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Introduction
During embryonic development in the mammalian peripheral 

nervous system (PNS), bundles of growing axons are sur-

rounded by Schwann cell processes (Jessen and Mirsky, 2005). 

These processes sort larger caliber axons to the periphery of the 

bundles, where they adopt a 1:1 relationship with Schwann cells 

and are myelinated (Sherman and Brophy, 2005). The transition 

to individual axon ensheathment is associated with, and pre-

sumed to depend upon, extensive Schwann cell proliferation 

(Martin and Webster, 1973; Webster et al., 1973; Stewart et al., 

1993). Schwann cell proliferation during development is stimu-

lated by cell surface axonal molecules, called the neuregulins, 

acting via ErbB receptors (Wood and Bunge, 1975; Salzer 

et al., 1980; Morrissey et al., 1995; Riethmacher et al., 1997). 

Laminins in the basal lamina secreted by Schwann cells have 

also been implicated in promoting Schwann cell proliferation at 

the early stage of axon sorting (Bunge et al., 1986; Yu et al., 2005). 

These stimuli may not be mutually exclusive because cross-

talk between their signal transduction pathways occurs in oligo-

dendrocytes in the central nervous system (CNS; Colognato 

et al., 2002).

Murine Schwann cells lacking the laminin γ1 chain lose 

all their known laminins and display reduced proliferation dur-

ing sorting, increased postnatal apoptosis, and decreased ErbB2 

phosphorylation (Yu et al., 2005). In contrast, the absence of 

laminin-2 and -8 infl uences proliferation and radial axonal 

 sorting, but cell death is unaffected, at least up to 2 wk after 

birth (Wallquist et al., 2005; Yang et al., 2005). A major laminin 

receptor in the Schwann cell plasma membrane is α6β1 integrin 

(Previtali et al., 2003). Myelination in culture is blocked by 

anti–β1-integrin antibodies, and Schwann cells lacking β1-

 integrin display impaired radial sorting (Fernandez-Valle et al., 

1994; Feltri et al., 2002). Nevertheless, neither the proliferation 

nor the survival of Schwann cells is affected in these mice, and 

they can go on to sort and myelinate axons, albeit ineffi ciently. 

Hence, the loss of different laminins and their receptors may 

have distinct effects during axon sorting.

We have investigated the signaling pathways that might 

regulate axon sorting. FAK is a nonreceptor tyrosine kinase that 

is central to several signal transduction pathways, including 

those that stimulate proliferation (Ilic et al., 1997; Geiger et al., 

2001). FAK associates with β1 integrin in Schwann cells, and 

the presence of basal lamina activates FAK (Fernandez-Valle 

et al., 1998). Neuregulin also causes FAK to associate with the 

Schwann cell ErbB2–ErbB3 complex (Vartanian et al., 2000). 

Signifi cantly, Schwann cells in mice defi cient in neuregulin 

not only produce thinner myelin sheaths but also display de-

fects in axon defasciculation (Michailov et al., 2004; Taveggia 

et al., 2005).

Constitutive inactivation of FAK is lethal (Ilic et al., 1995); 

hence, we have investigated the role of Schwann cell FAK by 

targeted deletion using the Cre-loxP system. We fi nd that FAK 
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ignaling by laminins and axonal neuregulin has 

been implicated in regulating axon sorting by myelin-

forming Schwann cells. However, the signal trans-

duction mechanisms are unknown. Focal adhesion kinase 

(FAK) has been linked to α6β1 integrin and ErbB  receptor 

signaling, and we show that myelination by Schwann 

cells lacking FAK is severely impaired. Mutant Schwann 

cells could interdigitate between axon bundles, indicat-

ing that FAK signaling was not required for process 

 extension. However, Schwann cell FAK was required to 

stimulate cell proliferation, suggesting that amyelination 

was caused by insuffi cient Schwann cells. ErbB2 receptor 

and AKT were robustly phosphorylated in mutant Schwann 

cells, indicating that neuregulin signaling from axons 

was unimpaired. These fi ndings demonstrate the vital 

 relationship between axon defasciculation and Schwann 

cell number and show the importance of FAK in regulating 

cell proliferation in the developing nervous system.
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signaling in Schwann cells during axonal sorting is necessary to 

stimulate proliferation, and that without this late embryonic burst 

of cell division defasciculation of axons is highly impaired.

