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transition from spiral wave 
chimeras to phase cluster states
Jan frederik totz1,2,4, Mark R. tinsley3, Harald engel4 & Kenneth Showalter3 ✉

photochemically coupled Belousov-Zhabotinsky micro-oscillators are studied in experiments and 
simulations. Generally good agreement between the experimental and simulated dynamical behavior 
is found, with spiral wave chimeras exhibited at small values of the time delay in the coupling between 
the oscillators, spiral wave core splitting at higher values, and phase cluster states replacing the spiral 
wave dynamics at the highest values of the time delay. Spiral wave chimera dynamics is exhibited 
experimentally for much of the time delay range, while spiral wave phase cluster states are exhibited 
more in the model simulations. In addition to comparing the experimental and simulation behavior, we 
explore the novel spiral wave phase cluster states and develop a mechanism for this new and unusual 
dynamical behavior.

The spiral wave chimera in two-dimensional arrays of coupled oscillators is a remarkable spatiotemporal pat-
tern, with an ordered spiral wave rotating around a core of incoherent oscillators. Discovered by Kuramoto 
and Shima1–3 in arrays of nonlocally coupled phase and FitzHugh-Nagumo oscillators, as well as in the com-
plex Ginzburg-Landau equation, a number of theoretical studies of the spiral wave chimera state subsequently 
appeared4–14. Spiral wave chimeras have recently been studied experimentally by Totz et al.15 in large arrays of 
photochemically coupled Belousov-Zhabotinsky (BZ) oscillators.

In a theoretical study of spiral wave chimeras in arrays of phase oscillators, Martens et al.4 discuss several 
puzzles concerning the nature of these chimeras, noting that the state becomes numerically unobservable on 
increasing a phase-lag parameter in the model, and the bifurcation associated with this phenomenon is not 
known. Another puzzle is that the spiral wave chimera exists only for values of the phase-lag parameter that are a 
small fraction of the natural period. This is in contrast to chimera states in one-dimensional ring configurations 
of phase oscillators, which are found at values of the phase-lag parameter around π/29,16,17. Another unusual char-
acteristic of spiral wave chimeras is their erratic motion arising from the asynchronous oscillators in the core.

While the dynamics of BZ oscillators is quite different from phase oscillator dynamics, there are striking sim-
ilarities in the spiral wave chimeras in these systems. In the BZ spiral wave chimera15, a time delay is used in the 
coupling, which plays a role similar to the phase-lag parameter18,19. Like the phase oscillator system studied by 
Martens et al.4, the BZ spiral wave chimera also exists for time delays that are only a small fraction of the natural 
period. This is in contrast to one-dimensional BZ chimera states, which occur with time delays of approximately 
3/4 of the period6,20–22.

In this paper, we present experimental and computational studies of the dependence of the dynamical behav-
ior on the time delay used in the nonlocal coupling of the BZ oscillators. New insights into the underlying dynam-
ics of the BZ spiral wave chimera15 are described. We computationally explore the range of coupling time delays 
for which the spiral wave chimera state exists and determine delay values where the character of the behavior 
changes. We characterize the dynamics of the remaining spiral wave, which now advances with pulsing behavior. 
On further increasing the time delay, the core is similar to the core of aperiodic oscillators of the spiral wave 
chimera in the sense that erratic motion is exhibited; however, phase clusters23,24 now occur in the core. In both 
experiments and simulations at higher values of time delay, spiral wave core splitting occurs. In both cases, this 
behavior is replaced by periodic phase clusters in the oscillator population. While there is good overall qualitative 
agreement between the experimental and simulation dynamical behavior, there are interesting differences in the 
transition to phase cluster behavior, with spiral wave chimera dynamics dominant in experiments and phase 
cluster dynamics dominant in simulations. Here, we focus primarily on the novel phase cluster dynamics found 
in our computational modeling study.
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procedures
Experimental. Our experimental studies of spiral wave chimeras utilize chemical oscillators prepared as in 
Totz et al.15 by loading cation-exchange beads with a photosensitive catalyst for the BZ reaction, rutheni-
um-tris-dimethylene-bipyridine ( +Ru(dmbpy)3

2 ). The catalyst-loaded beads are positioned in a precision drilled 
acrylic plate, which is bathed in catalyst-free BZ reaction mixture. The behavior of the discrete oscillators is mon-
itored in order to select the oscillators that form a reasonably narrow period distribution and to remove defective 
oscillators. These oscillators are indexed to form a virtual array of up to 40 × 40 = 1600 BZ oscillators.

