for a 252 day time series, however, we do 
not consider time windows shorter than 25 days, that is we ignore time 
windows with very small statistics. The results can be found in Table 1, 
where  is the 𝑙𝑛(Γ6) and  is the ln(Γ4) for the longer window scaling. 
It is clear from the scaling relations found, the economic period has a 
very vivid effect upon the companies behaviour.

For instance, if we analyse Lloyds Bank. The scaling relation for the 
pre-crisis period, has a logarithmic gradient 𝐵 = 21.2, whereas, within 
and just after the crisis period the exponent, 𝐵 increases drastically. Af-
3

ter the crisis period, the exponent, 𝐵, decreases to a lower level than the 
pre-crisis period. This indicates, the long term impact of the financial 
crash. As we do not see this behaviour of the exponent in other security 
types, we can infer that this behaviour is due to these companies being 
directly affected by the financial crash of 2008. The fact we have persis-

tence of this effect can be seen as an indication that the financial crisis 
period has long run dynamical impacts upon the market price of these 
companies. The same behaviour, however, can be seen for the Gold scal-

ing relations. We see an increase of the exponent, 𝐵, in response to the 
financial crisis, followed by the exponent returning to a level similar to 
the pre-crisis environment. However, the striking increase of logarith-

mic gradient, 𝐵, followed by its post-crisis drop observed for banking 
companies, has not been found in non-banking sectors of the economy. 
For example, GSK (a pharmaceutical company) and Rio Tinto (a metals 
and mining corporation) do not have such a distinguished behaviour. 
In the case of Rio Tinto, the gradient stays relatively static through-

out the time, whereas, GSK has an increase in 2014, which could be 
attributed to the bribery scandal that encompassed the company from 
2013 to 2014, [26]. It can therefore be said that the financial crisis has 
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Table 1. Here, we present the scaling relations for the longer time 
horizons for several companies of different economic environments. 
 , represents the logarithm of the sixth order standardised moment 
and  the logarithm of the fourth order standardised moment, with 
the coefficient in front of  being the logarithmic gradient, 𝐵.

Company 2005 2008 2011 2014 2017

Barclays  =
7.4 −
9.8

 =
31.3 −
112.4

 =
12.1 −
25.4

 =
12.6 −
23.8

 =
8.3 −
12.4

Bank Of 
America

 =
6.7 −
8.5

 =
18.7 −
45.4

 =
24.8 −
66.4

 =
9.6 −
14.5

 =
15.7 −
29.8

Gold  =
9.3 −
15

 =
28.3 −
87.2

 =
10.5 −
15.9

 =
23.4 −
68.4

 =
12.4 −
25

GSK  =
6.4 − 3

 =
11.7 −
20.2

 =
13.2 −
25.8

 =
33 −
70.6

 =
22.12−
49.9

Lloyds  =
21.2 −
44

 =
35.2 −
172.9

 =
12.3 −
23.2

 =
11.4 −
18.2

 =
8.9 −
11

Rio Tinto  =
9.8 −
14.8

 =
14 −
27.1

 =
10.7 −
19

 =
9.3 −
14.6

 =
11 −17

more of an effect upon the banking companies, as we would expect due 
to the nature of the cause of the crisis period.

2.3. Higher order standardised moments in empirical data

Here, we compare the higher order standardised moments defined 
by equation (2) for 𝑛 =4, 6, 8, 10 and 12 and compare them with the 
corresponding gaussian standardised moment values listed in Fig. 4. 
The equation for this ratio, 𝑅𝑛, is shown below:

𝑅𝑛 =
Γ𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑛

Γ𝑛
. (7)

The results for various companies and their market data can be seen 
in Fig. 4. We also show ratios (7), for shorter time windows, namely, 
3 years and 6 months. The reason for the use of a 3 year time win-

dow is to isolate the crisis period (2007-2009), which is around 3 years. 
Therefore, in taking a 3 year window, we are able to stop leakage of 
the effects of a crisis period into the pre- and post-crisis periods. This 
helps us to investigate the nature of these periods without mutual in-

terference. Moreover, we select the short 6 month period due to the 
reliability of statistics. 6 months, represents around 126 events. We note 
that for a gaussian statistics, the error scales as 1∕𝑛 where 𝑛 is the num-

ber of observations, [27]. Therefore, the statistical error for 6 month 
time window is about 1%. The shorter time window can result in higher 
fluctuations, justifying our choice. The results of which can be seen in 
Fig. 5. The values of the higher order standardised moments of the em-

pirical financial series for the 3 years time window can be found in table 
A.4, in Appendix A.