Results and discussion
Conditional inactivation of Fak in myelinating 
Schwann cells
We generated mice without functional FAK in myelinating 

Schwann cells, as described in Materials and methods. Fakfl ox/fl ox/

Cnp-Cre mice were born in expected numbers, had no clinical 

phenotype at birth, and were of normal weight (wild-type, 1.39 ± 

0.04 g; mutant, 1.37 ± 0.03 g; mean ± SEM; n = 3 each). 

Cre-mediated recombination in this Fakfl ox/fl ox mouse line has 

 already been shown to prevent expression of either FAK or its 

truncated forms in the epidermis and in neurons derived from 

embryonic stem (ES) cells (McLean et al., 2004; Charlesworth 

et al., 2006).

First, we demonstrated Cre recombinase–mediated inacti-

vation of Fak in mouse sciatic nerve during late embryonic de-

velopment, when radial sorting of axons occurs. Genomic PCR 

analysis showed that Cre-mediated recombination at the loxP 

sites at embryonic day (E) 18.5 was very effi cient (Fig. 1 A). 

This is consistent with the fact that the regulatory elements of 

the CNP gene are robustly active in all perinatal Schwann cells 

in the sciatic nerve (Yuan et al., 2002). The low level of PCR 

product corresponding to the residual unrecombined fl oxed 

gene probably originates from perineurial fi broblasts and some 

Schwann cells that escape recombination. The absence of FAK 

from most Schwann cells in mutant nerve was made clear 

by immunofl uorescence (Fig. 1 B). In the case of those few 

Schwann cells in the mutant nerve that had ensheathed axons 

and went on to myelinate, it is possible that only one Fak allele 

had been inactivated because these cells were always positive 

for FAK by immunofl uorescence (Fig. 1 C). By 2 wk after birth, 

Fakfl ox/fl ox/Cnp-Cre mice were distinctly less active than normal 

littermates, and they began to display a tremor by 3–4 wk that 

progressed to hindlimb paralysis after 3 mo in those few ani-

mals that were allowed to reach that age (Videos 1 [wild-type] 

and 2 [mutant], available at http://www.jcb.org/cgi/content/full/

jcb.200609021/DC1).

FAK mutant Schwann cells associate 
normally with embryonic axon bundles
By E18.5, axons are organized into bundles and enveloped by 

Schwann cells (Martin and Webster, 1973; Webster et al., 1973). 

There were considerable variations in axon caliber and bundle 

size at this age, but no discernible differences between control 

and mutant nerves (Fig. 2, A–D). Furthermore, both control and 

mutant Schwann cells were able to extend processes into the 

bundles, showing that FAK-null cells could still initiate the fi rst 

steps in axonal sorting (Fig. 2, C and D). To confi rm that mutant 

Schwann cells interdigitated into bundles normally, we counted 

the number of Schwann cells with visible nuclei that were asso-

ciated with bundles and determined the percentage that extended 

processes into bundles, and they were essentially identical in 

wild-type and mutant cells (wild-type, 97.9 ± 2.1%; mutant, 

98.6 ± 0.7%; mean ± SEM; n = 3 each). Schwann cells that 

had adopted a one-to-one relationship with axons were detect-

able in both control and mutant nerves (Fig. 2, C and D, arrow-

heads, and Fig. 1 C). Although loss of FAK has been shown to 

Figure 1. Cre-mediated deletion of FAK in Schwann cells. (A) Genotyping 
of sciatic nerve genomic DNA isolated from Fakfl ox/fl ox, Fakfl ox/wt, and 
 Fakfl ox/fl ox/Cnp-Cre mice at E18.5 revealed highly effi cient recombination 
at the loxP sites in the presence of Cre recombinase. After PCR amplifi cation 
and digestion with HindIII, mice homozygous for the fl oxed allele showed 
a band in Agarose gel electrophoresis of 1.9 kb, whereas after recombina-
tion in the presence of Cre recombinase this band was shifted to 1.1 kb. 
Note that this was readily distinguishable from the product of 1.4 kb ob-
tained from the wild-type allele in mice heterozygous for the fl oxed and 
wild-type allele (Fakfl ox/wt). The band at 1.5 kb in lane 3 is a genomic PCR 
artifact of variable intensity and no signifi cance. (B) Immunofl uorescence of 
longitudinal sections of sciatic nerves from P4 wild-type and mutant nerves 
shows that FAK (green) is expressed in wild-type Schwann cells (arrows) 
and in perineurial fi broblasts (asterisks) in both wild-type and mutant 
nerves, but is not expressed in mutant Schwann cells (arrows). Nuclear 
staining (blue) and immunofl uorescence for neurofi lament-H (NF-H, red) 
show the location of the axons associated with Schwann cells. (C) Immuno-
fl uorescence of transverse sections of wild-type and mutant tibial nerves 
from 3-mo-old mice shows that FAK (green) and Periaxin (red) colocalize at 
the plasma membranes of adult myelinating Schwann cells in both wild-
type and mutant nerves (arrows). Note the strong staining for FAK in un-
sorted axon bundles (arrowhead). Bars, 10 μm.
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cause aberrations in basal lamina structure caused by altered 

