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Abstract: We present a computational study on the enantioselectivity of organocatalytic
proline-catalyzed aldol reactions between aldehydes in dimethylformamide (DMF). To explore the free
energy surface of the reaction, we apply two-dimensional metadynamics on top of ab initio molecular
dynamics (AIMD) simulations with explicit solvent description on the DFT level of theory. We avoid
unwanted side reactions by utilizing our newly developed hybrid AIMD (HyAIMD) simulation
scheme, which adds a simple force field to the AIMD simulation to prevent unwanted bond breaking
and formation. Our condensed phase simulation results are able to nicely reproduce the experimental
findings, including the main stereoisomer that is formed, and give a correct qualitative prediction of
the change in syn : anti product ratio with different substituents. Furthermore, we give a microscopic
explanation for the selectivity. We show that both the explicit description of the solvent and the
inclusion of entropic effects are vital to a good outcome—metadynamics simulations in vacuum and
static nudged elastic band (NEB) calculations yield significantly worse predictions when compared
to the experiment. The approach described here can be applied to a plethora of other enantioselective
or organocatalytic reactions, enabling us to tune the catalyst or determine the solvent with the
highest stereoselectivity.

Keywords: aldol reaction; organocatalysis; enantioselectivity; free energy profile; metadynamics;
molecular dynamics; ab initio molecular dynamics; nudged elastic band; energy barrier;
solvent influence

1. Introduction

One of the most important tasks in organic chemistry is the controlled formation of new C–C
bonds in order to build up complicated molecules from simpler educts. Particular attention is paid
to the case when a new stereocenter is created by the bond formation: it is well known that different
enantiomers or diastereomers of the same compound behave vastly different in many applications
(just consider, e.g., drugs). Therefore, it is highly desirable to control the stereochemistry of the product
when the formation of the C–C bond creates a new stereocenter. The field of chemistry concerned
with this question is called enantioselective synthesis. These methods are highly relevant far beyond
academic use—for instance, the chiral drug industry has become an incredibly fast-growing segment
of the drug market [1].

One of the most efficient ways to introduce defined chirality into a molecule is to use a catalytic
amount of a chiral controller to induce the stereoselective transformation. Those controllers often were
organometallic compounds earlier, but with the emergence of the concepts of green chemistry [2–9],
also metal-free organic molecules were found to serve this purpose, and the way to the field of
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organocatalysis was opened. Organocatalysis refers to a form of catalysis where the rate of a chemical
reaction is increased by an organic catalyst consisting of only non-metal elements [10–12]. The use
of catalysts which do not contain metals offers several advantages; for example, there is no need
to remove traces of potentially toxic metals from the products. When the organocatalyst is chiral,
a way towards enantioselective organocatalysis is opened. One of the first chiral organocatalysts
applied was the amino acid proline, which can be considered a key step towards green and
sustainable enantioselective synthesis [4–9,13]. One of the pioneering reactions on that field was
the Hajos–Parrish–Eder–Sauer–Wiechert reaction [14] which has been developed in the 1970s and
applies naturally occurring chiral proline in an aldol reaction. Other prominent examples are the
asymmetric synthesis of the Wieland–Miescher ketone [15] which is also based on proline, or one
transformation in the total synthesis of erythromycin by Robert B. Woodward [16–18].

A very popular transformation in organic chemistry is the aldol reaction, which has been
discovered independently by the Russian chemist Alexander Borodin in 1869 [19] and by the French
chemist Charles-Adolphe Wurtz in 1872 [20]. Within the scope of the reaction, two carbonyl compounds
are connected by the formation of a C–C bond, and a β-hydroxy carbonyl compound (also known
as aldol) is obtained as the product. The product of aldol reactions can sometimes lose a molecule
of water to form an α,β-unsaturated carbonyl compound; then, the reaction is often termed as aldol
condensation instead. A variety of different nucleophiles may be employed in the aldol reaction,
including enols, enolates as well as enol ethers of ketones, aldehydes, and many other carbonyl
compounds. The electrophilic partner is usually an aldehyde or ketone (but there exist many variations,
such as the Mannich reaction).

In the generic case, two new stereocenters are formed, and therefore, four different product
configurations can be obtained. While the original aldol reaction does not possess any stereoselectivity,
modern variants of the aldol reactions allow for controlling both the relative and absolute configuration
of the product, while achieving high yields at the same time [21]. Stereogenic aldol units are,
e.g., common in polyketides, which possess potent biological properties: the immunosuppressant
FK506 [22], the anti-tumor agent discodermolide [23], and the antifungal agent amphotericin B [24]
are three examples of such compounds with chiral aldol units. While earlier the synthesis of many
such compounds was considered nearly impossible, modern aldol methodology has allowed for their
efficient synthesis in many cases [25], supported for example by the application of NMR spectroscopy
to understand mechanistic details [26–28]. One of the first organocatalysts for stereoselective
aldol reactions was proline, as reported in the 1970s by groups at Schering AG and Hoffmann–La
Roche [29–31]. Despite having been found almost 50 years ago, proline catalysis is still widely applied
in enantioselective synthesis in order to preferably form a specific enantiomer or diastereomer in aldol
reactions [29,32–34].