The BZ oscillators are monitored by measuring the fluorescence, which is proportional to the concentration of 
+Ru(dmbpy)3

2 , allowing the state of each oscillator to be determined. The nonlocal coupling is carried out by illu-
minating oscillator (j,k), at the center of a square region of side length +l2 1, according to its state and the states 
of its neighboring oscillators described by Eq. (1):
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The light intensity Ij k,  projected on oscillator (j, k) is equal to a background light intensity I0 plus the difference 
between the state of oscillator (j, k), measured in gray value g t( )j k, , and the states of its neighboring oscillators (m, 
n), measured in gray values τ−g t( )m n, , at times t and ( τ−t ), respectively. The coupling strength decays expo-
nentially with the distance = − + −r m j n k( ) ( )2 2  between oscillators (j, k) and (m n, ), which is governed by 
the decay constant κ. The actinic light at 440 nm is well separated from the measured fluorescence above 550 nm. 
The oscillatory period of oscillator (j, k) is determined by measuring the time interval between successive peaks 
in the time series of the oxidized catalyst concentration, which is proportional to the gray value gj k, . The initial 
conditions are obtained by entraining each oscillator to a periodic external forcing with individual phase offsets 
ψj k, , which are given by ψ = − −k k j jarctan(( )/( ))j k, 0 0 . The boundary conditions are specified in ref. 15 in Eqs. 
S1 and S2 (Supplementary Information), where the range of the nonlocal coupling function is modified to omit 
non-existent nodes beyond the grid.

Computational. The kinetics of the BZ oscillators can be modeled with the dimensionless 
Zhabotinsky-Buchholtz-Kiyatkin-Epstein (ZBKE) model25, modified to describe the photosensitive 
ruthenium-catalyzed, coupled discrete oscillator system20,26–28:
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where the variables u t( )j k,  and v t( )j k,  represent the concentrations of HBrO2 and +Ru(dmbpy)3
3  on oscillator ( j k, ), 

and w u v( , )ss j k j k j k, , , ,  represents the steady-state concentration of +HBrO2 . The stoichiometric parameter for oscilla-
tor ( j k, ) is = . ± .q 0 7 0 2j k, , giving the average natural period and standard deviation = . ± .T 36 0 1 60 , the time 
scale parameters are ε = .0 111 , ε = . × −1 7 102

5, ε = . × −1 6 103
3, the chemical kinetics parameters are α = .0 1, 

β = . × −1 7 10 5, γ = .1 2, µ = . × −2 4 10 4, and the simulation time step is ∆ = . × −t 1 0 10 4. The oscillatory 
period of oscillator ( j k, ) is determined by measuring the time interval between successive peaks in the time 
series of the oxidized catalyst concentration, vj,k. The initial conditions and boundary conditions are the same as 
in the experiments. In addition, simulations using periodic boundary conditions were also carried out, described 
in ref. 15 in Fig. S2 and Eq. S3 (Supplementary Information). There were no significant differences in the proper-
ties of the spiral wave chimera for the two types of boundary conditions.

Because the gray values in the coupling Eq. (1) are proportional to the oxidized catalyst concentration, we have 
an analogous coupling equation for the simulations in terms of +[Ru(dmbpy) ]3

3 , which is represented by the vari-
ables ( )v tj k,  and τ−v t( )m n,  for oscillators ( j k, ) and (m n, ) in Eq. (3):
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Here, Ij k,  is the simulation light intensity projected onto oscillator (j, k), = . × −I 5 25 100
4 is the background 

light intensity, = . × −K 1 6 10 4 is the coupling strength, κ = .0 4 is the coupling decay constant, =l 4 is the max-
imum coupling distance, and τ is the time delay.