The evolution of higher order moments of the empirical financial 
series is quite remarkable. When we take a long time series, either 
the 18 years or the 3 years (Figs. 4 or 5a), the ratio of gaussian to 
empirical standardised moment is below 1, which we can expect for 
leptokurtic distributions. When we instead truncate this time series to 6 
months, Fig. 5b, we get some empirical higher order standardised mo-

ments that are now less than that of the gaussian values. Moreover, we 
uncover the decay of the ratios as a function of its order for long se-

ries (18 and 3 years) which unexpectedly start to grow or even have a 
non-monotonic behaviour for shorter time windows (6 months). Com-

paring the crisis and post-crisis period behaviour, we have observed 
that depending on the economic environment, different companies ex-

hibit intriguing non-monotonic behaviour shown. In the crisis period 
(Fig. 5d), the DowJones and the Bank of America time series exhibit 
such behaviours, whereas, for the post-crisis period, it is the Lloyds 
Bank time series that shows such a feature. A possible reason for this 
4

Fig. 4. The standardised moment ratios for varying orders, 𝑛, see Appendix A, 
for the gaussian standardised moments divided by the empirical values. Here, 
we have analysed the 18 year time series for Bank of America, Barclays Bank, 
Citi Bank, the DowJones Index, GSK, HSBC and Lloyds Bank.

behaviour in the DowJones and the Bank of America may be an elucida-

tion to the financial crisis, whilst in Lloyds Bank could be attributed to 
the fact that the Government sold its remaining stake in the bank close 
to this period.

3. GARCH simulations

To understand the origins of these different scaling relations we sim-

ulate a GARCH-normal(1,1) model and a GARCH-double-normal(1,1) 
model, used before in, [10, 28, 29]. We first simulate a GARCH 
model with a given conditional distribution and a given set of time-

independent parameters for a large number of events. Once this has 
been done, we then truncate the long time series into subsets of the 
whole time series. This truncation is the same as described in sec-

tion 2.1. For each time series, we calculate the fourth and sixth order 
standardised moments and plot ln(Γ6) versus ln(Γ4), see Fig. 6. In or-

der to simulate events, the dynamic equation for 𝜎2
𝑡
, the conditional 

variance, is used:

𝜎2
𝑡
= 𝛼0 + 𝛼1𝑥2𝑡−1 + 𝛽1𝜎

2
𝑡−1 (8)

where, 𝑥𝑡 = 𝜒𝑡𝜎𝑡, and 𝜒𝑡 is an independent identically distributed ran-

dom variable with standard deviation equal to 1 and a mean of zero. 
For the Normal model, 𝜒𝑡 is described by a gaussian distribution. We 
use the following parameter values for the GARCH-normal(1,1) model; 
𝛼0 = 1 × 10−5, 𝛼1 = 0.3 and 𝛽1 = 0.3. In Fig. 6a, we see the scaling 
laws for the GARCH-normal(1,1) model. We can see one scaling rela-

tion pertain to smaller time windows, shown in red with an equation 
 = 5.42 − 3.77 and another for longer time windows, shown in yel-

low with an equation,  = 11.28 − 11.79. We only see two distinct 
scaling relations for a very limited number of parameter choices. When 
we instead use a GARCH-double-normal(1,1) model we recover the two 
scaling relations in a much wider parameter region, which results in a 
better fit to the scaling laws. For the double normal GARCH model, the 
distribution of 𝜒𝑡 has the form:

𝑝(𝑥) = 𝑎

𝜎1
√
2𝜋
𝑒
−𝑥2∕(2𝜎21 ) + 𝑏

𝜎2
√
2𝜋
𝑒
−𝑥2∕(2𝜎22 ) (9)