One proline-catalyzed aldol reaction with particularly high enantioselectivity over a wide range
of substrates has been experimentally studied by Northrup et al. in 2002 [33]. In particular, this was
the first enantioselective catalytic direct cross-aldol reaction that employs nonequivalent aldehydes.
The schematic reaction is presented in Figure 1a, and the four possible products are shown in
Figure 1b. Without addition of proline as organocatalyst, these four products would be formed
in an approximately equal ratio. Northrup et al. report outstanding selectivities due to the catalytic
influence of proline. They observed very high % ee values (enantiomeric excess) in the range of 99%
for most substituents R, while the syn : anti selectivity depends significantly on the choice of R and is
found to be between 1:3 and 1:24. The preferred product is always the (S)-anti form (see lower-right
corner in Figure 1b). When using dimethylformamide (DMF) as the solvent, the total conversion is
above 90%. Syringe pump addition of the donor aldehyde to the acceptor aldehyde in the presence of
the catalyst effectively suppressed homodimerization of the donor aldehyde. Among all the choices
of substituents R in the article, we only consider R = Et, iPr here. The experimentally determined
selectivities and yields from [33] for these two substituents are given in Table 1.
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Figure 1. (a) The proline-catalyzed enantioselective aldol reaction studied in this work, see [33].
Selectivity and yield are given in Table 1. * denotes the two newly created stereocenters. (b) The four
possible reaction products of the aldol reaction between two aldehydes. With proline catalysis, the
preferred product is always the (S)-anti configuration (lower-right corner) [33].

Table 1. Experimentally determined enantiomeric excess, syn : anti selectivity, and yield of the aldol
reaction shown in Figure 1a for R = Et, iPr; taken from Ref. [33].

R %ee syn : anti Yield / %

Et 99 1 : 4 80
iPr >99 1 : 24 82

The proline-catalyzed aldol reaction takes place in several steps. First, the proline attacks the
carbonyl carbon atom of the donor aldehyde with its nucleophilic nitrogen atom, forming an amino
alcohol. In a second step, this amino alcohol loses a water molecule, forming an enamine which is
in tautomeric equilibrium with a corresponding iminium ion. In the third step (which is decisive for
stereoselectivity), the double bond of the enamine attacks the carbonyl carbon atom of the acceptor
aldehyde, forming the C–C bond. Finally, the catalytic proline molecule is cleaved via the addition of
water and re-formation of the original aldehyde group of the donor aldehyde. The mechanism of the
third step (as known from organic chemistry textbooks) is depicted in Figure 2a. As this is the sole step
that determines the stereochemistry of the product, we focus on this step here. Figure 2b shows a 3D
rendering of the computed transition state towards the preferred (S)-anti product; the newly formed
C–C bond is shown in green.
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Figure 2. (a) The mechanism of the selectivity-determining step of the proline-catalyzed aldol reaction
as known from textbooks. A new C–C bond is formed (red), and a proton is shifted (blue). * denotes the
two newly created stereocenters. (b) Snapshot of the computed transition state of the reaction which
leads to the (S)-anti product. The newly formed C–C bond is shown in green. The two distances r1 and
r2 are used as collective variables to explore the free energy profile in the second part.

A lot of effort has been undertaken to computationally describe and understand the selectivity
of organic reactions. Reactions already studied in literature include the Wittig reaction [35],
organocatalytic addition to α,β-unsaturated ketones [36], chiral catalyzed ketimine-ene reactions [37],
weak acid dissociation [38], organocatalytic SN2 reactions [39,40], the catalytic vinylogous
Henry reaction [41], base-catalyzed Knoevenagel condensations [42,43], the Meyer–Schuster
rearrangement [44], enantiomerization of axially chiral biphenyls [45], and also proline-catalyzed
reactions [46–48]. While some of these studies obtained their results by using static quantum
chemical calculations and frequently described solvent influence via continuum solvation
models [37,39,40,42–44,49–51], others were based on molecular dynamics simulations and often
used tools such as metadynamics [35,38,43,46,52–54] and umbrella sampling [45] to investigate the
potential energy surfaces of the reactions. The metadynamics approach, originally proposed by
Parrinello et al. [55], reveals the free energy surface of one or more reaction coordinates by applying an
adaptive bias potential. It allows us to include the full explicit solvent effect and all entropic terms at
the selected temperature, which is in contrast to static calculations, which only include solvents via
implicit continuum solvent models, and only capture a rough estimate on entropic contributions via
harmonic frequency calculations.

In this article, we perform a computational investigation of the proline-catalyzed enantioselective
aldol reaction between aldehydes in DMF, as it has been experimentally studied by Northrup et al. [33].
To explain this high enantioselectivity, we use ab initio molecular dynamics (AIMD) in conjunction
with metadynamics to explore the two-dimensional free energy surface of the reaction, including the
full explicit solvent influence as well as full entropic contributions at room temperature. We avoid
unwanted side-reactions by employing our newly developed simulation approach of hybrid AIMD
simulation. This is the first time that the free energy profile of an aldol reaction in an explicit organic
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solvent is presented and discussed in the literature. Our computational results agree nicely with the
experimental findings. Based on our computed free energy profiles, we give a microscopic explanation
for the high selectivity.

The article is structured as follows. After a description and validation of our newly developed
hybrid AIMD simulation approach, we present and discuss the results from static NEB calculations,
metadynamics simulations in vacuum, and metadynamics simulations in explicit solvent, respectively.
Finally, we investigate the change in selectivity when going to a different substrate molecule.
Subsequently, we describe our computational methods. Our manuscript ends with conclusions
and an outlook.

2. Results and Discussion

2.1. Hybrid Simulation Approach

When performing metadynamics with ab initio molecular dynamics (AIMD) simulations in order
to study free energy profiles of chemical reactions, the forced bond-breaking leads to all kinds of
unwanted side reactions in the simulations: the transition states of reactions often feature highly
reactive sites (radicals, carbenes, carbocations, etc.), which readily react with the closest solvent
molecule to form adducts. From a fundamental view, this is not a problem for metadynamics, because
these adducts will be cleaved again later in the simulation, as it also happens in reality. However,
simulation time is spent on regions of the potential energy surface which are not relevant for the
formation of the desired reaction product. The metadynamics would be required to run for a very
long simulation time in order to reach convergence. It would be desirable to have an approach
which somehow blocks all unwanted side reactions (i.e., breaking bonds which should remain intact
or forming bonds where it is not desired), so that only the regions of the potential energy surface
which are relevant for the formation of the main reaction product are sampled and explored. This is
only possible if the mechanism of the reaction is known a priori—however, this needs to be the case
anyway in a metadynamics simulation, because the choice of collective variables needs to match the
presumed mechanism.