We also define a two-dimensional local order parameter Rj k, , which permits delineation of the asynchronous 
core region from the synchronous spiral wave:
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where θm n,  are the phases of oscillators (m, n) in a square region of side length δ +2 1, with oscillator (j, k) in the 
center.

computational Dynamical Behavior as a function of time Delay
As the value of the time delay τ  is increased, the perturbation to oscillator v t( )j k,  from oscillators τ−v t( )m n,  is 
increasingly delayed, as seen in Eq. (3). The effect of the delay is to lengthen the period of the spiral wave, becom-
ing an approximately linear function of τ, as shown in Fig. 1. Also shown in this figure is the time averaged period 
of the core oscillators as a function of τ, which remains approximately constant for much of the range of τ.

Four regions of dynamical behavior are exhibited in Fig. 1 : (a) At small values of time delay, τ .1 0 (light 
green), the spiral wave period is less than the averaged period of the spiral core; (b) at slightly larger values, 

 τ. .1 0 3 5 (green), the spiral wave period is approximately equal to the averaged spiral core period; (c) at still 
larger values,  τ. .3 5 5 7 (dark green), there is a range over which the spiral wave period is greater than the 
averaged period of the spiral core; (d) at the highest values of time delay, τ > .

∼
5 7 (orange), spiral wave core split-

ting occurs, which then is replaced by phase cluster behavior. The dynamical behavior in each of these regions is 
examined in the following sections.

Spiral wave chimeras with τ .1 0 . At small values of the time delay, τ .1 0, the period of the spiral 
wave is smaller than the averaged period of the aperiodic oscillators in the spiral wave core (Fig. 1, light green). 
Figure 2 shows an example of a spiral wave chimera in this range, with τ = .0 75. The phase and period of each 
oscillator are shown in Fig. 2(a,b), and the local order parameter Rj k,  is shown in Fig. 2(d). The core of the spiral 
wave chimera is quite small; however, the larger averaged period of the core can be discerned as well as the lower 
value of the order parameter associated with the asynchronous oscillators. The phases θ of oscillators in a horizon-
tal cross section at oscillator number 32 are shown in Fig. 2(c). We see the phases of the oscillators in the spiral 
wave regularly advance, although this regularity is disrupted when the core oscillators are sampled.

Shown in Fig. 3(a) is an occurrence plot of the number of oscillators with period T  over time in which the local 
order parameter < .R 0 4j k, . Figure 3(b) shows a plot of the period over time as a function of integer distance, 
which originates at the center of the core of the spiral wave chimera. A wide range of periods is exhibited for the 
oscillators within and near the core, while the range in period narrows in the spiral wave farther away from the 
core. The aperiodicity of the core oscillators can be discerned in Fig. 3(a,b).

Figure 1. Period of oscillators making up the spiral wave (black line) and time-averaged period of oscillators in 
the core of the spiral wave (gray line) as a function of time delay τ and relative time delay τ T/ 0, where T0 is the 
average natural period. The core oscillators are identified as the oscillators for which the local order parameter 

< .R 0 4j k, , as defined in Eq. (4). All simulations utilize the modified ZBKE model described by Eq. (2) in an 
array of ×64 64 oscillators with nonlocal coupling according to Eq. (3). Average natural period and standard 
deviation: = . ± .T 36 0 1 60 .
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collapse of the spiral wave chimera core for τ. . 1 0 3 5. As shown in Fig. 1, the spiral wave period 
and the averaged period of the oscillators of the spiral wave core become approximately equal over a range of the 
time delay,  τ. .1 0 3 5 (green). The spiral wave core becomes smaller within this range of τ values until it vir-
tually disappears, in the sense of the core comprising oscillators that differ from the spiral wave oscillators. 
Figure 4(a) shows the phase θ of each oscillator in the array for τ = .3 3. Figure 4(b,d) show the period T  and local 

Figure 2. Spiral wave chimera in an array of ×64 64 oscillators with nonlocal coupling according to Eq. (3) 
and the time delay τ = .0 75. (a) Phase and (b) period of each oscillator, and (d) the local order parameter Rj k,  
defined by Eq. (4). (c) Oscillators firing in horizontal cross section at oscillator 32, which can be compared with 
the advancing spiral wave in (a). See Supplementary Information for corresponding video. ≈T 25spiral  and 
average ≈T 26core .