laminin organization in the CNS (Beggs et al., 2003), basal 

lamina surrounding axon bundles in the wild-type nerve 

(Fig. 2 C, inset) appeared intact and identical to that in the 

 mutant (Fig. 2 D, inset).

To confi rm that mutant embryonic Schwann cells had 

differentiated, we analyzed the localization of Periaxin. Peri-

axin is fi rst detectable in the nuclei of embryonic Schwann 

cells in the sciatic nerve, but relocalizes to the cytoplasm of 

Schwann cells around E17.5–18.5 (Sherman and Brophy, 

2000). At postnatal day (P) 1, Periaxin was primarily cytoplasmic 

in both control and mutant nerves, indicating that mutant 

Schwann cells were not arrested in their embryonic develop-

ment (Fig. 2, E and F).

FAK is required for Schwann cell 
proliferation and radial sorting 
of axonal bundles
Extensive axonal sorting and the establishment of a 1:1 relation-

ship between Schwann cells and axons had occurred by P3 in 

control sciatic nerve (Fig. 3, A and C). Mutant nerves were con-

siderably smaller in cross-sectional area than control nerves 

(wild-type, 13,405 ± 640 μm2; mutant, 7,548 ± 573 μm2; 

mean ± SEM; n = 3 each), which refl ected the retardation of 

Schwann cell ensheathment at axons in the absence of FAK 

(Fig. 3, A and B). Axon bundles in mutant nerves remained 

larger, with much fewer ensheathed axons compared with con-

trol nerves (wild-type, 284 ± 26; mutant, 19 ± 3; mean ± 

SEM; n = 3 each; Fig. 3, C and D). In contrast to control axon 

bundles, where large-caliber axons were peeled off by Schwann 

cells, leaving behind axons with a range of diameters (Fig. 3 E), 

mutant nerves were characterized by the arrested sorting of 

large-caliber axons to the edges of the bundles (Fig. 3 D). This 

provided further evidence that mutant Schwann cells were 

 capable of inserting processes into bundles and sorting axons 

radially. Subsequently, smaller bundles of large-caliber axons 

appeared to be sorted away from mixed bundles (Fig. 3 F); 

a similar phenomenon has been observed in β1 integrin–defi cient 

nerves (Feltri et al., 2002).

Figure 2. Embryonic FAK-null Schwann cells differentiate and associate 
normally with axon bundles. (A and B) Light microscopy of 1-μm trans-
verse sections stained with toluidine blue from wild-type (A) and mutant (B) 
tibial nerve showed that bundles of axons (arrows) vary in size at E18.5, 
but mutant nerves do not display any abnormalities at this age. (C and D) 
Electron microscopy revealed that axon bundles with a range of axon cal-
ibers are interdigitated by Schwann cell processes (arrows) in both wild-
type (C) and mutant (D) nerves. The insets show that basal lamina is 
apparently normal in mutant nerves (D) when compared with wild-type (C). 
C and D show that Schwann cells in a 1:1 relationship with axons are also 
detectable in both wild-type and mutant (arrowheads). (E and F) Immuno-
fl uorescence microscopy showed that by P1 Periaxin (green) had relo-
cated from the nucleus (labeled with TOTO-3; red) to the cytoplasm in both 
wild-type (E) and mutant (F) Schwann cells. Bars: (A and B) 10 μm; (C and D) 
5 μm; (C and D, insets) 0.2 μm; (E and F) 1 μm.