To do so, we have developed the so-called hybrid AIMD simulation approach (in short
“HyAIMD”), which we present for the first time in this article. The foundation of our approach is a
standard AIMD simulation (in our case, a Born–Oppenheimer MD simulation). On top of that, a simple
and automatically generated force field is applied, and the potential energy and force contribution
from the force field is simply added to those of the AIMD. The force field parameters are determined
in the following way: all covalent bonds in the system which exist in the initial configuration and shall
remain intact during the simulation are assigned a quadratic bond stretching term of the form

Ebond (r) :=
k
2
(r − r0)

2 (1)

with a force constant of k = 4.184 × 10−2 kJ mol−1 pm−2. The equilibrium bond length r0 for each
bond is determined as the average bond length of that specific bond in a short standard AIMD run
without the additional force field. In addition to that, all atoms are assigned Lennard-Jones parameters
σ and ε, and a non-bonded potential energy contribution ELJ

ij (r) for all pairs of atoms i, j in a distance
r is computed as

ELJ
ij (r) := 4εij

[( r
σij

)12
−
( r

σij

)6
]

(2)

where the Lennard-Jones cross terms are computed according to the so-called arithmetic mixing rules

σij :=
1
2
(
σi + σj

)
, εij :=

√
εi · εj (3)
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This pair-wise interaction is only computed for pairs of atoms which shall not form a covalent
bond during the simulation; all pairs which shall be allowed to form a bond are excluded. Likewise,
all 1–2, 1–3, and 1–4 neighbors (in terms of covalent bonds existing in the beginning) are excluded.
A value of εi = 0.5 kJ mol−1 is set for all atoms (no matter of the element). This relatively small
value ensures that there is almost no artificial attraction, and only the repulsive part of the potential is
relevant. The σi values are set to two times the covalent radii of the corresponding elements (taken from
literature [56]), except for hydrogen, where the multiplication by two is omitted, and just the covalent
radius is utilized. No partial charges are assigned to the atoms, and no electrostatic interactions are
computed in the force field part.

We claim that our hybrid AIMD simulation technique does not significantly alter the structure
and dynamics of condensed phase simulations as long as no (unwanted) chemical reactions occur.
To prove this claim, we utilized the CP2k program package [57,58] to perform a HyAIMD simulation
of the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) in the liquid phase as an
example. As standard AIMD simulation trajectories of this system already exist (see literature [59–61]),
we were able to monitor the changes in structure and dynamics introduced by the addition of the
simple force field.

To investigate changes in the liquid structure, two radial distribution functions (RDFs) are shown
in Figure 3. While the solid lines correspond to the hydrogen bond between the central ring hydrogen
atom H2 of [EMIm]+ and acetate oxygen (for atom nomenclature, see Ref. [59]), the dashed lines
depict the center of mass distance between [EMIm]+ cations and acetate anions. The black curves are
computed from the original AIMD simulations, while the red curves stem from the HyAIMD trajectory
computed here. From both RDFs, it can be clearly seen that the liquid structure and hydrogen bond
geometry is not significantly altered by the additional force field terms. The average hydrogen bond
length is shifted to slightly larger values (approx. 10 pm), which is expected due to the additional
Lennard-Jones repulsion between hydrogen and oxygen atoms, but this should not have a significant
influence on the overall properties.

Figure 3. Radial distribution functions (RDFs) between [EMIm]+ H2 and [OAc]− O (solid lines)
and between cation and anion mass centers (dashed lines) of the ionic liquid [EMIm][OAc] from the
standard ab initio molecular dynamics (AIMD) simulations (black lines) [59–61] and the HyAIMD
simulations performed here (red lines).

In order to determine the influence of the HyAIMD approach on the short-time dynamics of the
system, the power spectra of the standard AIMD (black line) and the HyAIMD simulation (red line)
are presented in Figure 4. It is visible that the vibrational stretching motion of the C–H bonds in the
system is shifted to higher wavenumbers by approximately 200 cm−1 when the force field is added.
We consider this as not critical for the estimation of reaction free energy profiles, because atom pairs
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which take part in the reaction (e.g., in the proton transfer) are not influenced by the force field. All the
other vibrations, on the other hand, are almost invariant under this change (including the fingerprint
region, where deformations of the molecular backbone take place).

Figure 4. Power spectra of of the ionic liquid [EMIm][OAc], computed from the standard AIMD
simulations (black line) [59–61] and the HyAIMD simulations performed here (red line).

Based on these observations, we conclude that our HyAIMD approach leaves the aspects of the
system’s structure and dynamics invariant which are relevant for the estimation of free energy profiles
of chemical reactions, while it avoids all unwanted side reactions (e.g., with the solvent). Therefore,
it should make metadynamic simulations of such reactions much easier, and significantly reduce the
required computer time.

2.2. Static Nudged Elastic Band Calculations

The first part of this section will focus on the case of R = Et, i.e., a symmetric aldol reaction between
two molecules of propionaldehyde. In the first step of our computational investigation, we have
performed static nudged elastic band (NEB) calculations of the reaction step which determines the
stereochemistry of the product, see Figure 2a. This approach has been used many times in literature
to compute the energy barrier of reactions [62–67]. Based on optimized structures of the educts and
the product, a minimal energy path between these two is constructed. It is not possible to include
explicit solvent effects in this approach. There is the option to employ implicit continuum solvent
models, but we decided to not do so, because we will investigate the explicit solvent effect later in this
manuscript. As this is a static method, it does not include any entropic effects. Simple approximations
(particle in a box/rigid rotator/harmonic oscillator) can be employed to estimate the entropy of the
educts and product and of the transition state. For the sake of completeness, we have performed this
estimation as implemented in ORCA, and we observe below that this did not improve the prediction
in any way.