Figure 3. (a) Occurrence plot of number of oscillators with period T  for R 0 4j k, < . . (b) Period as a function of 
integer distance, which originates at the center of the spiral wave chimera core.
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order parameter Rj k,  of the oscillators. With the core essentially disappearing, the period is remarkably uniform 
and there is no evidence of oscillator aperiodicity in the system. The low value of the local order parameter shown 
in Fig. 4(d) arises from the phase singularity at the tip of the spiral wave in the oscillator array29,30.

Figure 4(c) shows the phases θ of oscillators in the horizontal cross section at oscillator number 32, where we 
see a new feature. The spiral wave originates at the tip, which is almost centered at oscillator number 32 on the 
x-axis. Close examination of the video of Fig. 4(a,c) reveals that the entire spiral wave advances in pulses, with 
each rotational period of the spiral made up of 7 pulses.

When the oscillators fire in the wave front, the time-delayed coupling gives rise to another collection of oscil-
lators ahead of the wave front that fire at time τ′ later. Here, the time τ′ is defined as the time delay τ plus the time 
required for the oscillators to fire after being perturbed, τ τ′ = + .1 1, where the firing time of 1.1 is determined 
by the best overall fit. The firing of these oscillators gives rise, in turn, to yet another collection of oscillators ahead 
of the wave front firing, again at time τ′ later. This process results in the spiral wave advancing one complete rota-
tion in 7 pulses, with the period given by τ= × ′ ≈T 7 31. This pulsing structure defines the wave front of the 
spiral, which is first sampled as the counter-clockwise rotating spiral passes through the horizontal cross section 
on the left and again as it passes through the cross section on the right. Each time a group of oscillators fires in the 
wave front, they perturb oscillators ahead at time τ in the almost completely relaxed wave back. These oscillators 
are ready to fire and they do so at time τ τ′ −  after the perturbation. Insights into the firing dynamics of BZ oscil-
lators can be found by considering the phase response curves (PRC) of the system, which, for strongly perturbed 
oscillators, has a refractory region at early values of the perturbation phase and an almost instantaneous firing 
region at later values of the perturbation phase15,22,31–35. The pulsing structure of the spiral wave will be further 
characterized in the next section in which we define the various sequences of phase clusters found in the system.

phase cluster spiral wave cores for 3 5 5 7τ. .  . For values of the time delay  τ. .3 5 5 7, the 
spiral wave period is larger than the time averaged period of the oscillators in the spiral core. This change has 
significant consequences for the dynamical behavior of oscillators within the spiral core, which reappears and 
grows larger with increasing τ . Figure 5(a) shows a plot of the phase of each oscillator in the array of coupled 
oscillators for 5 7τ = . , which appears similar to the plots of oscillator phase for smaller values of τ. However, the 
period T  and local order parameter Rj k, , shown respectively in Fig. 5(b,c), display features not previously 

Figure 4. (a) Phase θ, (b) period T , and (d) local order parameter Rj k,  of the oscillators for τ = .3 3. (c) 
Oscillators firing in horizontal cross section at oscillator 32, which can be compared with the advancing wave in 
(a). See Supplementary Information for corresponding video.
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observed. Much greater motion of the core now gives rise to large Doppler effects, where oscillators in the direc-
tion in which the core is moving fire earlier while those in the opposite direction fire later. This effect can also be 
seen in Fig. 5(d), in which the spiral wave exhibits a large period distribution even at distances far removed from 
the core. Another new feature is exhibited by the spiral core and in a radius of approximately 9 oscillators from the 
center of the core: phase cluster states firing with four different preferred periods. These groups of oscillators can 
be seen in Fig. 5(d) as well as in the occurrence plot in Fig. 5(e), which shows the number of oscillators with 
period T  over time for which the local order parameter < .R 0 4j k, . Each group of preferred period oscillators form 
a phase cluster state, with the number of clusters in the state determining the period.