Figure 3. FAK is required for axon defasciculation. (A–F) By P3, radial 
sorting and ensheathment of axons by Schwann cells are highly impaired 
in the absence of FAK. Light microscopy of transverse sections of sciatic 
nerve shows that, unlike wild-type nerve, mutant nerves had many bundles 
of axons (arrowheads), and this lack of defasciculation is refl ected in the 
smaller overall diameter of the mutant nerves (A and B). Higher power im-
ages show that large-caliber axons persisted in bundles in the absence of 
FAK, although there had been partial sorting of these axons to the edges 
of the bundles (D, arrowheads). In some cases, large-caliber axons were 
sorted to smaller bundles (D and F). In contrast, large-caliber axons in wild-
type axons were mostly sorted away from axon bundles, leaving behind 
axons of lower caliber (E). It was still possible to observe interdigitating 
Schwann cell processes at the periphery of the bundles (F, arrow). Bars: 
(A and B) 15 μm; (C and D) 5 μm; (E and F) 1μm.
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We asked if the abnormalities in axon sorting in the mu-

tant might be caused by defi ciencies in the number of Schwann 

cells. After E17.5, the number of cells in mutant nerves was sig-

nifi cantly reduced in comparison to control nerves up to P4 

(Fig. 4 A). This could be caused by decreased proliferation, in-

creased cell death, or both. Labeling with BrdU revealed that 

Schwann cells lacking FAK proliferated much less than control 

cells from E17.5 to P4 (Fig. 4 B). FAK signaling can prevent 

apoptosis in vivo (McLean et al., 2004); nevertheless, there was 

no demonstrable increase in apoptosis in mutant nerves at either 

E18.5 or P4, as detected by activated caspase-3 expression, and 

activated caspase-3–positive cells always comprised <0.1% of 

all cells in wild-type and mutant nerves (Fig. 4 C). These results 

are in marked contrast to FAK deletion in the developing fore-

brain, where although neuronal apoptosis was unaffected, pro-

liferation was also unaffected; in contrast, the absence of FAK 

affected cell migration in the CNS, probably because of altera-

tions in basal lamina organization; furthermore, the  morphology 

of neuronal dendrites was abnormal (Beggs et al., 2003). It 

seems that the effect of losing FAK depends very much on cell 

type. In a keratinocyte-restricted FAK knockout, the absence of 

FAK resulted in fewer keratinocyte precursors, which may be 

caused by defects in mitosis, although apoptosis was unaffected, 

whereas FAK-null keratinocytes proliferated and migrated 

 normally (Essayem et al., 2006). Interestingly, these FAK-null 

keratinocytes undergo massive apoptosis if placed in culture, 

which underscores the importance of evaluating the consequences 

of deleting FAK in vivo when studying complex tissues.

Because signaling by axonal neuregulin via ErbB2–ErbB3 

receptors has been linked to FAK recruitment (Vartanian et al., 

2000), it was important to determine if any effects on radial 

sorting that we might attribute to loss of FAK were caused by 

aberrant ErbB2–ErbB3 function. Western blots showed that 

ErbB2 phosphorylation was not impaired in the mutant at P1, 

indicating that axonal neuregulin could still activate the receptor 

(Fig. 4 D). Furthermore AKT phosphorylation was also normal, 

indicating no major derangement to the PI3 kinase–AKT 

 pathway downstream of ErbB receptors (Fig. 4 D). Interest-

ingly, this also provides support for the view that the absence of 

FAK does not cause gross structural defects in laminin organi-

zation, as seen in the CNS (Beggs et al., 2003), because the ab-

sence of laminin from Schwann cell basal lamina causes major 

reductions in ErbB2 phosphorylation (Yu et al., 2005). Because 

the PI3 kinase pathway has been implicated in both cell survival 

and proliferation in Schwann cells (Li et al., 2001; Zanazzi 

et al., 2001), this demonstrates that the defect in proliferation 

during perinatal axonal sorting is not a result of defi cits in FAK 

signaling via the PI3 kinase pathway. Furthermore, because 

AKT phosphorylation is unaffected during the active phase of 

perinatal Schwann cell proliferation, FAK does not appear to 

infl uence the signaling pathway from ErbB receptors via PI3 

kinase to AKT, thus supporting the view that FAK acts via an 

independent pathway, probably originating with laminin. AKT 

may still be necessary to promote proliferation during radial 

sorting, but it is clearly not suffi cient during radial sorting.