The resulting energy profiles of the static NEB calculations for the aldol reactions with R = Et
are presented in Figure 5. All energies are given relative to those of the educts. The horizontal axis
depicts the reaction coordinate which leads from the educts (left) to the products (right). For the
four possible products and the nomenclature, please see Figure 1b. It can be seen that all reaction
energies ∆RE are positive, i.e., all reactions are endothermic in this approximation. The reaction
energy barriers ∆E‡ are found to be in a range of 40–80 kJ mol−1. An overview over these numbers
is given in Table 2. Note that the transition state energies ∆E‡ given in the table have been obtained
by transition state optimizations subsequent to the NEB calculations. Therefore, the numbers can
be slightly different from the maximum of the curves in the diagram. Based on harmonic frequency
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calculations, we estimated the free reaction enthalpies ∆RG and the free enthalpy barriers ∆G‡ at 300 K
as implemented in ORCA; they are also reported in Table 2.

Figure 5. Energy profiles of aldol reactions (R = Et) resulting from static nudged elastic band (NEB)
calculations. Energies are given relative to educts.

Table 2. Total reaction energies ∆RE and reaction barriers ∆E‡ for the aldol reactions (R = Et) from static
NEB calculations; see Figure 5. Free enthalpies ∆RG and ∆G‡ estimated from harmonic frequency
calculations at 300 K. All energies are given relative to educts.

Product ∆RE / J mol−1 ∆RG / kJ mol−1 ∆E‡ / kJ mol−1 ∆G‡ / kJ mol−1

(R)-anti 5.86 23.77 40.79 44.78
(R)-syn 21.50 39.60 78.22 88.63
(S)-anti 24.89 43.23 51.63 62.91
(S)-syn 22.74 36.28 75.67 90.88

Based on these data, the reaction leading to the formation of the (R)-anti configuration should
be dominant—it features the lowest energy barrier and is the least endothermic by far among the
four reactions. However, in reality, the (S)-anti product is dominantly formed (with an %ee value of
≈99%). We conclude that these static NEB calculations are not suitable to reproduce and understand
the experimentally found enantioselectivity, not even to predict the main product. The only aspect
which is correctly reproduced here is that the two anti products are preferred in terms of barrier
height (i.e., lower barrier), as it is also the case in experiment (see Table 1). When considering the free
enthalpies ∆G instead, all trends remain the same, and the reactions are now even more unfavorable,
with free reaction enthalpies in the range of 25–40 kJ mol−1. This can be easily understood from the
fact that two molecules react to one molecule here, hence reducing the entropy. Including entropic
effects via a simple approximation, therefore, did not improve the results at all.

2.3. Metadynamics Simulations in Vacuum

In order to capture the effect of entropy and finite temperature in our predictions (beyond
the crude approximation via harmonic frequencies), we performed two-dimensional metadynamics
simulations on top of our new HyAIMD simulation approach to explore the free energy profile of
the reaction step shown in Figure 2a. The two collective variables which span our configuration
space to explore were chosen to be the C–C distance of the newly formed bond and the O–H distance
in the alcohol group of the product. These two distances are visualized as r1 and r2 in Figure 2b.
In principle, metadynamics is able to predict the free energy profile ∆F of a configuration space, where
∆F = ∆E − T · ∆S includes the entropic contribution ∆S at the simulation temperature T, which was
set to 300 K in our case. The simulations presented here were performed in vacuum (technically,
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the simulation cells contained some noble gas atoms to improve ergodicity; see Section 3.3 below).
Metadynamics also allows to include explicit solvent; this will be investigated in Section 2.4.

The resulting two-dimensional free energy profiles for the reactions with R = Et leading to the four
possible products (see Figure 1b ) are presented as contour plots in Figure 6. The free energy basins on
the lower-left side of each contour plot represent the product state (both C–C and O–H bond intact),
while the basins on the upper-right side of each plot correspond to the educts (both bonds broken).
Note that the free energies in these plots are not normalized to the educts as in the one-dimensional
plots, but rather to the smallest encountered free energy value. Depending on the reaction, this could
be either the educt state or the product state. The red paths through these surfaces depict the minimal
free energy pathways which connect the educt state with the product state (i.e., one likely path the
reaction might take). The green paths are the results of the static NEB calculations from Section 2.2;
these are “non-free” minimal energy pathways without entropic contributions and are just shown for
reference here. The green circles denote the statically optimized transition states.

Figure 6. Free energy profiles of the aldol reactions (R = Et) in vacuum computed from HyAIMD
metadynamics; definition of collective variables see Figure 2b. Red curves depict the minimum energy
paths from educts (upper-right energy basin) to products (lower-left energy basin). Green curves show
the results of static NEB calculations for comparison. Green circles denote the statically determined
transition state.
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For a better comparison, the minimal free energy pathways from Figure 6 (the red paths) have
been extracted and are shown in Figure 7 as one-dimensional plots. Note that in the latter plot, the free
energies are given relative to the educts, which was not the case in the contour plot. The reaction free
energies ∆RF and reaction free energy barriers ∆F‡ are also presented in Table 3.

Figure 7. One-dimensional free energy profiles of aldol reactions (R = Et) in vacuum obtained from
HyAIMD metadynamics; corresponds to red curves in Figure 6. Free energies are given relative
to educts.

Table 3. Total reaction free energies ∆RF and reaction free energy barriers ∆F‡ for the aldol reactions
(R = Et) in vacuum from HyAIMD metadynamics; extracted from Figure 7. Free energies are given
relative to educts.