Examination of the successive firing of oscillators in the spiral core and the surrounding region reveals that 
when a collection of oscillators fires, this gives rise to another, different collection of oscillators firing at time τ′ 
later. The firing of these oscillators gives rise, in turn, to yet another, different collection of oscillators firing, again 
at time τ′ later. This process continues until the firing of a collection of oscillators results in perturbing the origi-
nal collection of oscillators to fire, giving rise to the beginning of a new period of oscillation. The time τ′ is the 
same as earlier defined for the pulsing spiral wave shown in Fig. 4.

Schematic representations of this process are shown in Fig. 6, where three-cluster and four-cluster states are 
shown in red and blue, respectively. The three-cluster state corresponds to the oscillators with period ≈T 20 
shown in Fig. 5(d,e). The first collection of oscillators fires and τ′ later the second collection of oscillators fires. 
This perturbation results in the third collection of oscillators firing at time τ′ later, which results in the first collec-
tion of oscillators firing, beginning a new period of oscillation with T 3 20τ= × ′ ≈ . The four-cluster state, 
shown in blue, corresponds to the oscillators with period ≈T 27, shown in Fig. 5(d,e). Here, the time delay plus 
firing time τ′ remains the same; however, now there is a fourth group of oscillators such that the period is 
T 4 27τ= × ′ ≈ .

As shown in Fig. 5(d), there are two more phase cluster states that produce periods given by T 5 34τ= × ′ ≈  
and τ= × ′ ≈T 6 41. Whereas the first two phase cluster states appear to be made up of oscillators randomly 
located in the spiral core and surroundings, the third phase cluster, which has the same period as the spiral wave, 

≈T 34, corresponds to pulsing behavior, with 5 pulses per period. This pulsing behavior is much like the 
seven-cluster state shown in Fig. 4(d), with a spiral period of τ= × ′ ≈T 7 31.

The fourth phase cluster state in Fig. 5(d) is unusual in the sense that its period ≈T 41 is larger than the aver-
age natural period of T 36 0 1 60 = . ± . . The oscillators in this group are perturbed by the last group of oscillators 
firing in the ≈T 34 pulsing cluster state to yield a period ≈T 41 cluster state. The period is larger than the natural 
period T0 apparently because the last group was previously perturbed at a phase that resulted in a phase delay and, 
hence, a larger period. We note that this group is very small in Fig. 5(d,e).

Figure 5. (a) Phase θ, (b) period T , and (c) local order parameter Rj k,  of the oscillators for τ = .5 7, where the 
period of the spiral wave is larger than the time averaged period of the core of the spiral wave. (d) Period as a 
function of integer distance, which originates at the center of the spiral wave core. (e) Occurrence plot of the 
number of oscillators with period T  for < .R 0 4j k, . See Supplementary Information for corresponding video.
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Even though there are four cluster states of oscillators, with four distinct periods, remarkably, these oscillators 
fire in unison each time increment of τ′. The firing of oscillators in each cluster of a cluster state gives rise to oscil-
lators firing in another cluster τ′ later, either in the core or the relaxed wave back of the spiral wave ahead. The 
cross-talk between the clusters gives rise to synchronized firing of oscillators in the different cluster states, since 
oscillators firing in the wave front perturb not only the oscillators in their own cluster state but also oscillators in 
other cluster states. This results in the pulsing behavior of the entire spiral wave and core.

phase cluster behavior and spiral core splitting for τ .5 7 . The spiral waves with phase cluster cores 
are completely replaced by phase cluster behavior on increasing the value of the time delay to τ .6 5. The phase 
cluster behavior for τ = .6 6 is shown in Fig. 7. The phases of the oscillators in the array are shown in Fig. 7(a), 
where propagating waves form phase clusters with the period τ= × ′ ≈T 3 23. The local order parameter 
defined by Eq. (4) is very low, as shown in Fig. 7(b), since three different groups of oscillators successively firing 
give rise to one period of oscillation. Figure 7(c) shows a plot of oscillator phase at the oscillator 32 horizontal 
cross section as a function of oscillator index, in which three clusters of oscillators firing make up the phase clus-
ter state.
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The two-dimensional local order parameter Rj k,  in Eq. (4) is generalized for phase cluster states in Eq. (5), 
where d is defined as an integer. The value of d in the exponent reduces the period of the complex exponential. For 
example, for =d 2, the phases θ = 0j k,  and θ π=j k,  map to the same value, and therefore the value of R2 is 1, 
corresponding to a two-cluster or antiphase state.