We assign the following values for the parameters of the distribution 
(9); 𝑎 = 0.9818, 𝑏 = 0.0182, 𝜎21 = 0.833 and 𝜎22 = 9.986. We simulate, a 
return time series and truncate the series in the exact manner that has 
been undertaken for the empirical data above. To do this, we use the 
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Fig. 5. The ratios for the gaussian higher order standardised moments to the empirical ones. Here we have analysed, the 3 year, panel (a), and the 6 month, panel 
(b), time series for the Bank of America, Barclays Bank, Citi Bank, the DowJones Index, GSK and Lloyds Bank. We consider time windows from 6th October 2015-6th 
October 2018, panel (a), and 6th April 2018-6th October 2018, panel (b). Remarkably, for some companies’ 6 month time series the ratio of gaussian to empirical 
standardised moments is above one in contrast to results shown in Fig. 4 and 5a. In addition, Lloyds Bank (purple curve) shows a non-monotonic behaviour as 
standardised moment order increases. Panel (c), shows the same for the crisis period (2007-2009, inclusive). We see a decay with respect to the increasing 𝑛. Panel 
(d), shows the higher order standardised moment ratios for the 6 month time series from the start of the financial crisis, 1st January 2007-1st July 2007.
following GARCH parameter values for the double gaussian model; 𝛼0 =
1𝑒 − 5, 𝛼1 = 0.5 and 𝛽1 = 0.

The results for the GARCH simulation of studied scaling laws can be 
seen in Fig. 6b. Here, we see the two scaling relations for the differ-

ent time scales. For the shorter time windows (the red line), we have a 
straight line equation of;  = 6.07 − 3.68 and for the longer time hori-

zons (the yellow line), we have the equation;  = 8.31 −5.79. There is 
a clear difference in the scaling relations of the simulated data and the 
empirical data, namely in the simulated data the logarithmic gradient, 
𝐵, for the shorter time window is lower than the longer time window. 
Something that is not mirrored in the empirical data. Now, if we change 
the parameters 𝛼1 and 𝛽1 we will be able to highlight how the depen-

dence on the past level of return and past level of volatility impacts 
the scaling relations. If we increase 𝛽1, to 0.8 and reduce 𝛼1 to 0.1, we 
see that the longer time horizon scaling relation is still steeper than the 
shorter one. The same is true when we increase 𝛼1 to 0.6 and reduce 𝛽1
to 0.1. However, we do see a connection of the value of 𝛼1 to the value 
of the logarithmic gradient for the scaling relations. When we increase 
𝛼1, the logarithmic gradient, 𝐵, also increases. That is to say, the more 
of a dependence the past return has on the future volatility level, the 
larger the value of the logarithmic gradient, 𝐵.
5

4. Hierarchical analysis of rare-events

In order to analyse the behaviour of the higher order moments 
of the logarithm of price returns in the truncated time windows hav-

ing 𝑁 trading days, we note that the rare-events whose probability is 
extremely low, will not contribute to the higher order moment calcu-

lation within this window. Indeed, the probability to observe tradings 
with returns |𝑥| > 𝑥𝑊 occurring within 𝑁 days can be evaluated as 
𝑃𝑁 (𝑥𝑊 ) = 2𝑁 ∫ ∞

𝑥𝑊
𝑝(𝑥)𝑑𝑥 with a probability distribution, 𝑝(𝑥), of the 

logarithm of price returns (for simplicity we assume 𝑝(𝑥) to be an even 
function). If 𝑃 ≪ 1, we can safely ignore such events and evaluate the 
higher order moments within interval |𝑥| < 𝑥𝑊 , where 𝑥𝑊 can be esti-

mated from the condition that 𝑃𝑁 (𝑥𝑊 ) = 𝐶 ∼ 1, when 𝐶 is a constant. 
This allows us to evaluate the higher order moments for a 𝑁 -days trad-

ing window, using the following equations:

2𝑁

∞

∫
𝑥𝑊

𝑝(𝑥)𝑑𝑥 = 𝐶

⟨𝑥𝑛⟩ = 2

𝑥𝑊

∫
0

𝑥𝑛𝑝(𝑥)𝑑𝑥 (10)

The empirically observed two distinct scaling laws suggest that the 
probability distribution should have two different functional behaviours 
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Fig. 6. In panel (a), we show the simulation results for a GARCH-normal(1,1) model, when we take the parameter values; 𝛼0 = 1𝑒 − 5, 𝛼1 = 𝛽1 = 0.3. We see two 
distinct scaling relations with respect to the sample size. We see one scaling relation when we take longer time windows, shown by the yellow line, with equation; 
 = 11.3 − 11.79, and another when we take smaller time windows, shown in red, with an equation  = 5.42 − 3.77. In panel (b), we show the simulation results 
for a GARCH-double-normal(1,1) model. Here, we see a scaling relation for the shorter time windows, shown by the red line, given by the equation,  = 6.07 −3.68
and one for the longer time windows, shown by the yellow line, given by the equation,  = 8.31 − 5.79.
at large 𝑥 resulting in a hierarchy of rare-events in two groups: rare-

events and very rare-events. This can be done using a usual Paerto tail 
distribution whose exponent changes from 𝛾1 to 𝛾2 at certain |𝑥| = 𝑥1:

𝑝(𝑥) =

⎧⎪⎪⎨⎪⎪⎩

0 if |𝑥| < 𝑥0
𝐴
|||| 𝑥𝑥1 ||||

−𝛾1
if 𝑥0 < |𝑥| < 𝑥1

𝐴
|||| 𝑥𝑥1 ||||

−𝛾2
if |𝑥| > 𝑥1.

(11)

Note that our analysis below does not depend on the behaviour of a 
probability density at small values of |𝑥|, thus we assume that 𝑝(𝑥) = 0
for |𝑥| < 𝑥0, for simplicity of our estimations. Substituting equation (11) 
into the set of equations (10) and restricting our analysis to 3 < 𝛾1 < 5
and 3 < 𝛾2 < 5, we derive the short-window scaling relations for 𝑥0 ≪
𝑥𝑊 ≪ 𝑥1:

𝑥𝑊 =𝑅1𝑁
1

1−𝛾1 ,

Γ4 =𝐾4(𝑥𝑊 )5−𝛾1 ,

Γ6 =𝐾6(𝑥𝑊 )7−𝛾1 (12)

and the long-window scaling relations for 𝑥1 ≪𝑥𝑊 :

𝑥𝑊 =𝑅2𝑁
1

1−𝛾2

Γ4 =𝑄4(𝑥𝑊 )5−𝛾2 ,

Γ6 =𝑄6(𝑥𝑊 )7−𝛾2 (13)

where 𝑅1, 𝑅2, 𝐾4, 𝐾6, 𝑄4, 𝑄6 do not depend on 𝑁 . When deriving the 
above equation we keep only the main contributions to the integrals, 
for example, approximating (𝑥0)3−𝛾1 −(𝑥𝑊 )3−𝛾1 ≈ (𝑥0)3−𝛾1 and (𝑥𝑊 )5−𝛾1 −
(𝑥0)5−𝛾1 ≈ (𝑥𝑊 )5−𝛾1 .

From the above set of equations we derive two different scaling laws, 
these laws have been observed in the empirical data:

Γ6 =𝐿1Γ
7−𝛾1
5−𝛾1
4 (14)

which is valid for short time windows 𝑁 ≪ (𝑥1∕𝑅1)𝛾1−1, and:

Γ6 =𝐿2Γ
7−𝛾2
5−𝛾2 , (15)
4

6

which is valid for long time windows, 𝑁 ≫ (𝑥1∕𝑅2)𝛾2−1. Where, 𝐿1 and 
𝐿2 are constants. In order to reproduce the empirical observation that 
the shorter time windows have a steeper gradient in the (𝑙𝑛(Γ4), 𝑙𝑛(Γ6)) 
space we have to request that 𝛾1 > 𝛾2. This means, the steeper the gra-

dient in this higher order moment space, equates to a faster decay in 
the probability distribution with respect to price change, 𝑥. Using this 
analysis, we are able to see that depending where we take this trunca-

tion, 𝑥𝑊 , we will potentially expose ourselves to a higher level of risk to 
these rare-events. This is due to the truncation determining the forecast-

ing horizon we are interested in. Therefore, we can see that the length 
of window we wish to model will have an effect on the risk level we 
expose ourselves to during this period. In order to hedge for a higher 
level of risk than we may expect, we must ascertain which exponent of 
the power law the distribution has for events occurring with frequency 
1∕𝑁 , when forecasting a 𝑁 trading day horizon. In doing so, we can 
correctly calculate the risk we are exposing our position to.