Product ∆RF / kJ mol−1 ∆F‡ / kJ mol−1

(R)-anti 17.33 49.38
(R)-syn 21.56 59.01
(S)-anti −1.90 53.36
(S)-syn 23.59 50.99

When considering these data, it becomes clear that the reaction leading to the (S)-anti product is
the only among the four with negative ∆RF value, i.e., the only exergonic reaction which is predicted
to run spontaneously within the scope of this approximation. The other three reactions have reaction
free energies in the order of 20 kJ mol−1, and are therefore predicted to not run spontaneously. This is
well in line with the experimental results, which state that (S)-anti is the observed main product.
As in the results from the static NEB calculations (Table 2) the reaction energy of the reaction leading
to the (S)-anti product was significantly positive, we can conclude that the entropic effects which
have been taken into account now favor the formation of the (S)-anti product, while this is not
the case for the other three products. The free energy barriers ∆F‡ are all in a similar range of
≈50 kJ mol−1, with the exception of the reaction leading to the (R)-syn product that possesses a barrier
of almost 60 kJ mol−1. This can be correlated to the fact that the (R)-syn product possesses both the
wrong absolute configuration (R / S) and the wrong relative configuration (syn / anti) and is therefore
doubly unfavorable.

From the free energy profiles in Figure 6, it is well visible that the C–C bond formation and the
proton transfer take place in a concerted manner. Doing one step before the other (corresponding
to horizontal and vertical paths in the plots) would face very high free energy barriers. The only
path which can lead to a successful reaction changes the C–C and O–H distance simultaneously.
We would like to point out that this is a result of our study—the choice of collective variables as well
as the restraints imposed against side reactions allow for both a concerted and a two-step mechanism.
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For such a concerted reaction to take place, the two oxygen atoms between which the proton is
transferred need to be located at a suitable distance before the reaction starts, so that the proton can
be “handed over” from one oxygen atom to the other. Depending on the molecular orientation of the
educts before the reaction, this is only possible in some of the geometries. Therefore, the reactions
leading to certain configurations are favored above the others, explaining the enantioselectivity.

We conclude this section by noting that the free energy profiles from metadynamics simulations
in vacuum give a much better prediction for the stereoselectivity of the aldol reaction; they predict the
correct main product and suggest that this reaction will run spontaneously. The atomistic reason for
the enantioselectivity is the requirement for close oxygen–oxygen contact to make a concerted reaction
possible. However, the reaction free energy barriers are still relatively high (≈50 kJ mol−1), so that the
reaction would proceed very slowly. This leads us to the conclusion that the main driving force of the
reaction is the explicit solvent influence, which was not included in all calculations above.

2.4. Metadynamics Simulations in DMF

After having described the free energy profile of the aldol reaction in a reasonable way above,
we finally want to capture the explicit effect of the solvent molecules (DMF) on the reaction. To do
so, we applied our new HyAIMD approach to perform metadynamics simulations in the condensed
phase, using a fully periodic solvent cell. The HyAIMD approach prevents side-reactions with the
solvent from happening, which would be inevitable otherwise when the metadynamics leads to bond
breaking. The simulation methodology applied here includes both the full explicit solvent influence on
the DFT level of theory and the full entropic effect at the simulation temperature of 300 K, and should
therefore yield very reliable free energy surfaces for the reaction.

The two-dimensional free energy profiles obtained from these four metadynamics runs (one
per possible product; see Figure 1b ) are shown in Figure 8 as contour plots. Again, the free energy
basins on the lower-left side of each plot represent the product state (both C–C and O–H bond intact),
while the basins on the upper-right side of each plot correspond to the educts (both bonds broken).
As above, please note that the free energies in the contour plots are not normalized to the educts as
in the one-dimensional plots, but rather to the smallest encountered free energy value, which is the
product here. The red paths through these surfaces depict the minimal free energy pathways which
connect the educt state with the product state (i.e., one likely path the reaction might take). The green
paths are the results of the static NEB calculations from Section 2.2; these are “non-free” minimal
energy pathways without entropic or solvent contributions and are just shown for reference here.
The green circles denote the statically optimized transition states.

Very similar to the approach in Section 2.3, the minimal free energy pathways from Figure 8
(the red paths) have again been extracted and are presented in Figure 9 as one-dimensional graphs.
The reaction free energies ∆RF and reaction free energy barriers ∆F‡ are also presented in Table 4.

Table 4. Total reaction free energies ∆RF and reaction free energy barriers ∆F‡ for the aldol reactions
(R = Et) in DMF from HyAIMD metadynamics; extracted from Figure 9. Free energies are given relative
to educts.

Product ∆RF / kJ mol−1 ∆F‡ / kJ mol−1

(R)-anti −11.06 42.24
(R)-syn −18.66 31.79
(S)-anti −17.71 25.40
(S)-syn −11.52 43.84
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Figure 8. Free energy profiles of the aldol reactions (R = Et) in DMF computed from HyAIMD
metadynamics; definition of collective variables see Figure 2b. Red curves depict the minimum
energy paths from educts (upper-right energy basin) to products (lower-left energy basin). Green
curves show the results of static NEB calculations for comparison. Green circles denote the statically
determined transition state.

Figure 9. One-dimensional free energy profiles of aldol reactions (R = Et) in dimethylformamide (DMF)
obtained from HyAIMD metadynamics; corresponds to red curves in Figure 8. Free energies are given
relative to educts.
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The data show that including the explicit solvent influence brings some significant changes to
the free energy surface. Most apparent, all four reactions possess negative reaction free energy values
∆RF now (exergonic), so that all four reactions are predicted to run spontaneously. Both the reactions
leading to the (S)-anti product (the preferred product) and to the (R)-syn product show reaction free
energies of around −20 kJ mol−1, while the other two reactions have values of around −10 kJ mol−1

here. The free energy barriers have all been significantly lowered by the addition of solvent. While they
have been in the range of 50–60 kJ mol−1 in vacuum (see Table 3), they are now all in a range of
25–40 kJ mol−1. In particular, the free energy barrier leading to the experimentally preferred (S)-anti
product is only 25 kJ mol−1, which is as weak as a strong hydrogen bond and can be easily overcome
by the thermal energy at room temperature.