Figure 7(d) shows the local order parameter Rj k,
3  for three-cluster states36, defined by Eq. (5) for =d 3. We see 

that the order given by Rj k,
3  is high, as the three groups of oscillators give rise to the phase cluster state. The period 

is defined by the successive firing of the three groups of oscillators or, equivalently, by the firing of each particular 
oscillator. We note that the phase cluster state described in Fig. 7 is unlike phase clusters in homogeneous oscilla-
tory media, in which spatially distinct regions successively oscillate37, for example, three regions in a three-cluster 
state in the homogeneous spatiotemporal BZ system. The oscillators in the phase cluster state described in Fig. 7 
are stochastically distributed through the oscillator array but are connected via the propagating wave.

Finally, it is instructive to return to the spiral waves with phase-cluster cores to examine the phenomenon of 
core splitting15. Figure 8 shows the system at τ  = 0.62, where multiple splitting events have given rise to a contin-
ually fluctuating state of multiple spiral waves having phase cluster cores. This state is similar to the vortex glass 
consisting of regular spiral waves observed by Brito et al.38. The oscillator phase in the array of oscillators is shown 
in Fig. 8(a), and the order parameters Rj k,  and Rj k,

3  are shown in Fig. 8(b,c). Again, we see low order in the spiral 
wave cores and high order in the surrounding spiral waves according to Rj k,  in Fig. 8(b). We see that the larger 
spiral wave cores exhibit high values in the order parameter Rj k,

3  in Fig. 8(c), corresponding to the high order of 
the three-cluster state.

We note that the splitting of the spiral core is qualitatively different from previously observed spiral instabili-
ties39,40. Core splitting behavior occurs as the core grows large enough that the spiral wave tip cannot circumnav-
igate the core before a wave segment spontaneously appears ahead of the tip. The spiral tip connects to the 
segment and continues around the large core; however, the core continues to grow and the spontaneously gener-
ated wave segment grows further into the core each spiral wave period. By the time the spiral wave tip is making 

Figure 6. Schematic representation of successive firing of oscillators that gives rise to phase cluster states with 
distinct periods22,33. Shown are three-cluster (red) and four-cluster states (blue) that result in period τ= × ′T 3  
and τ= × ′T 4  cluster states, corresponding to the first and second cluster states in Fig. 5(d,e). The time τ′ is 
defined as τ τ′ = + .1 1, where τ is the time delay and 1.1 is the time required for an oscillator to fire after being 
perturbed.
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its third or forth trip around the core, the core splits into two cores, typically one with two spiral tips and a topo-
logical charge of Q = +2 and the other with one spiral tip and a topological charge of Q = −1. The core fragment 
with two spiral tips quickly splits into two spirals with cores, each with topological charge of Q = +1, while the 
other spiral wave maintains its topological charge of Q = −1. Hence, the topological charge of Q = +1 is 

Figure 7. Phase cluster behavior. (a) Phase θ and (b) local order parameter Rj k,  of the oscillators for τ = .6 6. (c) 
Phase of oscillators firing in horizontal cross section at oscillator 32 as a function of oscillator index. (d) Local 
order parameter Rj k,

3  defined by Eq. (5) for the three-cluster state. See Supplementary Information for 
corresponding video.

Figure 8. Spiral wave core splitting. (a) Phase of each oscillator in the oscillator array with multiple spiral waves 
for τ = .6 2. (b) Local order parameter Rj k,  defined by Eq. (4) for one-group phase clusters and (c) local order 
parameter Rj k,

3  defined by Eq. (5) for three-group phase clusters. See Supplementary Information for 
corresponding video.
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maintained throughout the splitting process, from the original spiral wave with topological charge of Q = +1. 
Formally, the topological charge can be determined with Eq. (6), where ∆φk are the phase differences between 
oscillators on a closed curve γ41.