Although β1 integrin and FAK are functionally linked, 

Schwann cells lacking β1 integrin do not display reduced pro-

liferation (Chen et al., 2000; Feltri et al., 2002). Nevertheless, 

ablation of these proteins can have distinct effects in the same 

cell type. FAK-null ES cells can differentiate, whereas the dif-

ferentiation of β1 integrin–null ES cells is severely retarded 

(Andressen et al., 1998; Charlesworth et al., 2006). Furthermore, 

the fact that FAK can either suppress or promote growth in the 

same cell line indicates that diverse signaling pathways may 

have distinct roles to play in regulating proliferation at  different 

stages of Schwann cell differentiation (Pirone et al., 2006).

Figure 4. Reduced numbers of Schwann cells in mutant 
nerves. (A) Mutant nerves have fewer Schwann cells per 
cross section of tibial nerve from E18.5. (B) Immuno-
fl uorescence and counting of labeled nuclei after BrdU in-
corporation shows decreased proliferation in mutant nerves. 
(C) Immunofl uorescence for activated caspase-3 in the mu-
tant shows no elevated apoptosis from E18.5 through P4 
compared with wild-type. A rare caspase-3–positive cell is 
indicated by the arrow. (D) Western blot of P1 sciatic 
nerves showing that ErbB2 and AKT phosphorylation are 
unimpaired in the mutant. The loading control was β-actin. 
Values are means ± the SEM. n = 3 mice for each age. 
*, P < 0.05; **, P < 0.01 from paired t test. Bar, 30 μm.
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Mutant nerves do not recover the ability 
to sort axons
In contrast to control nerves at 6 wk after birth, where axon 

 ensheathment and the formation of a multilamellar compact 

myelin sheath were very advanced, mutant nerves still retained 

bundles of unsorted axons (Fig. 5, B and C). Typically, some 

axons that had been sorted to the edge of bundles were myelin-

ated, but they were still attached to a bundle (Fig. 5 B), and 

some bundles appeared to be surrounded by fi broblasts (Fig. 5 C). 

There was no substantial progress in axon sorting up to 6 mo 

 after birth, and bundles of large-caliber axons persisted with 

possible further evidence of perineurial fi broblast infi ltration 

(Fig. 5 D). Hence, mutant nerves were unable to recover from 

the perinatal defi cit in Schwann cells numbers.

Striking differences between control and mutant nerves 

were fi rst demonstrable between E17.5 and E18.5, a time when 

Schwann cells normally increase in number by �80%, whereas 

mutant cells increased by only 37%. We suggest that the im-

paired ability of FAK-null Schwann cells to proliferate during 

axon defasciculation contributes signifi cantly to amyelination 

caused by an inadequate supply of Schwann cells. Although 

FAK has been shown to regulate proliferation in cultured cells, 

this is the fi rst demonstration that it does so in vivo. Because 

the absence of FAK did not prevent insertion of Schwann cell 

processes into axon bundles, we propose that extension of cell 

processes between axons prefi gures the mitotic stimulation of 

Schwann cells caused by contact with both axons and laminins. 

In future studies, it would be interesting to determine how the 

transduction pathways linked to the integrin and ErbB receptors 

regulate FAK and its downstream targets.

Materials and methods
Animals
All animal work conformed to UK legislation (Scientifi c Procedures) Act 
1986 and the Edinburgh University Ethical Review policy. Generation of 
mice carrying targeted loxP sites in the Fak gene, and the genotyping of 
these mice, has been previously described (McLean et al., 2004). Targeted 
ablation of FAK in myelin-forming glia was achieved by crossing Fakfl ox/fl ox 
mice with mice heterozygous both for the fl oxed allele and for Cre inserted 
into the Cnp locus (Fakwt/fl ox/Cnp-Cre; Lappe-Siefke et al., 2003). Both 
Fakfl ox/fl ox mice and heterozygous Cnp-Cre mice were phenotypically indis-
tinguishable from wild-type mice, as previously shown (Lappe-Siefke et al., 
2003; McLean et al., 2004). Cre-mediated recombination at E18.5 in sciatic 
nerves was assessed by PCR analysis of genomic DNA, followed by HindIII 
digestion, as previously described (McLean et al., 2004). Mean weights of 
newborn animals were measured using seven animals per condition.