When compared to the metadynamics simulations in vacuum (see Figure 6), the free energy
profiles in Figure 8 possess even higher barriers for non-concerted reaction mechanisms; those would
correspond to horizontal and vertical paths in the profile. The only viable path for the reaction is the
concerted mechanism, in which the C–C bond formation takes place simultaneously with the proton
transfer. The explicit description of the solvent even intensified this effect by making the valley leading
from educts to product more narrow.

To conclude this section, we observe that the inclusion of explicit solvent influence significantly
lowers the reaction free energies ∆RF; all four reactions are exergonic now. At the same time,
it significantly reduces the free energy barrier heights down to values that can be overcome by
thermal energy at room temperature. Or in other words, only the presence of explicit solvent allows
this reaction to happen at all. The main product observed in the experiment is correctly predicted by
our approach, it possesses by far the smallest free energy barrier of only 25 kJ mol−1 here. Therefore,
the HyAIMD metadynamics method is able to predict both the correct absolute (R / S) and relative
(syn / anti) stereochemistry of the product. As noted above, the requirement for close oxygen–oxygen
contact to allow for a concerted reaction dictates the high enantioselectivity.

2.5. Influence of Substituent

After having extensively discussed the proline-catalyzed aldol reaction between two molecules of
propionaldehyde (R = Et), we now consider an asymmetric case in which the donor aldehyde is still
propionaldehyde, but the acceptor aldehyde is isobutyraldehyde, i.e., R = iPr. With non-identical donor
and acceptor aldehydes, there could be eight different products in principle (if donor and acceptor
swap), but the experimental setup made sure that this does not happen by using a syringe pump [33],
so that we only have to consider the same four products as before, see Figure 1b.

When considering the R = Et case, we found that both the static NEB calculations and the
metadynamics simulations in vacuum were not suitable to correctly predict and describe the reaction
outcome, and only the metadynamics simulation with explicit solvent was able to yield results which
matched the experiment. Therefore, we will only discuss the explicit solvent approach for the R = iPr
case. The data from the other two approaches are presented in the Supporting Information in Figures S2,
S5, and S9 as well as Tables S2 and S5.

The two-dimensional free energy profiles obtained from the four metadynamics runs for R = iPr
under the full solvent influence are shown in Figure 10 as contour plots. The free energy basins on
the lower-left side of each plot represent the product state (both C–C and O–H bond intact), while the
basins on the upper-right side of each plot correspond to the educts (both bonds broken). Note that
the free energies in the contour plots are not normalized to the educts as in the one-dimensional plots,
but rather to the smallest encountered free energy value, which is the product here. The red paths
through these surfaces depict the minimal free energy pathways which connect the educt state with the
product state (i.e., one likely path the reaction might take). The green paths are the results of static NEB
calculations; they are just shown for reference here. The green circles denote the statically optimized
transition states.



Molecules 2020, 25, 5861 14 of 23

Figure 10. Free energy profiles of the aldol reactions (R = iPr) in DMF computed from HyAIMD
metadynamics; definition of collective variables see Figure 2b. Red curves depict the minimum energy
paths from educts (upper-right energy basin) to products (lower-left energy basin). Green curves show
the results of static NEB calculations for comparison. Green circles denote the statically determined
transition state.

As also performed above, the minimal free energy pathways from Figure 10 (the red paths) have
been extracted and are presented in Figure 11 as one-dimensional curves. For direct comparison,
the reaction free energies ∆RF and reaction free energy barriers ∆F‡ are presented in Table 5.

Table 5. Total reaction free energies ∆RF and reaction free energy barriers ∆F‡ for the aldol reactions
(R = iPr) in DMF from HyAIMD metadynamics; extracted from Figure 11. Free energies are given
relative to educts.

Product ∆RF / kJ mol−1 ∆F‡ / kJ mol−1

(R)-anti −14.33 36.54
(R)-syn −9.35 39.35
(S)-anti −35.63 24.29
(S)-syn −13.70 22.59
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Figure 11. One-dimensional free energy profiles of aldol reactions (R = iPr) in DMF obtained from
HyAIMD metadynamics; corresponds to red curves in Figure 10. Free energies are given relative
to educts.

When comparing this data to those from the R = Et case (Table 4), some notable differences are
visible. The reaction free energies ∆RF are now distributed over a wider range of −10 . . . − 35 kJ mol−1,
when compared to the span of −10 . . . − 20 kJ mol−1 above. The reaction which leads to the formation
of the experimentally favored (S)-anti product possesses by far the lowest reaction free energy of
−35 kJ mol−1, at least 20 kJ mol−1 smaller than for all the other reactions. The free energy barriers
∆F‡ are found in the range of 20 . . . 40 kJ mol−1, which is very similar to the R = Et case. The two
reactions leading to the (R) product (wrong absolute stereochemistry) show significantly larger free
energy barriers than the other two reactions. The highest free energy barrier among all four reactions
is found when going towards the (R)-syn product, which possesses both the wrong absolute and
relative stereochemistry.

Another interesting question concerns the syn : anti selectivity. The experimental results [33] show
that the syn : anti ratio in the R = iPr case is 1 : 24, which is very high when compared to the R = Et case
where it was 1 : 4. It will be interesting to see if this difference in syn : anti selectivity between these two
substituents is also reproduced in our metadynamics simulations. Indeed, there is a large difference
in the relative reaction free enthalpies. In the R = Et case, the difference between ∆RF for (S)-syn and
(S)-anti was 6.19 kJ mol−1. However, in the R = iPr case discussed here, this difference amounts to
21.93 kJ mol−1. This significantly larger free energy advantage for the (S)-anti product over the (S)-syn
product in the R = iPr case can (at least qualitatively) explain the larger syn : anti ratio that has been
observed in experiment.