∮ dsQ 1
2

mod( ,2 )
(6)k

k∑π
φ φ π= = ∆

γ

comparing computational and experimental Dynamical Behavior
The intricate phase cluster behavior exhibited in our simulations prompted us to further examine the experimen-
tal dynamical behavior as a function of time delay τ. Experimental phase cluster behavior similar to the simula-
tion phase clusters shown in Fig. 7 was found in our original investigation15 at values of τ  larger than those 
corresponding to the spiral wave core splitting.

We are able to examine the virtual array in our experiments for evidence of phase cluster behavior in a manner 
similar to the order parameter analysis in simulations, shown in Figs. 7 and 8. An order parameter analysis of 
experiments with spiral wave chimeras, spiral core splitting and phase cluster dynamics is shown in Fig. 9. Each 
experiment has five panels, which respectively show phase, period and three local order parameters, Rj k,

1  – Rj k,
3 , 

Figure 9. Phase cluster analysis of experimental spiral wave chimeras (a–c), spiral wave core splitting (d), and 
phase clusters (e). Five different experiments showing column wise, respectively, phase, period and the order 
according to 3 different order parameters, Rj k,

1 , Rj k,
2 , and Rj k,

3 , defined as in Eqs. (4) and (5). Experimental 
parameters: (a) time delay τ = .1 0 s, mean period and standard deviation = . ± .T 54 8 1 40  s, τ = .T/ 0 0180 , 
coupling constant = .K 0 15, coupling decay constant κ = .0 3; (b) τ = .3 0 s, = . ± .T 114 8 8 20  s, 
τ = . = .T K/ 0 026, 0 100 , κ = .0 4; (c) τ = .5 0 s, = . ± .T 142 2 11 10  s, τ = . = .T K/ 0 035, 0 1250 , κ = .0 40; (d) 
τ = .5 0 s, = . ± .T 84 8 8 10  s, τ = . = .T K/ 0 059, 0 080 , κ = .3 1; (e) τ = .5 0 s, = . ± .T 54 7 7 10  s, 
τ = . = .T K/ 0 091, 0 080 , κ = .0 32.
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defined as in Eqs. (4) and (5). The local order parameters were used to search for one-cluster, two-cluster and 
three-cluster states.

As can be seen in Fig. 9(a–c), the value of each order parameter remains small in the spiral wave chimera core, 
with no evidence of phase clusters. As expected, the value of Rj k,

1  is high for the spiral wave in each of the experi-
ments, reflecting the higher order. These results indicate that spiral wave chimeras with aperiodic core oscillators 
occur in the experiments over a wider range of time delay τ than in the simulations. Because the natural period 
varies from experiment to experiment, we use the relative time delay τ T/ 0 in comparisons of experimental and 
simulated dynamical behavior. (See Fig. 1 for relative time delay τ T/ 0 in the simulations.)

We find that spiral wave chimeras are not observed above τ = . . = .T/ 1 0/36 0 0 0260  in simulations, while 
experimental chimera dynamics is observed for values of τ = . . = .T/ 5 0/142 2 0 0350 . Spiral wave core splitting is 
experimentally observed at τ = . . = .T/ 5 0/84 8 0 0590 , which compares with τ = . . = .T/ 6 2/36 0 0 1720  for this 
behavior in simulations. Spiral wave behavior is completely replaced by phase clusters in both the experiments 
and simulations at higher values of τ T/ 0, with three-cluster states found at τ = . . = . .T/ 5 0/54 7 0 0 910  in experi-
ments, Fig. 9(e), and the same cluster behavior found at τ = . . = .T/ 6 6/36 0 0 1830  in simulations, Fig. 7(d). Hence, 
the appearance of phase cluster dynamics occurs in about half the range of τ T/ 0 in experiments compared to the 
range of τ T/ 0 in simulations.

We also searched for experimental spiral wave pulsing behavior such as that found in the simulations, as 
shown in Fig. 4. Figure 10 shows 3D representations of spiral wave core splitting in an experiment and a simula-
tion, where the third dimension represents the concentration of the oxidized BZ catalyst, +Ru(dmbpy)3

3 . In the 
experimental example, shown in Fig. 10(a), mild periodic pulsing of the spiral wave can be discerned in the video. 
In the simulation example, shown in Fig. 10(b), very strong pulsing can be observed in the video.