Antibodies and microscopy
For Western blotting, we used anti-ErbB2 (1:250); anti–phospo-ErbB2 
(Tyr877; 1:1,000); anti-AKT (1:1,000); and anti–phospho-AKT (Ser473; 
1:1,000). All rabbit antibodies were obtained from Cell Signaling Tech-
nology, and a mouse monoclonal anti–β-actin (IgG1 clone AC-15) was 
purchased from Sigma-Aldrich. For immunofl uorescence, we used rabbit 
anti-FAK obtained from UBI (BC3, 1:100) and Santa Cruz Biotechnology, 
Inc. (C-20, 1:50); mouse monoclonal anti–neurofi lament-H purchased from 
Sigma-Aldrich (IgG1 clone N32; 1:5,000); rabbit anti-activated caspase-3 
(1:100) obtained from Cell Signaling Technology; and mouse monoclonal 
anti-BrdU clone B44 purchased from Becton Dickinson (IgG1; 1:6). Rabbit 
antibodies against Periaxin (Gillespie et al., 1994) and the neurofi lament 
triplet proteins (Kelly et al., 1992) have been previously described. Nuclei 
were stained with either 0.1 μM TOTO-3 obtained from Invitrogen or 
2 μM DAPI obtained from Sigma-Aldrich. Immunofl uorescence labeling of 
cryostat sections have been previously described (Tait et al., 2000). Unless 
otherwise specifi ed, all analyses were performed on the tibial branch of 

the sciatic nerve. We used a confocal microscope (TCL-SL; Leica) and Leica 
proprietary software. Conventional fl uorescence microscopy was carried 
out using a microscope (BX60; Olympus), images were captured using a 
camera (Orca-ER; Hamamatsu), and morphometry was done with Open-
lab software (Improvision). Thin sections of nerves for electron microscopy 
were prepared as previously described (Gillespie et al., 2000). Photo-
graphic negatives were scanned and digitized. All fi gures were prepared 
using Photoshop version 7.0 (Adobe).

Cell counts
Timed-pregnant females (for E17.5 and 18.5 embryos) or individual pups 
(P2 and 4) were injected intraperitonealy or subcutaneously, respectively, 
with BrdU (100 μg/g body weight), and animals were killed by decapita-
tion 70 min later. Nerves were fi xed for 30 min in cold 4% paraformalde-
hyde and embedded in OCT; then 10-μm transverse sections were cut, and 
at least fi ve sections per animal were counted. For Schwann cell quantita-
tion, sections were stained with antineurofi lament to identify nerves and 
with DAPI to identify cell nuclei. For BrdU labeling, rehydrated sections 
were treated with 0.5% Tween-20/PBS for 5 min, followed by a 1:1 mix-
ture of 10 M HCl/0.5% Tween-20/PBS for 45 min. Sections were washed 
twice with PBS and twice with 0.5% Tween-20/PBS, and then coincubated 
with monoclonal anti-BrdU and rabbit antineurofi lament antibodies for 2 h, 
followed by appropriate secondary antibodies. DAPI- or BrdU-labeled nuclei 
were only counted if they lay within the boundary of the neurofi lament-
positive tissue. The percentage of BrdU-positive nuclei was the mean 
BrdU count divided by the mean total cell count for that time point. Cross-
sectional areas of 1 μm toluidine blue–stained sections of nerve, exclud-
ing the perineurium, were measured. The numbers of myelinated axons 
were quantitated in the same sections. For quantitation of the percentage 
of interdigitating Schwann cells, images were acquired for every axon 
bundle that had an associated Schwann cell with a distinct nucleus in a 
complete nerve section. A minimum of 30 Schwann cells was counted 
per sample.

Online supplemental material
10-wk-old wild-type (Video 1) and mutant (Video 2) mice were fi lmed to 
show the severe gait problems, especially in the hind limbs, displayed by 
demyelinated FAK-null mice. Online supplemental material available at 
http://www.jcb.org/cgi/content/full/jcb.200609021/DC1.

We thank Qiushi Li for excellent technical assistance, and Heather Anderson 
and Emma Scholefi eld for expert help in generating the mice.

Figure 5. Ineffi cient radial sorting in mutant nerves is irreversible. 
(A) Light microscopy of 1-μm-thick transverse sections shows that wild-type 
sciatic nerves are extensively myelinated by 6 wk. (B) Light microscopy of 
mutant nerves reveals abundant bundles of unsorted axons, with some 
completely sorted axons (arrowhead) and some that have been partially 
sorted and myelinated at the periphery of bundles (arrow). (C) Electron 
 microscopy shows that some of these bundles are enveloped by perineurial 
cells. (D) The bundles of large-caliber axons persist up to 6 mo after birth, 
with some evidence for further infi ltration of perineurial fi broblasts (arrow). 
Bars: (A, B, and D) 5 μm; (C) 1 μm.
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