We conclude that also for the R = iPr case, our approach is able to correctly describe and predict
the stereoselectivity of the organocatalytic aldol reaction. The experimentally observed main product is
correctly predicted by a very large reaction free energy gain when compared to the other three products.
Even the larger syn : anti selectivity when compared to the R = Et case is qualitatively predicted by our
computations, which suggests that the effect of the substituent R on the free energy profile is correctly
captured by the methodology.

3. Methods

Figures 3, 4, 5, 7, 9 and 11 were created with xmgrace [68]. Figures 6, 8 and 10 have been obtained
from Gnuplot [69]. Figure 2b was rendered with VMD [70] and Tachyon [71]. Analysis of the simulation
trajectories was carried out with TRAVIS [72,73].



Molecules 2020, 25, 5861 16 of 23

3.1. Static Calculations and Nudged Elastic Band

The geometry optimizations of the educts and products in vacuum, as well as the static nudged
elastic band (NEB) calculations were performed with the ORCA program package [74–76], using basis
sets of the kind def2–TZVPP [77], RI auxiliary basis sets of the kind def2/J [78], and Grimme’s D3
dispersion correction [79,80] with Becke–Johnson damping. The self-consistent field (SCF) convergence
criterion was set to “VeryTightSCF”, and the settings “Grid5 NoFinalGrid” were used for the DFT
grid. After the climbing image NEB (CI–NEB) calculations were converged, a subsequent transition
state optimization was started from the climbing image, and harmonic frequency calculations were
employed to ensure that the optimized transition states possess exactly one imaginary frequency.

3.2. Force Field Pre-Equilibration

The simulations of the aldol reactions were started from optimized structures of the respective
products. In order to obtain initial configurations with a reasonable orientation of solvent molecules
around the substrate, we employed a simple force field pre-equilibration scheme. The optimized
structure of the reaction product was placed in the middle of a cubic simulation cell with around
1.4 nm edge length, and all atoms of the product were frozen. By doing so, we did not require bonded
interaction parameters for these organic molecules. Atomic partial charges were then computed by
the restraint electrostatic potential (RESP) approach [81] as implemented in CP2k [82]. Lennard-Jones
parameters for the elements were taken from the OPLS–AA force field [83]. Then, 19 DMF molecules
were randomly placed in the simulation cell by using Packmol [84], and an MD simulation of these
molecules around the frozen reaction product was carried out with LAMMPS [85] in order to obtain
a reasonable solvent orientation. The final snapshots of these simulations were used as starting
configuration for the subsequent step.

3.3. Ab Initio Molecular Dynamics Simulations

For the BOMD simulations, we used the program package CP2k [57,58], employing the Quickstep
method [86] and orbital transformation [87]/DIIS for fast convergence. The electronic structure was
calculated with density functional theory [88,89], utilizing the BLYP functional [90,91] together with
the recent reparametrization [92] of Grimme’s D3 dispersion correction [79,80] with Becke–Johnson
damping. Basis sets of the kind MOLOPT-DZVP-SR-GTH [93] and GTH pseudopotentials [94,95] were
applied to all atoms. The plane wave cutoff was set to 350 Ry, and an SCF convergence criterion of
10−6 was used. The time step was chosen to be 0.5 fs in all simulations. The simulation temperature
was adjusted to 300 K by a Nosé–Hoover chain thermostat [96–98] (i.e., NVT ensemble). After an
equilibration period of 1 ps with massive thermostats and thermostat time constant τ = 10 fs, a global
thermostat with τ = 50 fs was applied for the production runs and metadynamics simulations.
The “vacuum” AIMD simulations contained 17 argon atoms within the periodic simulation cell in
order to improve ergodicity by regularly transferring momentum and energy to different parts of the
organic molecule.

3.4. Hybrid Simulation Approach

In order to avoid unwanted side reactions and to save time by avoiding irrelevant regions of
the potential energy surface, we employed our newly developed hybrid AIMD approach, which is
described in Section 2.1. We started the simulations from the products; therefore, we added the
additional bond potential to all covalent bonds except two: the C–C bond which has to be broken to get
back to the educts, and the alcohol O–H bond in order to allow the transfer of the proton back to the
proline. The repulsive Lennard-Jones potential was added to all pairs of atoms except 1–2, 1–3, and 1–4
bonded neighbors and the pair of the transferred proton and the proline carboxylic oxygen atom
which receives this proton. The CP2k input files for the hybrid AIMD and force field simulations were
automatically generated by a not yet publicly available module of the TRAVIS program package [72,73].
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This module will be shared upon request and will be put into the public TRAVIS version once it is
stable and mature enough.

3.5. Metadynamics Simulations

To explore the free energy profile of the aldol reaction, we have chosen two collective variables
(distances), which are depicted by the two labels r1 and r2 in Figure 2b. For both collective variables,
we employed harmonic upper walls, at 250 pm for r1 and at 300 pm for r2, with a spring constant of
k = 5.25 · 10−2 kJ mol−1 pm−2 in order to not explore regions of the free energy surface which are far
on the educt side—this would waste a lot of computational power. In addition to that, we placed
a harmonic restraint on the distance between the two oxygen atoms of the system (target value
r0 = 266 pm, spring constant k = 4.184 · 10−4 kJ mol−1 pm−2) in order to keep the two oxygen atoms
close enough together to allow for the proton transfer (“O–H· · ·O”) required during the reaction.