Although the spiral wave chimera behavior is significantly more robust in the experiments than in the simu-
lations, phase cluster dynamics is exhibited by both at higher values of τ T/ 0. Figure 8 shows that phase cluster 
behavior also plays a role in spiral core splitting in simulations, and the pulsing behavior corresponds to the 
period of the spiral wave, given by τ= × ′ ≈T 5 37, much like the pulsing spiral behavior in Fig. 5. While the 
pulsing behavior in the experimental spiral wave core splitting in Fig. 10(a) is much milder, it is indicative of 
pulsing spiral wave behavior similar to that seen in the simulations. In addition, a three-cluster state occurs at 
higher values of τ T/ 0, as shown in Fig. 9(d).

Discussion
In both experiments and simulations, spiral wave chimera behavior is replaced by phase cluster dynamics follow-
ing spiral wave core splitting. Spiral wave chimeras are dominant in the experiments, occurring in about 60% of 
the τ T/ 0 range before spiral wave core splitting. In simulations, phase cluster dynamics dominates, with chimeras 
appearing for only about 16% of the τ T/ 0 range before spiral wave core splitting. A potentially important observa-
tion is that when classic chimera behavior is observed in simulations the period of the spiral wave is always less 
than the averaged period of the spiral wave chimera core, as shown in Fig. 1. When these periods become equal, 
the spiral wave chimera core essentially disappears and periodic pulsing behavior is observed. It may be that the 
spiral wave chimera exists in simulations only when the spiral wave tip perturbs the core oscillators more fre-
quently than their averaged period, such that aperiodic core oscillators are maintained. This is not the case in 
experiments, as Fig. 9(a–c) show the time averaged period of the spiral wave chimera core greater than, approxi-
mately equal to, and less than the spiral wave period, respectively.

We do not know the origin of the phase cluster dominance in our computational modeling results. A specula-
tive possibility is that the dynamics of the two-variable ZBKE model, Eq. (2), is affected by large differences in 
time scales, making the model overly stiff to quantitatively agree with the experimental behavior. However, there 
is good qualitative agreement between experiment and simulation on the transition of spiral wave chimera 
dynamics to phase cluster dynamics, with spiral wave core splitting observed during the transition in both. In 

Figure 10. Spiral wave pulsing dynamics, where the third dimension represents the concentration of the 
oxidized BZ catalyst, +Ru(dmbpy)3

3 . (a) Experimental example of spiral wave exhibiting pulsing dynamics. 
Parameters: (a) τ = .5 0 s, = . ± .T 142 2 11 10  s, τ = . = .T K/ 0 035, 0 1250 , κ = .0 40. (b) Simulation example of 
spiral wave exhibiting pulsing dynamics. Parameters: = .T 36 00 , τ = .5 9, τ = . . = .T/ 5 9/36 0 0 1630 , 

= . × −K 5 25 10 4, κ = .0 40. See Supplementary Information for corresponding videos.
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addition, the phase cluster spiral wave behavior found in our simulations represents novel spatiotemporal dynam-
ics that, to our knowledge, has not been previously reported. We note that the simulation cluster behavior shown 
at τ = .5 7 in Fig. 5(d), where four phase cluster states with distinct periods near and inside the spiral core coexist 
with the spiral wave, is a type of chimera. It is not the classic chimera with a spiral wave having a core comprising 
aperiodic oscillators; however, it represents two coexisting spatiotemporal dynamical states that have significantly 
different properties. We believe that the good overall agreement between experiments and simulations, as well as 
the differences in the detailed dynamics, will be useful in developing a better understanding of the transition from 
spiral wave chimeras to phase cluster dynamics.

Data availability
All data generated or analyzed during this study are included in this published article and its Supplementary 
Information files. The numerical simulation code for the computational results is available on a public Git 
repository: https://github.com/bzjan/Spiral_Wave_Chimera_Solver.git.
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