5. Implications on value-at-risk

To deduce the implications of these different scaling relations on the 
level of risk, we use a simple Value at Risk (VaR) calculation, [30, 31]. 
The aim of using this simple risk calculation is to demonstrate the effect 
rare-events have upon the level of risk within a return series. We have 
seen from preceding sections, the scaling laws are apparent in all of the 
empirical time series we have analysed in this paper. It is well docu-

mented, [20], that the quantity of rare-events within a process affects 
the risk associated with such a process. It is therefore sensible to assume 
the scaling relations we have seen, should manifest themselves in a risk 
calculation of the same financial time series. To calculate this risk, we 
shall carry out a very simple Value-at-Risk routine. To do so, we take 
the return series for the time window we are investigating and order 
the returns into descending order, we then look to find the smallest 10%
of the returns, which equate to the top 10% of losses. Therefore, we will 
analyse the level of loss that can be expected at the 90% confidence in-

terval for the corresponding time window. In Fig. 7, we see the level of 
return for the 90th confidence level for the truncated time windows for 
Lloyds Bank, Barclays bank, Bank of America and Gold ETFs.

In this figure, we can see some distinct regions in the level of risk. 
For the shortest time window, we have a relatively low level of loss, 
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Fig. 7. The Value-at-Risk Calculations for the 90th confidence level of returns for Lloyds, panel (a), Barclays, panel (b), Bank of America, panel (c) and Gold ETFs, 
panel (d). To construct such diagrams, we truncate the empirical data to 1% of its original length and increment in 0.1% up to its total length. We then work out 
the 90th confidence level, see text for details of the VaR calculation. We would expect to see a consistent increase in the level of loss of return in response to the 
increased time window. However, this is not seen and instead we see two distinct behaviours with regards to the level of loss. One region where we get sensical 
behaviour, increase losses for an increased time window and a second, where we get a decrease in the level of loss for the increased time window.
which is to be expected given the short time window. This equates to 
less uncertainty. When we increase the time window we get an increase 
in the loss, as we would expect. This consequently, is a result of the in-

crease in the uncertainty in the return level given more data. However, 
starting from a certain point the increase stops and instead reverses. 
Now, we have a decreasing level of loss for an increasing time window. 
This is the point at which we gain a different scaling relation in the 
(ln(Γ4), ln(Γ6)) phase space. However, there is now a disparity between 
the banking securities and gold. Whilst, the banking securities continue 
to decrease the level of loss with the time window, gold reverses again 
and starts to increase the loss for the increasing time window. For the 
banking securities, we get a much longer decrease with respect to the 
time window length. However, we do see this region end around the 
200th data point and instead, we get a third regime where the level 
of loss starts to increase with increased length of time window, a be-

haviour we would expect.
7

6. Conclusion

By the use of higher order moments, we uncover a new scaling 
behaviour of the empirical data. For the longer time windows, the log-

arithm of the fourth and sixth order standardised moments follows a
straight line. The same behaviour was observed for the shorter time 
windows but with different parameters of the scaling equation. This 
fact is seen throughout all of the empirical data we have analysed for 
different financial data series.

We also highlight the impact of differing economic periods upon 
these scaling relations via the investigation of the empirical data 
throughout the 2008 financial crash. Here, we show that for compa-

nies directly affected by the crash, primarily banking companies, there 
is a drastic change to the logarithmic gradient of the scaling relation. 
This impact is long lasting in the empirical data. Almost a decade after 
the crash there is still an evident legacy of this economic period in the 
empirical data’s higher order moments.
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Furthering the investigation of empirical data, we show the relation-

ship between the higher order standardised moments of the empirical 
data and the standardised moment values of the gaussian distribution. 
We show by truncating the data into 18 years, 3 years and a 6 month 
time series, the length of time we investigate over has a stark impact on 
the higher order standardised moments.

Moreover, we try to replicate the observed scaling laws using a 
GARCH(1,1) models. We are able to show that for all parameter val-

ues investigated, we gain two distinct scaling relations. However, we 
get the longer time window’s scaling relation to have a larger loga-

rithmic gradient, 𝐵, than the shorter one. A clear contradiction to the 
empirical data. We resolve this rather puzzling behaviour by modelling 
rare-events in different time windows.

In order to deduce the behaviour of risk we carry out a Value-at-Risk 
type calculation to determine the potential loss at the 90th confidence 
level for the different time horizons analysed. We see that for the dif-

ferent scaling relations we encounter different levels of risk. We would 
expect that for an increasing time horizon, the risk increases, however, 
when we have the observed change in scaling relation of the standard-

ised higher order moments we encounter a reduction in the level of 
loss for an increase in time horizon. In conclusion, the data analysis re-

ported in this paper can elucidate the behaviour of prices within short 
and long time horizons and as such can be used as a useful tool for mar-

ket and portfolio analysis. The above described empirical data analysis 
provides a way of how financial data can be used to train neuromorphic 
hardware, [32].
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