The metadynamics simulations [55] were performed in the extended Lagrangian scheme as
proposed by Iannuzzi et al. [99] and implemented in CP2k [57,58], using a virtual particle mass of
98.0 a.m.u., a scale of 15 pm, and a coupling spring constant of λ = 0.525 Eh a−2

0 for both collective
variables. The temperature of the virtual particle was thermostated to 20 K. New Gaussian hills
with a height of 1.31 kJ mol−1 and a variance of 15 pm (for both dimensions) were spawned every 40
simulation steps (i.e., every 20 fs). The total simulation time of the metadynamics was around 250 ps
in all cases. Within the last 50 ps of the simulations, the height of the spawned hills was reduced to
0.13 kJ mol−1 in order to smoothen the free energy profile.

The 2D contour plots of the free energy profiles in Figures 6 and 8 were created from the CP2k
output by a locally developed script. The free energy paths in these contour plots (red curves) have
been obtained by using the nudged elastic band (NEB) approach to these energy surfaces, using a
locally developed C++ program which is based on the “cppneb” program from Jaap Kroes.

4. Conclusions

In this article, we have presented a computational study on the enantioselectivity of the
organocatalytic proline-catalyzed aldol reaction in DMF. To explore the free energy surface of the
reaction, we have performed two-dimensional metadynamics on top of ab initio molecular dynamics
(AIMD) simulations with fully explicit solvent description on the DFT level of theory. To avoid
unwanted side-reactions during the metadynamics run, we utilize our newly developed hybrid AIMD
(HyAIMD) simulation scheme, which adds a simple force field to the AIMD simulation in order to
prevent unwanted bond breaking and formation. This ensures that the metadynamics only explores
regions of the potential energy surface which contribute to the product formation, and therefore saves
a lot of computer time. Benchmark calculations show that this approach has, apart from preventing
unwanted reactivity, no significant influence on the structure and dynamics of liquid phase simulations.

Our ab initio simulation results with explicit solvent are able to nicely reproduce the experimental
findings, including the main product that is formed, and even give a correct qualitative prediction
of the change in syn : anti product ratio when considering a different substituent. We show that
both the explicit description of the solvent and the inclusion of entropic effects are vital to a good
outcome—metadynamic simulations in vacuum and in particular static nudged elastic band (NEB)
calculations yield significantly worse predictions when compared to the experiment. By studying the
free energy profiles, we give a microscopic explanation for the high enantioselectivity: the reaction
can only take place in a concerted manner, where the C–C bond formation and the proton transfer
take place simultaneously—particularly with explicit solvent, where the valley for the reaction in the
free energy profile is very narrow. This is only possible if the two oxygen atoms between which the
proton shall be transferred are close enough during the whole process, which is only the case in educt
arrangements that lead to the preferred product.

This is the first time that the free energy profile of an organocatalytic aldol reaction in an
explicit organic solvent is presented and discussed in the literature, and also the first time that the
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solvent-dependent enantioselectivity of such a reaction has been predicted by ab initio methods.
Our approach can be applied to a plethora of other enantioselective (and non-enantioselective)
reactions, and also to many more solvents, including, e.g., ionic liquids. With sufficient computer time,
a solvent screening can be performed for a given reaction to find the solvent which leads to the highest
enantioselectivity, or an organocatalyst can be fine-tuned for better application-specific performance.

One improvement of the approach presented here is to apply well-tempered metadynamics [100]
instead, which makes the detection of convergence of the free energy profiles significantly easier,
and does no longer require to manually scale down the hill height in the last part of the simulation.
We will certainly apply this method in our ongoing work.

Supplementary Materials: The following are available online, Figure S1: Energy profile of aldol reaction in
vacuum with R = Et from static NEB calculation, Figure S2: Energy profile of aldol reaction in vacuum with
R = iPr from static NEB calculation, Figure S3: Two-dimensional free energy profile of aldol reaction in vacuum
with R = Et from metadynamics, Figure S4: Two-dimensional free energy profile of aldol reaction in DMF with
R = Et from metadynamics, Figure S5: Two-dimensional free energy profile of aldol reaction in vacuum with
R = iPr from metadynamics, Figure S6: Two-dimensional free energy profile of aldol reaction in DMF with R = iPr
from metadynamics, Figure S7: One-dimensional free energy profile of aldol reaction in vacuum with R = Et
from metadynamics, Figure S8: One-dimensional free energy profile of aldol reaction in DMF with R = Et from
metadynamics, Figure S9: One-dimensional free energy profile of aldol reaction in vacuum with R = iPr from
metadynamics, Figure S10: One-dimensional free energy profile of aldol reaction in DMF with R = iPr from
metadynamics, Table S1: Total reaction energies and energy barriers of aldol reaction in vacuum with R = Et from
static NEB calculations, Table S2: Total reaction energies and energy barriers of aldol reaction in vacuum with
R = iPr from static NEB calculations, Table S3: Total reaction free energies and free energy barriers of aldol reaction
in vacuum with R = Et from metadynamics, Table S4: Total reaction free energies and free energy barriers of aldol
reaction in DMF with R = Et from metadynamics, Table S5: Total reaction free energies and free energy barriers of
aldol reaction in vacuum with R = iPr from metadynamics, Table S6: Total reaction free energies and free energy
barriers of aldol reaction in DMF with R = iPr from metadynamics.
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Abbreviations

The following abbreviations are used in this manuscript:

AIMD ab initio molecular dynamics
BOMD Born–Oppenheimer molecular dynamics
DFT Density functional theory
DMF Dimethylformamide
%ee Enantiomeric excess
EMIm 1-Ethyl-3-methylimidazolium cation
Et Ethyl group
HyAIMD The hybrid AIMD approach presented here
iPr Isopropyl group
LJ Lennard-Jones
MD Molecular dynamics
NEB Nudged elastic band
OAc Acetate anion
RDF Radial distribution function
RESP Restraint electrostatic potential
SCF Self-consistent field
TS Transition state
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